

CY7C1041CV33 Automotive

Features

- Temperature ranges □ Automotive-E: -40 °C to 125 °C
- High speed □ t_{AA} = 10 ns
- Low active power □ 468 mW (max)
- 2.0 V data retention
- Automatic power down when deselected
- Independent control of upper and lower bits
- Easy memory expansion with Chip Enable (CE) and Output Enable (OE) features
- Available in Pb-free 48-ball grid array (BGA) package

Functional Description

The CY7C1041CV33 Automotive is a high performance complementary metal oxide semiconductor (CMOS) static RAM organized as 262,144 words by 16 bits. This device has an automatic power down feature that significantly reduces power consumption when deselected.

To write to the device, tak<u>e</u> \overline{CE} and Write Enable (\overline{WE}) inputs LOW. If Byte Low Enable (BLE) is LOW, then data from I/O pins (I/O₀ through I/O₇), is written into the location specified on the address pins (A₀ through A₁₇). If Byte High Enable (BHE) is LOW, then data from I/O pins (I/O₈ through I/O₁₅) is written into the location specified on the address pins (A₀ through A₁₇).

To read from the device, take \overline{CE} and \overline{OE} LOW while forcing the Write Enable (WE) HIGH. If BLE is LOW, then data from the memory location specified by the address pins appear on I/O₀ to I/O₇. If Byte High Enable (BHE) is LOW, then data from memory appears on I/O₈ to I/O₁₅. For more information, see the Truth Table on page 10 for a complete description of Read and Write modes.

The input and output pins (I/O₀ through I/O₁₅) are <u>placed</u> in a high impedance state when <u>the</u> device is des<u>elected</u> (CE HIGH), the outputs are disabled (OE HIGH), the BHE and BLE are disabled (BHE, BLE HIGH), or during a write operation (CE LOW and WE LOW).

For a complete list of related resources, click here.

Logic Block Diagram

Cypress Semiconductor Corporation Document Number: 001-86495 Rev. *D 198 Champion Court

San Jose, CA 95134-1709 • 408-943-2600 Revised December 22, 2017

Contents

Pin Configuration	3
Selection Guide	
Maximum Ratings	4
Operating Range	
Electrical Characteristics	4
Capacitance	5
Thermal Resistance	5
AC Test Loads and Waveforms	5
Switching Characteristics	6
Switching Waveforms	7
Truth Table	
Ordering Information	
Ordering Code Definitions	

	13
Acronyms1	
Document Conventions	13
Units of Measure	13
Document History Page	14
Sales, Solutions, and Legal Information	15
Worldwide Sales and Design Support	15
Products	15
PSoC® Solutions	15
Cypress Developer Community	15
Technical Support	15

Pin Configuration

Figure 1. 48 ball BGA pinout ^[1]

Selection Guide

Description	-10	Unit	
Maximum access time		10	ns
Maximum operating current A	Automotive-E	130	mA
Maximum CMOS standby current A	Automotive-E	15	mA

Maximum Ratings

Exceeding maximum ratings may shorten the useful life of the device. These user guidelines are not tested.

Storage temperature	65 °C to +150 °C
Ambient temperature with power applied	–55 °C to +125 °C
Supply voltage on V _{CC} relative to GND ^[2]	–0.5 V to +4.6 V
DC voltage applied to outputs in High Z state ^[2]	–0.5 V to V _{CC} + 0.5 V

DC input voltage ^[2]	$0.5.$ V to V $\pm 0.5.$ V
DC input voltage - 7	$-0.5 \vee 10 \vee_{CC} + 0.5 \vee$
Current into outputs (LOW)	
Static discharge voltage	
(MIL-STD-883, method 3015) .	> 2001 V
Latch up current	> 200 mA

Operating Range

Range	Ambient Temperature (T _A)	V _{cc}
Automotive-E	–40 °C to +125 °C	$3.3~V\pm10\%$

Electrical Characteristics

Over the Operating Range

Baramatar	Description	Test Condition	_	-10		Unit
Parameter	Description	Test Conditions	Min	Max	Unit	
V _{OH}	Output HIGH voltage	V _{CC} = Min, I _{OH} = -4.0 mA		2.4	-	V
V _{OL}	Output LOW voltage	V _{CC} = Min, I _{OL} = 8.0 mA		-	0.4	V
V _{IH}	Input HIGH voltage			2.0	V _{CC} + 0.3	V
V _{IL}	Input LOW voltage [2]			-0.3	0.8	V
I _{IX}	Input leakage current	$GND \leq V_I \leq V_{CC}$	Automotive-E	-20	+20	μA
I _{OZ}	Output leakage current	$GND \le V_I \le V_{CC},$ Output disabled	Automotive-E	-20	+20	μA
I _{CC}	V _{CC} operating supply current	V_{CC} = Max, I_{OUT} = 0 mA, f = f _{MAX} = 1/t _{RC}	Automotive-E	-	130	mA
I _{SB1}	Automatic CE power down current – TTL Inputs	$ \begin{array}{l} \text{Max } V_{CC}, \ \overline{CE} \geq V_{IH}, \\ \text{V}_{IN} \geq V_{IH} \ \text{or} \ V_{IN} \leq V_{IL}, \ f = f_{MAX} \end{array} $	Automotive-E	-	45	mA
I _{SB2}	Automatic CE power down current – CMOS inputs	$\begin{array}{l} \mbox{Max V}_{CC}, \ \overline{CE} \geq V_{CC} - 0.3 \ V, \\ \mbox{V}_{IN} \geq V_{CC} - 0.3 \ V, \ or \\ \mbox{V}_{IN} \leq 0.3 \ V, \ f = 0 \end{array}$	Automotive-E	_	15	mA

