

Document Number: BSADG
Rev. 1.1
01/2008

Freescale BeeStack™
Application Development Guide

How to Reach Us:

Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064, Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-521-6274 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software implementers to use

Freescale Semiconductor products. There are no express or implied copyright licenses granted

hereunder to design or fabricate any integrated circuits or integrated circuits based on the information

in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products

herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the

suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any

liability arising out of the application or use of any product or circuit, and specifically disclaims any

and all liability, including without limitation consequential or incidental damages. “Typical” parameters

that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary

in different applications and actual performance may vary over time. All operating parameters,

including “Typicals”, must be validated for each customer application by customer’s technical

experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights

of others. Freescale Semiconductor products are not designed, intended, or authorized for use as

components in systems intended for surgical implant into the body, or other applications intended to

support or sustain life, or for any other application in which the failure of the Freescale Semiconductor

product could create a situation where personal injury or death may occur. Should Buyer purchase

or use Freescale Semiconductor products for any such unintended or unauthorized application,

Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries,

affiliates, and distributors harmless against all claims, costs, damages, and expenses, and

reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death

associated with such unintended or unauthorized use, even if such claim alleges that Freescale

Semiconductor was negligent regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other

product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2006, 2007, 2008. All rights reserved.

BeeStack™ Application Development Guide, Rev. 1.1

Freescale Semiconductor i

Contents
About This Book. iii

Audience . iii

Organization . iii

Revision History . iv

Conventions . iv

Definitions, Acronyms, and Abbreviations . iv

Reference Materials . vi

Chapter 1
Introduction

1.1 What This Document Describes . 1-1

1.2 What This Document Does Not Describe. 1-1

1.3 BeeKit . 1-2

1.4 CodeWarrior . 1-3

1.5 BeeStack . 1-4

1.6 The Development Process . 1-5

Chapter 2
Building A Custom Application

2.1 Creating a Custom Application In BeeKit . 2-2

2.2 Editing the Custom Application in CodeWarrior . 2-5

2.3 Installing and Running The Custom Application . 2-8

2.4 Examining the Custom Application . 2-9

Chapter 3
Designing A Custom Profile

3.1 Application Profiles . 3-1

3.2 Endpoints, Clusters and Attributes . 3-2

3.3 Customizing A Public Profile . 3-2

3.4 Stack Profiles . 3-2

Chapter 4
Selecting Platform Components

4.1 The Display Component . 4-1

4.2 The Keyboard Component . 4-1

4.3 The LED Component . 4-1

4.4 The NVM Component . 4-2

4.5 The Low-Power Component. 4-3

4.6 The Timer Component . 4-3

4.7 The UART Component. 4-4

BeeStack™ Application Development Guide, Rev. 1.1

ii Freescale Semiconductor

Chapter 5
Managing BeeStack Resources

5.1 BeeStack Start-up Sequence . 5-1

5.2 Managing Tasks . 5-1

5.3 Managing Timers . 5-3

5.4 Managing Message Buffers . 5-3

5.5 Managing Memory . 5-4

5.6 Managing The C Stack . 5-4

5.7 What To Do When Applications Do Not Fit . 5-5

5.8 Managing ZigBee Channels . 5-5

5.9 Managing ZigBee Bandwidth . 5-6

Chapter 6
Debugging BeeStack Applications

6.1 The P&E MultiLink BDM . 6-1

6.2 LEDs and the Display . 6-1

6.3 Network Protocol Analyzers. 6-2

6.4 ZigBee Test Client . 6-2

BeeStack™ Application Development Guide, Rev. 1.1

Freescale Semiconductor iii

About This Book

The BeeStack Application Development Guide describes how to develop an application for BeeStack,

including discussions on major considerations for commercial applications.

Audience

This document is intended for software developers who write applications for BeeStack-based products

using Freescale development tools.

It is assumed the reader is a programmer with at least rudimentary skills in the C programming language

and that the reader is already familiar with the edit/compile/debug process.

Organization

This document is organized into the following sections.

