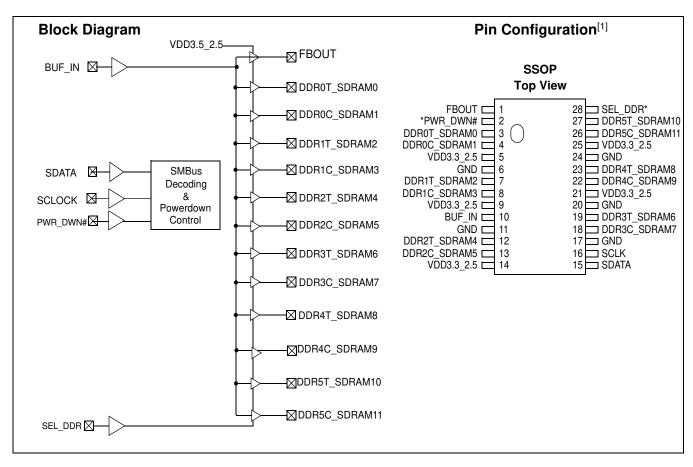
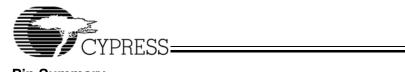


12 Output Buffer for 2 DDR and 3 SRAM DIMMS


Features

- · One input to 12 output buffer/drivers
- Supports up to 2 DDR DIMMs or 3 SDRAM DIMMS
- One additional output for feedback
- · SMBus interface for individual output control
- Low skew outputs (< 100 ps)
- Supports 266 MHz and 333 MHz DDR SDRAM
- · Dedicated pin for power management support
- · Space-saving 28-pin SSOP package

Functional Description


The W256 is a 3.3V/2.5V buffer designed to distribute high-speed clocks in PC applications. The part has 12 outputs. Designers can configure these outputs to support 3 unbuffered standard SDRAM DIMMs and 2 DDR DIMMs. The W256 can be used in conjunction with the W250-02 or similar clock synthesizer for the VIA Pro 266 chipset.

The W256 also includes an SMBus interface which can enable or disable each output clock. On power-up, all output clocks are enabled (internal pull-up).

Note:

1. Internal 100K pull-up resistors present on inputs marked with *. Design should not rely solely on internal pull-up resistor to set I/O pins HIGH.

Pin Summary

Name	Pins	Description
SEL_DDR	28	Input to configure for DDR-ONLY mode or STANDARD SDRAM mode. 1 = DDR-ONLY mode. 0 = STANDARD SDRAM mode. When SEL_DDR is pulled HIGH or configured for DDR-ONLY mode, all the buffers will be configured as DDR outputs. Connect VDD3.3_2.5 to a 2.5V power supply in DDR-ONLY mode. When SEL_DDR is pulled LOW or configured for STANDARD SDRAM output, all the buffers will be configured as STANDARD SDRAM outputs. Connect VDD3.3_2.5 to a 3.3V power supply in STANDARD SDRAM mode.
SCLK	16	SMBus clock input.
SDATA	15	SMBus data input.
BUF_IN	10	Reference input from chipset. 2.5V input for DDR-ONLY mode; 3.3V input for STANDARD SDRAM mode.
FBOUT	1	Feedback clock for chipset. Output voltage depends on VDD3.3_2.5V.
PWR_DWN#	2	Active LOW input to enable Power Down mode; all outputs will be pulled LOW.
DDR[0:5]T_SDRAM [0,2,4,6,8,10]	3, 7, 12, 19, 23, 27	Clock outputs . These outputs provide copies of BUF_IN. Voltage swing depends on VDD3.3_2.5 power supply.
DDR[0:5]C_SDRAM [1,3,5,7,9, 11]	4, 8, 13, 18, 22, 26	Clock outputs. These outputs provide complementary copies of BUF_IN when SEL_DDR is active. These outputs provide copies of BUF_IN when SEL_DDR is inactive. Voltage swing depends on VDD3.3_2.5 power supply.
VDD3.3_2.5	5, 9, 14, 21, 25	Connect to 2.5V power supply when W256 is configured for DDR-ONLY mode. Connect to 3.3V power supply, when W256 is configured for standard SDRAM mode.
GND	6, 11, 17, 20, 24	Ground.

Serial Configuration Map

 The Serial bits will be read by the clock driver in the following order:

- Reserved and unused bits should be programmed to "0".
- SMBus Address for the W256 is:

Table 1.

