onsemi

MOSFET - Power, Single P-Channel, WDFN6 -30 V

NVTFS012P03P8Z, NVTFWS012P03P8Z

Features

- Small Footprint for Compact Design
- Low R_{DS(on)} to Minimize Conduction Losses
- AEC-Q101 Qualified
- These Devices are Pb–Free, Halogen–Free/BFR–Free and are RoHS Compliant

Applications

- Battery Management
- Protection
- Power Load Switch

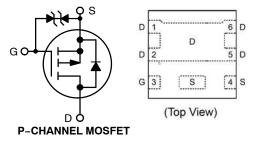
MAXIMUM RATINGS (T_J = 25° C unless otherwise noted)

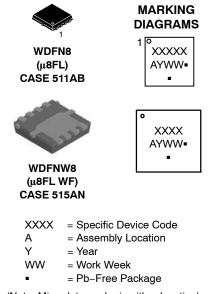
Parar	Symbol	Value	Unit			
Drain-to-Source Voltage			V _{DSS}	-30	V	
Gate-to-Source Voltage			V _{GS}	±25	V	
Continuous Drain	Steady State	$T_A = 25^{\circ}C$	۱ _D	-11.7	А	
Current R _{θJA} (Notes 1, 3)	Slale	$T_A = 85^{\circ}C$		-8.4		
Power Dissipation $R_{\theta JA}$ (Notes 1, 3)		T _A = 25°C	P _D	2.40	W	
Continuous Drain Current R _{θJA}	Steady State	$T_A = 25^{\circ}C$	I _D	-7.0	А	
(Notes 2, 3)	Sidle	T _A = 85°C		-5.1		
Power Dissipation $R_{\theta JA}$ (Notes 2, 3)		T _A = 25°C	PD	0.86	W	
Pulsed Drain Current	$T_A = 25^{\circ}C, t_p = 10 \ \mu s$		I _{DM}	47	А	
Operating Junction and Storage Temperature Range			T _J , T _{stg}	–55 to +175	°C	
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			ΤL	260	°C	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL RESISTANCE MAXIMUM RATINGS (Note 1)

Parameter	Symbol	Value	Unit
Junction-to-Ambient - Steady State (Note 1)	$R_{\theta JA}$	52	°C/W
Junction-to-Ambient - Steady State (Note 2)	$R_{\theta JA}$	145	


1. Surface-mounted on FR4 board using 1 in² pad size, 2 oz. Cu pad.


2. Surface-mounted on FR4 board using minimum pad size, 2 oz. Cu pad.

3. The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted. Actual continuous current will be limited by thermal & electro–mechanical application board design. R_{BCA} is determined by the user's board design.

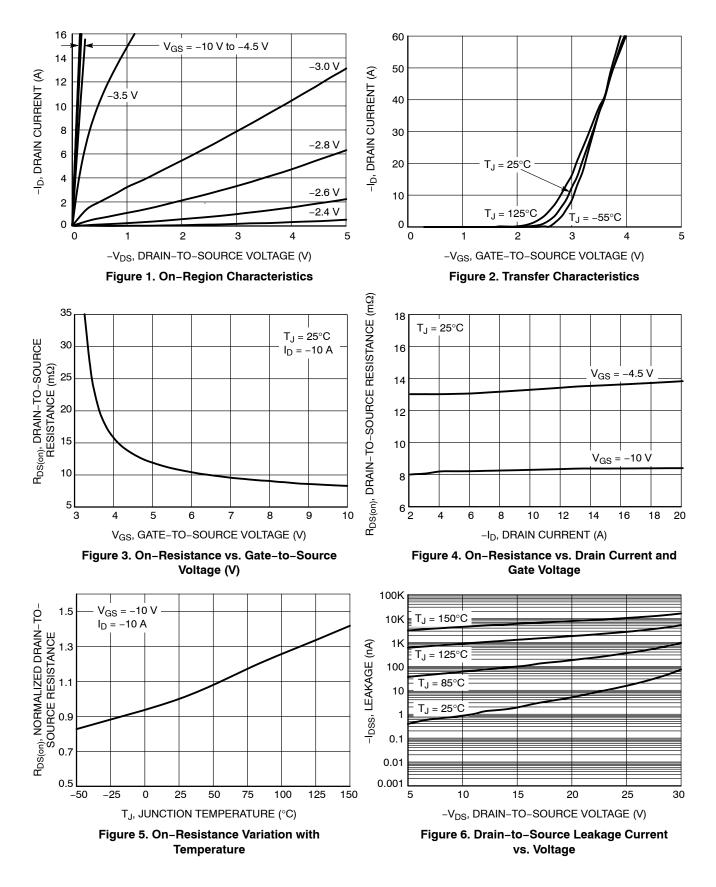
V _{(BR)DSS}	R _{DS(on)} MAX	I _D MAX
–30 V	11.3 m Ω @ –10 V	–11.7 A
	20 mΩ @ -4.5 V	-11.7 A