Capacitance

Parameter ^[3]	Description	Test Conditions	Max	Unit
C _{IN}	Input capacitance	T _A = 25 °C, f = 1 MHz, V _{CC} = 3.3 V	8	pF
C _{OUT}	Output capacitance		8	pF

Thermal Resistance

Parameter ^[3]	Description	Test Conditions	48-ball BGA	Unit
Θ_{JA}	Thermal resistance (junction to ambient)	Still air, soldered on a 3 × 4.5 inch, four-layer printed circuit board	38.15	°C/W
Θ^{JC}	Thermal resistance (junction to case)		9.15	°C/W

AC Test Loads and Waveforms

Figure 2. AC Test Loads and Waveforms ^[4]

(a)

Notes

- 3. Tested initially and after any design or process changes that may affect these parameters.
- 4. AC characteristics (except High Z) for 10-ns parts are tested using the load conditions shown in Figure 2 (a). High Z characteristics are tested using the test load shown in Figure 2 (c).

Switching Characteristics

Over the Operating Range

Parameter ^[5]	Description	-1	Unit	
Farameter	Description	Min	Max	onit
Read Cycle				
t _{power} [6]	V _{CC} (typical) to the first access	100	_	μS
t _{RC}	Read cycle time	10	_	ns
t _{AA}	Address to data valid	_	10	ns
t _{OHA}	Data hold from address change	3	_	ns
t _{ACE}	CE LOW to data valid	_	10	ns
t _{DOE}	OE LOW to data valid	-	6	ns
t _{LZOE}	OE LOW to Low Z ^[7]	0	-	ns
t _{HZOE}	OE HIGH to High Z ^[7, 8]	-	5	ns
t _{LZCE}	CE LOW to Low Z ^[7]	3	-	ns
t _{HZCE}	CE HIGH to High Z ^[7, 8]	-	5	ns
t _{PU}	CE LOW to power up	0	-	ns
t _{PD}	CE HIGH to power down	-	10	ns
t _{DBE}	Byte enable to data valid	-	6	ns
t _{LZBE}	Byte enable to Low Z	0	_	ns
t _{HZBE}	Byte disable to High Z	_	6	ns
Write Cycle ^{[9,}	10]			
t _{WC}	Write cycle time	10	-	ns
t _{SCE}	CE LOW to write end	7	-	ns
t _{AW}	Address setup to write end	7	-	ns
t _{HA}	Address hold from write end	0	-	ns
t _{SA}	Address setup to write start	0	-	ns
t _{PWE}	WE pulse width	7	-	ns
t _{SD}	Data setup to write end	5	-	ns
t _{HD}	Data hold from write end	0	-	ns
t _{LZWE}	WE HIGH to Low Z ^[7]	3	-	ns
t _{HZWE}	WE LOW to High Z ^[7, 8]	-	5	ns
t _{BW}	Byte enable to end of write	7	-	ns

Notes

Notes
5. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5 V, and input pulse levels of 0 to 3.0 V.
6. t_{POWER} gives the minimum amount of time that the power supply is at typical V_{CC} values until the first memory access is performed.
7. At any temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZOE} is less than t_{LZOE}, and t_{HZWE} for any device.
8. t_{HZOE}, t_{HZEE}, t_{HZCE}, and t_{HZWE} are specified with a load capacitance of 5 pF as in part (c) of Figure 2 on page 5. Transition is measured ±500 mV from steady state voltage.
9. The internal write time of the memory is defined by the overlap of CE LOW, WE LOW, and BHE/BLE LOW. CE, WE, and BHE/BLE must be LOW to initiate a write. The transition of these signals terminate the write. The input data setup and hold timing is referenced to the leading edge of the signal that terminates the write.
10. The minimum write cycle time for Write Cycle No. 3 (WE controlled, OE LOW) is the sum of t_{HZWE} and t_{SD}.

Switching Waveforms

Figure 3. Read Cycle No. 1 (Address Transition Controlled) ^[11, 12]

Notes

- 11. <u>Dev</u>ice is continuously selected. \overline{OE} , \overline{CE} , \overline{BHE} , and/or $\overline{BLE} = V_{IL}$.
- 12. WE is HIGH for read cycle.

