

Split Dual Si/SiC Hybrid IGBT Module 100 Amperes/1200 Volts

Outline Drawing and Circuit Diagram

Dimensions	Inches	Millimeters		
А	4.32	109.8		
В	2.21	56.1		
С	0.71	18.0		
D	3.70±0.02	94.0±0.5		
E	2.026	51.46		
F	3.17	80.5		
G	1.96	49.8		
Н	1.00	25.5		
K	0.87	22.0		
L	0.266	6.75		
М	0.26	6.5		
N	0.59	15.0		
Р	0.586	14.89		

Dimensions	Inches	Millimeters
Q	0.449	11.40
R	0.885	22.49
S	1.047	26.6
Т	0.15	3.80
U	0.16	4.0
V	0.30	7.5
W	0.045	1.15
X	0.03	0.8
Υ	0.16	4.0
Z	0.47	12.1
AA	0.17 Dia.	4.3 Dia.
AB	0.10 Dia.	2.5 Dia.
AC	0.08 Dia.	2.1 Dia.

Description:

Powerex IGBT Modules are designed for use in high frequency applications; upwards of 30 kHz for hard switching applications and 80 kHz for soft switching applications. Each module consists of two IGBT Transistors with each transistor having a reverse-connected super-fast recovery free-wheel silicon carbide Schottky diode. All components and interconnects are isolated from the heat sinking baseplate, offering simplified system assembly and thermal management.

Features:

- ☐ Low EsW(off)
- □ Aluminum Nitride Isolation
- □ Discrete Super-Fast Recovery Free-Wheel Silicon Carbide Schottky Diode
- ☐ Low Internal Inductance
- ☐ 2 Individual Switches per Module
- ☐ Isolated Baseplate for Easy Heat Sinking
- ☐ AlSiC Baseplate
- □ RoHS Compliant

Applications:

- Energy Saving PowerSystems such as:Fans; Pumps; Consume
 - Fans; Pumps; Consumer Appliances
- ☐ High Frequency Type Power Systems such as:
 - UPS; High Speed Motor Drives; Induction Heating; Welder; Robotics
- ☐ High Temperature Power
 Systems such as:
 Power Electronics in Electric
 Vehicle and Aviation Systems

QID1210006 Split Dual Si/SiC Hybrid IGBT Module 100 Amperes/1200 Volts

Absolute Maximum Ratings, $T_j = 25^{\circ}\text{C}$ unless otherwise specified

Ratings	Symbol	QID1210006	Units
Junction Temperature	Тј	-40 to 150	°C
Storage Temperature	T _{stg}	-40 to 150	°C
Collector-Emitter Voltage (G-E Short)	VCES	1200	Volts
Gate-Emitter Voltage (C-E Short)	V _{GES}	±20	Volts
Collector Current (T _C = 25°C)	IC	100*	Amperes
Peak Collector Current	ICM	200*	Amperes
Emitter Current** (T _C = 25°C)	ΙΕ	80*	Amperes
Repetitive Peak Emitter Current (T _C = 25°C, t _p = 10ms, Half Sine Pulse)**	I _{EM}	455*	Amperes
Maximum Collector Dissipation ($T_C = 25^{\circ}C, T_j \le 150^{\circ}C$)	PC	570	Watts
Mounting Torque, M6 Mounting	_	40	in-lb
Weight	_	130	Grams
Isolation Voltage (Main Terminal to Baseplate, AC 1 min.)	V _{ISO}	2500	Volts