ELECTRICAL CONNECTION

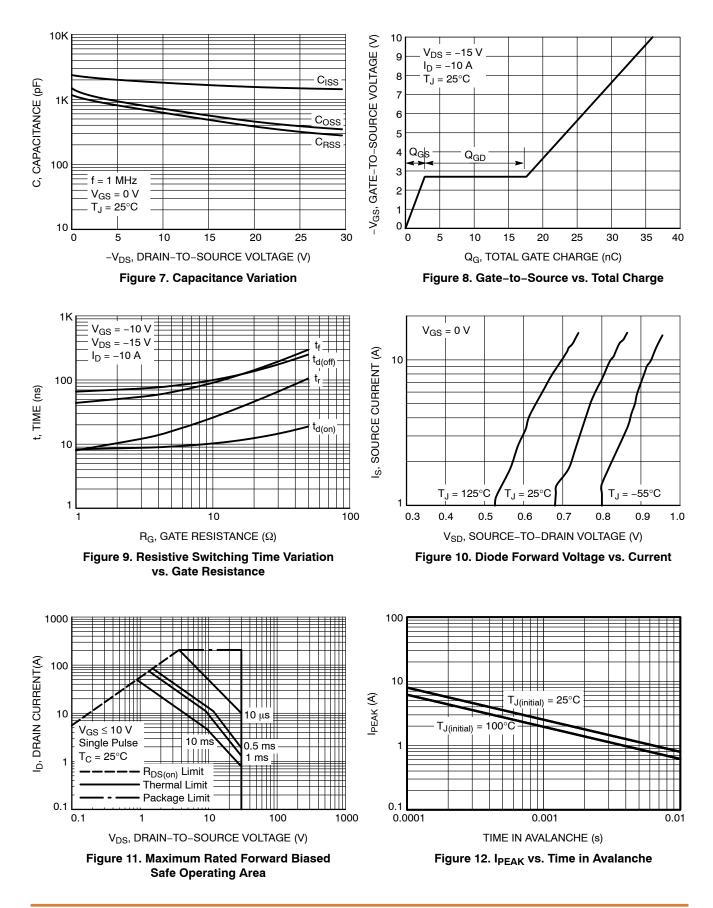
(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering, marking and shipping information on page 5 of this data sheet.


ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise noted)

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS		-				-	•
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V_{GS} = 0 V, I_D = –250 μ A		-30			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} / T _J	I _D = -250 μA, ref to 25°C			-9.9		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V, V _{DS} = -30 V	$T_{\rm J} = 25^{\circ}{\rm C}$			-10	μΑ
Gate-to-Source Leakage Current	I _{GSS}	$V_{DS} = 0 V, V_{GS}$	_S = ±25 V			±10	μΑ
ON CHARACTERISTICS (Note 4)							
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D =$	= –250 μA	-1.0		-3.0	V
Threshold Temperature Coefficient	V _{GS} /T _J	I _D = –250 μA, r	ef to 25°C		-4.7		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = -10 V, I	_D = -10 A		8.3	11.3	mΩ
		V _{GS} = -4.5 V, I	_D = -10 A		13.3	20	
Forward Transconductance	9 FS	$V_{DS} = -5$ V, I _D) = -10 A		41		S
CHARGES AND CAPACITANCES	•						-
Input Capacitance	C _{iss}	V _{GS} = 0 V, V _{DS} = -15 V, f = 1.0 MHz			1535		pF
Output Capacitance	C _{oss}				526		
Reverse Transfer Capacitance	C _{rss}				506		
Total Gate Charge	Q _{G(TOT)}	V_{GS} = -4.5 V, V_{DS} = -15 V, I_D = -10 A			21		nC
Threshold Gate Charge	Q _{G(TH)}				1.4		nC
Gate-to-Source Charge	Q _{GS}				2.8		-
Gate-to-Drain Charge	Q _{GD}				14.8		
Total Gate Charge	Q _{G(TOT)}	V_{GS} = -10 V, V_{DS} = -15 V, I _D = -10 A			36		nC
SWITCHING CHARACTERISTICS, V	GS = 4.5 V (Note	e 5)					-
Turn-On Delay Time	t _{d(on)}				15		ns
Rise Time	t _r	V_{GS} = -4.5 V, V_{DD} = -15 V, I _D = -10 A, R _G = 6 Ω			66		-
Turn-Off Delay Time	t _{d(off)}				48		-
Fall Time	t _f				77		1
SWITCHING CHARACTERISTICS, V	GS = 10 V (Note	5)					
Turn-On Delay Time	t _{d(on)}				7		ns
Rise Time	t _r	$V_{CR} = -10 V V_{CR}$	ыр = –15 V.		17		1
Turn-Off Delay Time	t _{d(off)}	V_{GS} = -10 V, V_{DD} = -15 V, I_{D} = -10 A, R_{G} = 6 Ω			89		1
Fall Time	t _f				75		1
DRAIN-SOURCE DIODE CHARACTE	RISTICS	-			•		-
Forward Diode Voltage	V _{SD}	$V_{GS} = 0 V, \\ I_{S} = -10 A \\ T_{J} = 125^{\circ}C \\ T_{J} = 125^{\circ}C$			0.82	1.3	V
					0.7		1
Reverse Recovery Time	t _{RR}	V_{GS} = 0 V, dI _S /dt = -100 A/µs, I _S = -10 A			19		ns
Reverse Recovery Charge	Q _{RR}				10		nC

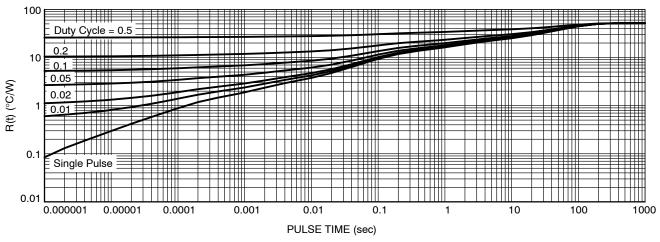

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 4. Pulse Test: Pulse Width \leq 300 µs, Duty Cycle \leq 2%.