A 6	A 5	A4	A3	A2	A 1	A0	R/W
1	1	0	1	0	0	1	_

Byte 6: Outputs Active/Inactive Register (1 = Active, 0 = Inactive), Default = Active

Bit	Pin#	Description	Default
Bit 7	_	Reserved, drive to 0	0
Bit 6	_	Reserved, drive to 0	0
Bit 5	_	Reserved, drive to 0	0
Bit 4	1	FBOUT	1
Bit 3	27, 26	DDR5T_SDRAM10, DDR5C_SDRAM11	1
Bit 2	_	Reserved, drive to 0	1
Bit 1	23, 22	DDR4T_SDRAM8, DDR4C_SDRAM9	1
Bit 0	_	Reserved, drive to 0	1

Byte 7: Outputs Active/Inactive Register (1 = Active, 0 = Inactive), Default = Active

Bit	Pin#	Description	Default
Bit 7	_	Reserved, drive to 0	1
Bit 6	19, 18	DDR3T_SDRAM6, DDR3C_SDRAM7	1
Bit 5	12, 13	DDR2T_SDRAM4, DDR2C_SDRAM5	1
Bit 4	_	Reserved, drive to 0	1
Bit 3	_	Reserved, drive to 0	1
Bit 2	7, 8	DDR1T_SDRAM2, DDR1C_SDRAM3	1
Bit 1	_	Reserved, drive to 0	1
Bit 0	3, 4	DDR0T_SDRAM0, DDR0C_SDRAM1	1

Maximum Ratings

Supply Voltage to Ground Potential-0.5 to +7.0V DC Input Voltage (except BUF_IN)-0.5V to V_{DD}+0.5 Storage Temperature-65°C to +150°C Static Discharge Voltage>2000V (per MIL-STD-883, Method 3015)

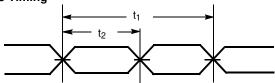
Operating Conditions^[2]

Parameter	Description	Min.	Тур.	Max.	Unit
V _{DD3.3}	Supply Voltage	3.135		3.465	V
V _{DD2.5}	Supply Voltage	2.375		2.625	V
T _A	Operating Temperature (Ambient Temperature)	0		70	°C
C _{OUT}	Output Capacitance		6		pF
C _{IN}	Input Capacitance		5		pF

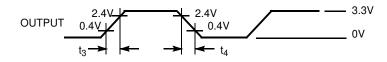
Electrical Characteristics Over the Operating Range

Parameter	Description	Test Conditions	Min.	Тур.	Max.	Unit	
V _{IL}	Input LOW Voltage	For all pins except SMBus			0.8	V	
V _{IH}	Input HIGH Voltage		2.0			V	
I _{IL}	Input LOW Current	V _{IN} = 0V			50	μΑ	
I _{IH}	Input HIGH Current	$V_{IN} = V_{DD}$			50	μΑ	
ГОН	Output HIGH Current	V _{DD} = 2.375V V _{OUT} = 1V	-18	-32		mA	
I _{OL}	Output LOW Current	V _{DD} = 2.375V V _{OUT} = 1.2V	26	35		mA	
V _{OL}	Output LOW Voltage ^[3]	$I_{OL} = 12 \text{ mA}, V_{DD} = 2.375 \text{V}$			0.6	V	
V _{OH}	Output HIGH Voltage ^[3]	$I_{OH} = -12 \text{ mA}, V_{DD} = 2.375 \text{ V}$	1.7			V	
I _{DD}	Supply Current ^[3] (DDR-Only mode)	Unloaded outputs, 133 MHz			400	mA	
I _{DD}	Supply Current (DDR-Only mode)	Loaded outputs, 133 MHz			500	mA	
I _{DDS}	Supply Current	PWR_DWN# = 0			100	μΑ	
V _{OUT}	Output Voltage Swing	See Test Circuity (Refer to Figure 1)	0.7		V _{DD} + 0.6	V	
V _{OC}	Output Crossing Voltage		(V _{DD} /2) -0.1	V _{DD} /2	(V _{DD} /2) +0.1	V	
IN _{DC}	Input Clock Duty Cycle		48		52	%	

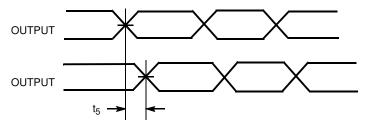
^{2.} Multiple Supplies: The voltage on any input or I/O pin cannot exceed the power pin during power-up. Power supply sequencing is NOT required.
3. Parameter is guaranteed by design and characterization. Not 100% tested in production.