Chapter 1 Introduction – provides an overview of the BeeStack Application Development

Guide, including what’s included and what is not in the guide. It also describes the

basic development process using both BeeKit and CodeWarrior (only in concept.

This guide is not a user guide for either BeeKit or CodeWarrior).

Chapter 2 Building A Custom Application – provides a step-by-step example of creating a

custom sample application.

Chapter 3 Designing A Custom Profile – describes designing a new custom-profile

application, including selecting a profile, clusters, attributes and endpoints. It also

describes ZigBee 2006 security options.

Chapter 4 Selecting Platform Components – describes selecting the appropriate

hardware-related platform components, including the use of non-volatile memory,

LEDs, the keyboard, serial port, and general hardware selection.

Chapter 5 Managing BeeStack Resources – describes using the non-hardware-related

platform components appropriately, including the use of timers, messages, data

queues, the task scheduler, Non-volatile-memory and low power library. It also

describes how to determine how much RAM and Flash is available to the

application and what to do if an application exceeds memory size.

Chapter 6 Debugging BeeStack Applications – describes how to debug an application that

may not work, including use of the BDM, LEDs, ZigBee Test Client and Sensor

Network Analyzers.

BeeStack™ Application Development Guide, Rev. 1.1

iv Freescale Semiconductor

Revision History

The following table summarizes revisions to this document since the previous release (Rev. 1.0).

Conventions

This BeeStack Documentation Overview uses the following formatting conventions when detailing

commands, parameters, and sample code:

Courier mono-space type indicates commands, command parameters, and code examples.

Bold style indicates the command line elements, which must be entered exactly as written.

Italic type indicates command parameters that the user must type in or replace, as well as

emphasizes concepts or foreign phrases and words.

Definitions, Acronyms, and Abbreviations
ACK Acknowledgement

ADC Analog to digital converter

AF Application framework

AIB Application support sub-layer information base

APDU Application support sub-layer protocol data unit

API Application programming interface

APL Application layer

APS Application support sub-layer

APSDE APS data entity

APSDE-SAP APS data entity - service access point

APSME APS management entity

APSME-SAP APS management entity - service access point

ASDU APS service data unit

Binding Matching ZigBee devices based on services and needs

BTR Broadcast transaction record, the local receipt of a broadcast message

BTT Broadcast transaction table, holds all BTRs

CBC-MAC Cipher block chaining message authentication code

CCA Clear channel assessment

Cluster A collection of attributes associated with a specific cluster-identifier

Cluster identifier An enumeration that uniquely identifies a cluster within an application profile

Revision History

Location Revision

Entire Document Minor corrections for SW maintenance release.

BeeStack™ Application Development Guide, Rev. 1.1

Freescale Semiconductor v

CSMA-CA Carrier sense multiple access with collision avoidance

CTR Counter

Data Transaction Process of data transmission from the endpoint of a sending device to the endpoint

of the receiving device

Device/Node ZigBee network component containing a single IEEE 802.15.4 radio

Direct addressing Direct data transmission including both destination and source endpoint fields

Endpoint Component within a unit; a single IEEE 802.15.4 radio may support up to 240

independent endpoints

IB Information base, the collection of variables configuring certain behaviors in a

layer

IEEE Institute of Electrical and Electronics Engineers, a standards body

Indirect addressing Transmission including only the source endpoint addressing field along with the

indirect addressing bit

ISO International Standards Organization

LCD Liquid crystal display

LED Light-emitting diode

LQI Link quality indicator or indication

MAC Medium access control sub-layer

MCPS-SAP MAC common part sub-layer - service access point

MIC Message integrity code

MLME MAC layer management entity

MLME-SAP MAC sub-layer management entity service access point

NIB Network layer information base

NLDE Network layer data entity

NLDE-SAP Network layer data entity - service access point

NLME Network layer management entity

NLME-SAP Network layer management entity - service access point

NPDU Network protocol data unit

NSDU Network service data unit

NVM Non-volatile memory

NWK Network layer

Octet Eight bits of data, or one byte

OSI Open System Interconnect

PAN Personal area network

PD-SAP Physical layer data - service access point

PDU Protocol data unit (packet)