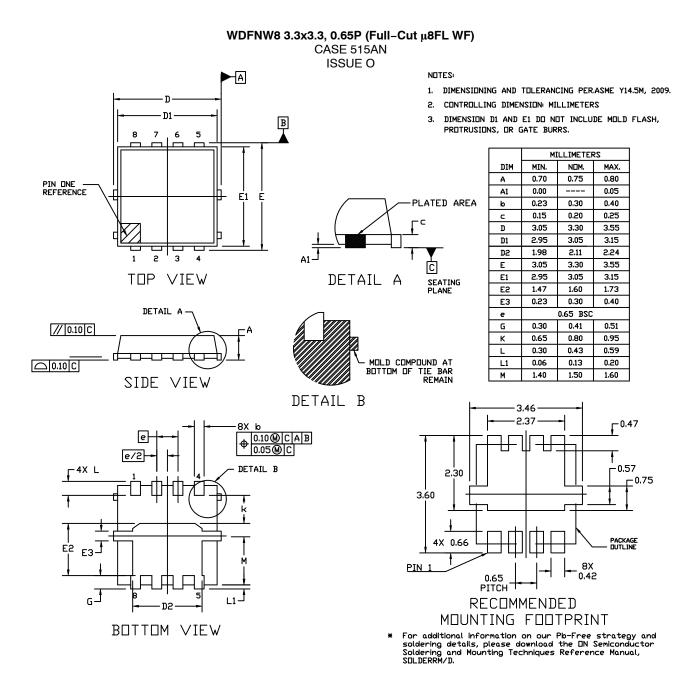
5. Switching characteristics are independent of operating junction temperatures.

TYPICAL CHARACTERISTICS

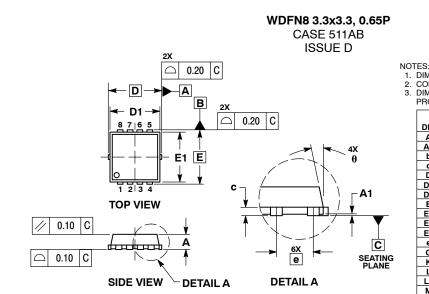
TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS



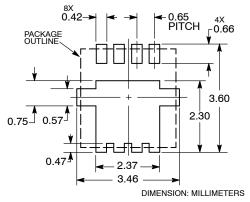

Figure 13. Thermal Characteristics

DEVICE ORDERING INFORMATION


Device	Device Marking	Package	Shipping [†]
NVTFS012P03P8ZTAG	12P3	WDFN8 (Pb-Free)	1500 / Tape & Reel
NVTFWS012P03P8ZTAG	12PW	WDFN8 (Pb-Free, Wettable Flank)	1500 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS



PACKAGE DIMENSIONS

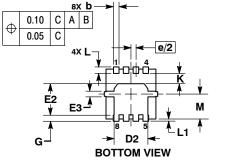
DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. CONTROLLING DIMENSION: MILLIMETERS. DIMENSION D1 AND E1 DO NOT INCLUDE MOLD FLASH PROTRUSIONS OR GATE BURRS. MILLIMETERS INCHES MIN MIN ΜΔΧ DIM NOM ΜΔΧ NOM Α 0.70 0.75 0.80 0.028 0.030 0.031 A1 0.000 0.002 0.00 0.05 0.30 0.40 0.009 0.012 0.016 b 0.23 0.15 0.20 0.25 0.006 0.008 0.010 c D .30 BS 0.130 BS0 0.116 0.120 0.124 D1 2.95 3.05 3.15 D2 0.078 0.083 1.98 2.11 2.24 0.088 Е 3.30 BS 0.130 BS0 E1 2.95 3.15 0.116 0.120 0.124 3.05 E2 1.47 1.60 1.73 0.058 0.063 0.068 E3 0.23 0.30 0.009 0.012 0.016 0.40 .65 BS0 0.026 BSC 0.016 0.020 e G 0.30 0.51 0.012 0.41 0.026 0.032 0.037 κ 0.65 0.80 0.95 L 0.30 0.43 0.56 0.012 0.017 0.022 L1 0.06 0.13 0.20 0.002 0.005 0.008 М 1.40 1.60 0.055 0.059 0.063 1.50 θ 0 ° 12 ° 0

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the **onsemi** Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products

PUBLICATION ORDERING INFORMATION


LITERATURE FULFILLMENT:

Email Requests to: orderlit@onsemi.com

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 **Europe, Middle East and Africa Technical Support:** Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