Switching Characteristics^[4]


Parameter	Name	Test Conditions	Min.	Тур.	Max.	Unit
_	Operating Frequency		66		180	MHz
_	Duty Cycle ^[4,5] = $t_2 \div t_1$	Measured at 1.4V for 3.3V outputs Measured at VDD/2 for 2.5V outputs.	IN _{DC} -5%		IN _{DC} +5%	%
t ₃	SDRAM Rising Edge Rate ^[4]	Measured between 0.4V and 2.4V	1.0		2.50	V/ns
t ₄	SDRAM Falling Edge Rate ^[4]	Measured between 2.4V and 0.4V	1.0		2.50	V/ns
t _{3d}	DDR Rising Edge Rate ^[4]	Measured between 20% to 80% of output (Refer to <i>Figure 1</i>)	0.5		1.50	V/ns
t _{4d}	DDR Falling Edge Rate ^[4]	Measured between 20% to 80% of output (Refer to <i>Figure 1</i>)	0.5		1.50	V/ns
t ₅	Output to Output Skew ^[4]	All outputs equally loaded			100	ps
t ₆	Output t4o Output Skew for SDRAM ^[2]	All outputs equally loaded			150	ps
t ₇	SDRAM Buffer HH Prop. Delay ^[4]	Input edge greater than 1 V/ns	5		10	ns
t ₈	SDRAM Buffer LLProp. Delay ^[4]	Input edge greater than 1 V/ns	5		10	ns

Switching Waveforms


Duty Cycle Timing

All Outputs Rise/Fall Time

Output-Output Skew

- 4. All parameters specified with loaded outputs.5. Duty cycle of input clock is 50%. Rising and falling edge rate is greater than 1V/ns.

Switching Waveforms (continued)

SDRAM Buffer HH and LL Propagation Delay

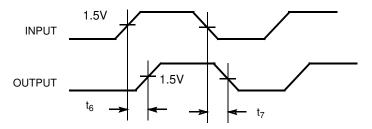


Figure 1 shows the differential clock directly terminated by a 120 Ω resistor.

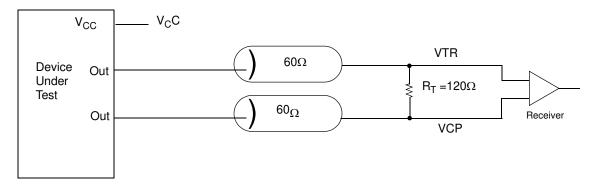
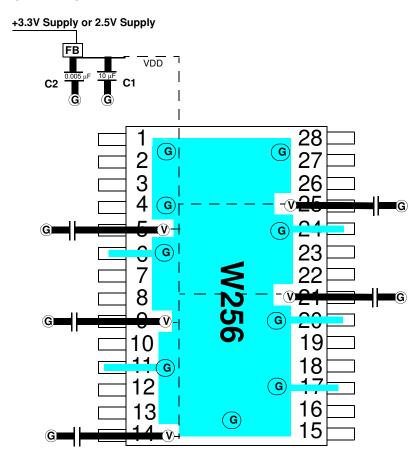



Figure 1. Differential Signal Using Direct Termination Resistor

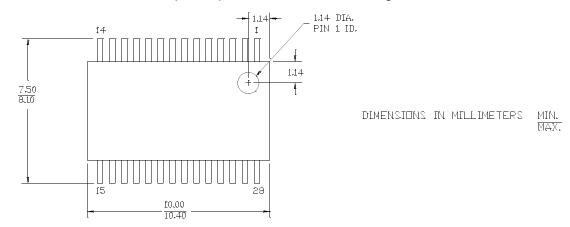
Layout Example Single Voltage

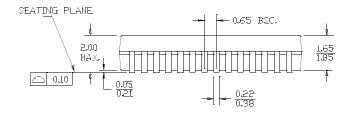
FB = Dale ILB1206 - 300 (300 Ω @ 100 MHz)

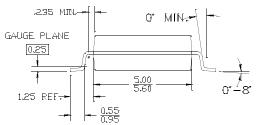
Cermaic Caps C1 = 10–22 μF C2 = 0.005 μF

G = VIA to GND plane layer V =VIA to respective supply plane layer

Note: Each supply plane or strip should have a ferrite bead and capacitors All bypass caps = 0.1 μF ceramic


Ordering Information


Ordering Code	Package Type	Operating Range	
W256H	28-pin SSOP	Commercial	
W256HT	28-pin SSOP – Tape and Reel	Commercial	
Lead Free	<u>.</u>		
CYW256OXC	28-pin SSOP	Commercial	
CYW256OXCT	28-pin SSOP – Tape and Reel	Commercial	



Package Drawings and Dimension

28-Lead (5.3 mm) Shrunk Small Outline Package O28

51-85079-*C

Document History Page

Document Title: W256 12 Output Buffer for 2 DDR and 3 SRAM DIMMS Document Number: 38-07256						
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change		
**	110521	12/04/01	SZV	Change from Spec number: 38-01083 to 38-07256		
*A	112153	03/01/02	IKA	Added 333 MHz for SDRAM		
*B	122858	12/19/02	RBI	Added power requirements to operating conditions information.		
*C	258671	See ECN	RGL	Added Lead Free Devices		