IGBT Electrical Characteristics, $T_j = 25$ °C unless otherwise specified

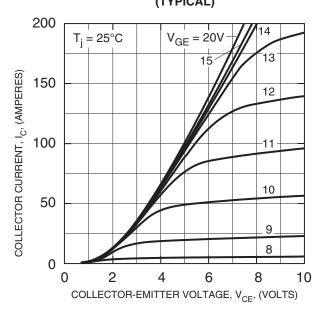
Characteristics		Symbol	Test Conditions	Min.	Тур.	Max.	Units
Collector-Cutof	f Current	ICES	V _{CE} = V _{CES} , V _{GE} = 0V	_	_	1.0	mA
Gate Leakage	Current	IGES	V _{GE} = V _{GES} , V _{CE} = 0V	_	_	0.5	μΑ
Gate-Emitter T	hreshold Voltage	V _{GE(th)}	I _C = 10mA, V _{CE} = 10V	4.5	6.0	7.5	Volts
Collector-Emitte	er Saturation Voltage	V _{CE(sat)}	$I_C = 100A$, $V_{GE} = 15V$, $T_j = 25$ °C	_	5.0	6.5	Volts
			$I_C = 100A$, $V_{GE} = 15V$, $T_j = 125$ °C	_	5.0	_	Volts
Total Gate Cha	ırge	QG	V _{CC} = 600V, I _C = 100A, V _{GE} = 15V	_	450	_	nC
Input Capacita	nce	C _{ies}		_	_	16	nf
Output Capacit	tance	C _{oes}	$V_{CE} = 10V, V_{GE} = 0V$	_	_	1.3	nf
Reverse Transf	er Capacitance	C _{res}	_	_	_	0.3	nf
Inductive	Turn-on Delay Time	^t d(on)	V _{CC} = 600V, I _C = 100A,	_	_	TBD	ns
Load	Rise Time	t _r	$V_{GE1} = V_{GE2} = 15V,$	_	_	TBD	ns
Switch	Turn-off Delay Time	td(off)	$R_G = 3.1\Omega$,	_	_	TBD	ns
	TimeFall Time	tf	Inductive Load Switching Operation	_	_	TBD	ns

^{*} Pulse width and repetition rate should be such that device junction temperature (T_j) does not exceed $T_{j(max)}$ rating. **Represents characteristics of the anti-parallel, emitter-to-collector silicon carbide Schottky diode (FWDi).

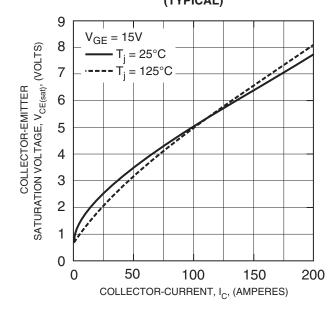
QID1210006 Split Dual Si/SiC Hybrid IGBT Module 100 Amperes/1200 Volts

Reverse Schottky Diode Characteristics, T_j = 25 °C unless otherwise specified

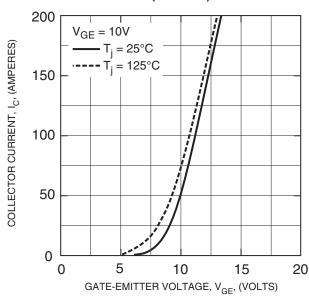
Characteristics	Symbol	Test Conditions	Min.	Тур.	Max.	Units
Diode Forward Voltage	VFM	IF = 80A, VGS = -5V	_	1.6	2.0	Volts
		$I_F = 80A$, $V_{GS} = -5V$, $T_j = 175$ °C	_	2.5	3.2	Volts
Diode Reverse Current	I _R	V _R = 1200V	_	140	800	μΑ
		V _R = 1200, T _j = 150°C	_	260	1600	μΑ
Diode Capacitive Charge	QC	$V_R = 1200V$, $I_F = 80A$, $di/dt = 800A/\mu s$	_	520	_	nC

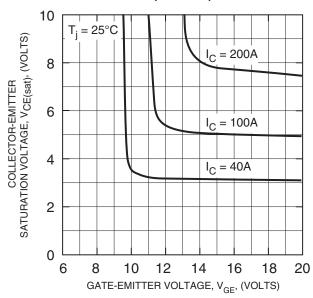

Thermal and Mechanical Characteristics, T_i = 25 °C unless otherwise specified

		-				
Characteristics	Symbol	Test Conditions	Min.	Тур.	Max.	Units
Thermal Resistance, Junction to Case	R _{th(j-c)} Q	Per IGBT 1/2 Module,	_	_	0.217	°C/W
		T _C Reference Point Under Chips				
Thermal Resistance, Junction to Case	R _{th(j-c)} D	Per FWDi 1/2 Module, T _C Reference	_	_	0.368	°C/W
		T _C Reference Point Under Chips				
Contact Thermal Resistance	Rth(c-f)	Per 1/2 Module, Thermal Grease Applied	_	0.04	_	°C/W
External Gate Resistance	RG		3.1	_	31	Ω
Internal Inductance	L _{int}	IGBT Part	_	10	_	nH

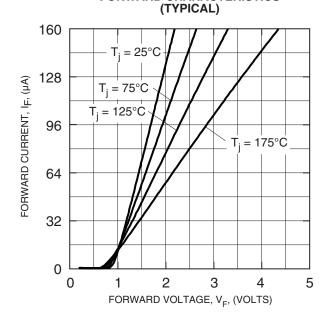


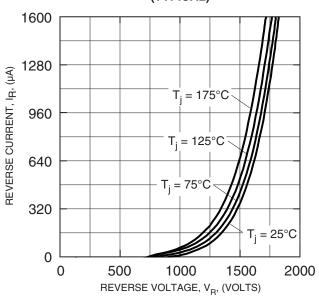
QID1210006 Split Dual Si/SiC Hybrid IGBT Module 100 Amperes/1200 Volts