BeeStack™ Application Development Guide, Rev. 1.1

vi Freescale Semiconductor

PHY Physical layer

PIB Personal area network information base

PLME-SAP Physical layer management entity - service access point

Profile Set of options in a stack or an application

RF Radio frequency

SAP Service access point

SKG Secret key generation

SKKE Symmetric-key key establishment protocol

SSP Security service provider, a ZigBee stack component

Stack ZigBee protocol stack

UART Universal asynchronous receiver transmitter

WDA wireless demo application

WPAN wireless personal area network

ZDO ZigBee device object(s)

ZDP ZigBee device profile

802.15.4 An IEEE standard radio specification that underlies the ZigBee Specification

Reference Materials

This following served as references for this manual:

1. Document 053474r13, ZigBee Specification, ZigBee Alliance, December 2006

2. Document 075123r00, ZigBee Cluster Library Specification, ZigBee Alliance, July 2007

3. Document 053520r24, Home Automation Profile Specification, ZigBee Alliance, September 2007

BeeStack™ Application Development Guide, Rev. 1.1

Freescale Semiconductor 1-1

Chapter 1
Introduction

Freescale’s BeeStack is a complete, robust implementation of the ZigBee 2006 networking specification.

BeeStack applications typically are used in wireless sensor and control networks.

This section provides an overview of BeeStack Application Development Guide, describing what is and

what is not included in the guide. It also describes the basic development process for BeeStack applications

using both BeeKit and CodeWarrior.

This guide is a “how-to” guide that leads a developer through the process of developing BeeStack

applications. It also includes advice on building robust networks and managing network resources.

At the time of writing, BeeStack is written for the Freescale HCS08 microcontroller, but the concepts in

the document apply to BeeStack ported to any microcontroller.

1.1 What This Document Describes

This guide describes the following:

• How to build and customize BeeStack applications for use in wireless sensor and control

applications

• A step-by-step example of modifying a BeeStack application

• How to design a custom ZigBee application profile and the intended use of application profiles,

endpoints, clusters and attributes. It includes how to manage bandwidth and channels

• A suggested process for selecting the appropriate hardware platform components

• Suggestions on how best to use the Freescale task scheduler, timers, memory and other platform

resources

• How to debug an application

1.2 What This Document Does Not Describe

This guide does not describe the following:

• How to install BeeKit. For the BeeKit installation process, see the BeeKit Wireless Connectivity

Toolkit User’s Guide

• How to install CodeWarrior. For instructions, see the CodeWarrior documentation

• The complete BeeStack API in detail. For the BeeStack API, see the BeeStack Software Reference

Manual

• How to port applications from any other stack including any implementation of the ZigBee 2004

specification.

• How to port BeeStack to a custom board

Introduction

BeeStack™ Application Development Guide, Rev. 1.1

1-2 Freescale Semiconductor

• ZigBee networking in general. For an overview of ZigBee, see the BeeStack Software Reference

Manual and the ZigBee Specification

• How to use the BeeStack Sample Applications. For the user interface to the sample applications,

see Freescale ZigBee Application User’s Guide

• The HCS08 microcontroller. See the MC9S08GB/GT Data Sheet for more information on this

Freescale 8-bit microcontroller

1.3 BeeKit

BeeKit is a desktop PC graphical application that allows developers to configure Freescale networking

solutions, including BeeStack, IEEE® 802.15.4 MAC, and the Freescale proprietary Simple MAC

(SMAC). Figure 1-1 shows the BeeKit Wireless Connectivity start-up window.

Figure 1-1. BeeKit Starting Window

BeeKit creates a sample application from templates, providing the ability to set properties (also called

compile-time options) which configure the application and BeeStack. The resulting project may then be

exported as an XML file to a file folder and imported into CodeWarrior for editing, compiling and

debugging. In addition, BeeKit provides a quick-start wizard that can prepare and configure sample

applications in moments.

BeeKit provides compile-time configuration of BeeStack and applications during the entire life of the

project.

See the BeeKit documentation for more information.