13. Address valid prior to or coincident with \overline{CE} transition LOW.

Switching Waveforms (continued)

Figure 5. Write Cycle No. 1 (CE Controlled) ^[14, 15]

Figure 6. Write Cycle No. 2 (BLE or BHE Controlled)

Notes

14. Data I/O is high impedance if OE, BHE, and/or BLE = V_{IH}. 15. If CE goes HIGH simultaneously with WE going HIGH, the output remains in a high impedance state.

Switching Waveforms (continued)

Figure 7. Write Cycle No. 3 (WE Controlled, LOW)

Truth Table

CE	OE	WE	BLE	BHE	I/O ₀ -I/O ₇	I/O ₈ –I/O ₁₅	Mode	Power
Н	Х	Х	Х	Х	High Z	High Z	Power down	Standby (I _{SB})
L	L	Н	L	L	Data Out	Data Out	Read – all bits	Active (I _{CC})
L	L	Н	L	Н	Data Out	High Z	Read – lower bits only	Active (I _{CC})
L	L	Н	Н	L	High Z	Data Out	Read – upper bits only	Active (I _{CC})
L	Х	L	L	L	Data In	Data In	Write – all bits	Active (I _{CC})
L	Х	L	L	Н	Data In	High Z	Write – lower bits only	Active (I _{CC})
L	Х	L	Н	L	High Z	Data In	Write – upper bits only	Active (I _{CC})
L	Н	Н	Х	Х	High Z	High Z	Selected, outputs disabled	Active (I _{CC})

Ordering Information

Speed (ns)	Ordering Code	Package Diagram	Package Type	Operating Range
10	CY7C1041CV33-10BAJXE	001-85259	48-ball BGA (Pb-free)	Automotive-E

Ordering Code Definitions

Package Diagrams

Figure 8. 48-ball FBGA (6 × 8 × 1.2 mm) BA48M/BK48M (0.35 mm Ball Diameter) Package Outline, 001-85259

1. DIMENSIONS ARE IN MILLIMETERS

2. REFERENCE JEDEC STD : MO-216

3. * 0.32±0.05 FOR RAMTRON DEVICES

001-85259 *A

Acronyms

Acronym	Description		
BHE	Byte High Enable		
BLE	Byte Low Enable		
CMOS	Complementary Metal Oxide Semiconductor		
CE	Chip Enable		
I/O	Input/Output		
OE	Output Enable		
SRAM	Static Random Access Memory		
TTL	Transistor-Transistor Logic		
VFBGA	Very Fine-Pitch Ball Grid Array		
WE	Write Enable		

Document Conventions

Units of Measure

Symbol	Unit of Measure		
°C	degree Celsius		
MHz	megahertz		
μA	microampere		
μs	microsecond		
mA	milliampere		
mm	millimeter		
ms	millisecond		
mV	millivolt		
mW	milliwatt		
ns	nanosecond		
%	percent		
pF	picofarad		
V	volt		
W	watt		

Document History Page

Document Title: CY7C1041CV33 Automotive, 4-Mbit (256 K × 16) Static RAM Document Number: 001-86495							
Revision	ECN	Orig. of Change	Submission Date	Description of Change			
**	3925192	TAVA	04/04/2013	New data sheet.			
*A	4103029	MEMJ	08/23/2013	Changed status from Preliminary to Final. Updated Ordering Information: No change in part numbers. Replaced "51-85087" with "001-85259" in "Package Diagram" column.			
				Updated Package Diagrams: spec 001-85259 – Changed revision from ** to *A. Updated in new template.			
*В	4396000	VINI	06/02/2014	No technical updates. Completing Sunset Review.			
*C	4724503	PSR	04/14/2015	Updated Functional Description: Added "For a complete list of related resources, click here." at the end. Updated to new template. Completing Sunset Review.			
*D	6003585	AESATP12	12/22/2017	Updated logo and copyright.			

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

Arm [®] Cortex [®] Microcontrollers	cypress.com/arm
Automotive	cypress.com/automotive
Clocks & Buffers	cypress.com/clocks
Interface	cypress.com/interface
Internet of Things	cypress.com/iot
Memory	cypress.com/memory
Microcontrollers	cypress.com/mcu
PSoC	cypress.com/psoc
Power Management ICs	cypress.com/pmic
Touch Sensing	cypress.com/touch
USB Controllers	cypress.com/usb
Wireless Connectivity	cypress.com/wireless

PSoC[®] Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 MCU

Cypress Developer Community Community | Projects | Video | Blogs | Training | Components

Technical Support cypress.com/support

© Cypress Semiconductor Corporation, 2013-2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software is not other wise code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. No computing device can be absolutely secure. Therefore, despite security measures implemented in Cypress hardware or software products, Cypress does not assume any liability arising out of any security breach, such as unauthorized access to or use of a Cypress product. In addition, the products described in these materials may contain design defects or errors known as errata which may cause the product to deviate from published specifications. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or system could cause personal injury, death, or properly damage ("Unintended Uses"). A critical component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.