OUTPUT CHARACTERISTICS (TYPICAL)

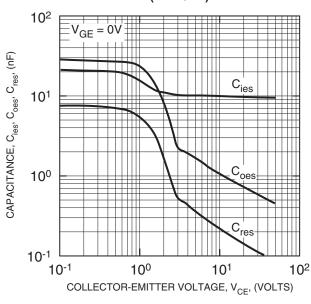

COLLECTOR-EMITTER SATURATION VOLTAGE CHARACTERISTICS (TYPICAL)

TRANSFER CHARACTERISTICS (TYPICAL)

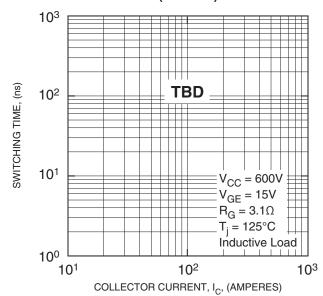

COLLECTOR-EMITTER SATURATION VOLTAGE CHARACTERISTICS (TYPICAL)


QID1210006 Split Dual Si/SiC Hybrid IGBT Module 100 Amperes/1200 Volts

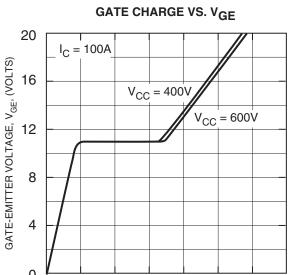
FREE-WHEEL SCHOTTKY DIODE FORWARD CHARACTERISTICS



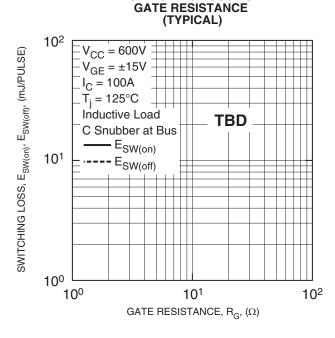
REVERSE CHARACTERISTICS (TYPICAL)


FREE-WHEEL SCHOTTKY DIODE

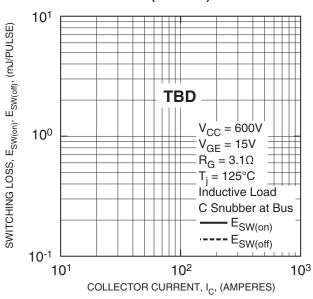
CAPACITANCE VS. V_{CE} (TYPICAL)



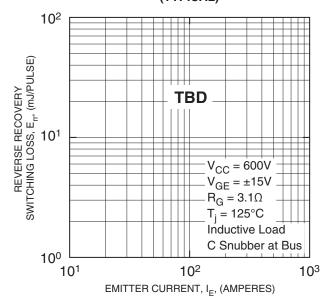
HALF-BRIDGE SWITCHING CHARACTERISTICS (TYPICAL)

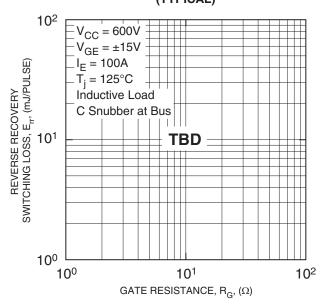


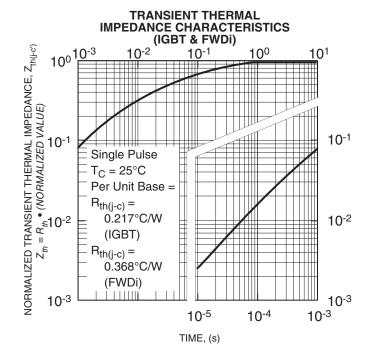
QID1210006 Split Dual Si/SiC Hybrid IGBT Module 100 Amperes/1200 Volts



0 100 200 300 400 500 600 700 0 GATE CHARGE, Q_{G} , (nC)


SWITCHING LOSS VS.


REVERSE RECOVERY SWITCHING LOSS VS. **EMITTER CURRENT** (TYPICAL)



QID1210006 Split Dual Si/SiC Hybrid IGBT Module 100 Amperes/1200 Volts

REVERSE RECOVERY SWITCHING LOSS VS. GATE RESISTANCE (TYPICAL)