Introduction

BeeStack™ Application Development Guide, Rev. 1.1

Freescale Semiconductor 1-3

1.4 CodeWarrior

CodeWarrior is a desktop PC integrated development environment (IDE) which includes a C compiler for

the HCS08 MCU and the other tools to generate a downloadable image as well as a debugger that can

download code into the HCS08 MCU’s flash memory.

Figure 1-2. Freescale CodeWarrior

CodeWarrior takes the output of BeeKit (an XML file that it can import and convert into a project file and

a source directory tree) and compiles and links the C source code and libraries into a binary image that

may be downloaded into the Flash memory of an HCS08 MCU using the background debug memory

(BDM) port.

See the CodeWarrior documentation for more information.

Introduction

BeeStack™ Application Development Guide, Rev. 1.1

1-4 Freescale Semiconductor

1.5 BeeStack

BeeStack is the term used to describe all of the software placed into target boards, with the exception of

the application. BeeStack is comprised of ZigBee networking components, which provide access to

ZigBee networking functionality, and platform components, which provide a framework for the

application to operate and access the hardware.

The components of BeeStack are shown in Figure 1-3.

Figure 1-3. BeeStack Components

The networking (NWK) task in BeeStack is responsible for routing packets, including broadcasting, route

discovery, unicasting and rejecting packets not for this node or network.

The Application Support Sub-layer (APS) task is responsible for delivering and receiving application data,

including binding endpoints, and end-to-end acknowledgements. APS also contains the authentication

process for secure networks, including the trust center on ZigBee Coordinator (ZC) nodes.

The Application Framework (AF) task is responsible for delivery of data indications and confirms to the

application endpoints.

The ZigBee Device Object (ZDO) task is responsible for the state of the network, and it includes functions

to join and leave the network.

The ZigBee Device Profile (ZDP) task handles requests and responses for a set of common over-the-air

ZigBee commands for managing nodes within the network. For example, any node may ask for the IEEE

(or MAC) address of any other node in the network using a ZDP command.

The various platform management (PLM) components are responsible for interacting with the hardware

such as switches, LEDs, the LCD or timers. All of the PLM components may be customized for a particular

application.

Introduction

BeeStack™ Application Development Guide, Rev. 1.1

Freescale Semiconductor 1-5

1.6 The Development Process

Developing applications for BeeStack is similar to any embedded development. The addition of BeeKit

makes starting and configuring a new application very easy. The steps are as follows.

1. Design the application.

2. Use BeeKit to create the application framework from a template and to configure the application

to include the appropriate components, property settings and endpoint settings.

3. Export the application solution from BeeKit and import it into CodeWarrior.

4. Edit the application as necessary, adding custom code.

5. Compile the application.

6. Download the application into a target board.

7. Debug the application (see Chapter 6, “Debugging BeeStack Applications”).

8. Repeat steps 4-7 as necessary.

9. If creating more than one application, use BeeKit to add another application to the BeeKit solution

and repeat steps 2-8 as necessary.

Introduction

BeeStack™ Application Development Guide, Rev. 1.1

1-6 Freescale Semiconductor

BeeStack™ Application Development Guide, Rev. 1.1

Freescale Semiconductor 2-1

Chapter 2
Building A Custom Application

This chapter provides a step-by-step example of how to create a sample custom application. Chapter 3,

“Designing A Custom Profile” and Chapter 4, “Selecting Platform Components” explain in more detail

about how to build applications for BeeStack.

The general process for creating this custom application is as follows:

• Create the project in BeeKit from an existing application template, making custom property

settings and endpoint settings

• Export the project from BeeKit

• Import the project into CodeWarrior

• Edit the application in CodeWarrior to remove unneeded functionality from the template code and

add the new functionality of the application

• Compile the custom application with CodeWarrior

• Download the custom application in the target board with CodeWarrior

• Debug the custom application

When building a custom application, always start with a template application in BeeKit. In this case the

example will start with the Generic Application Template and transform it into a custom application.

The Generic Application Template by default uses the accelerometer hardware available in the Freescale

SRB and SARD boards to determine tilt of the board and transmit this data to a remote node for display

on that remote node. The same code is used for both the accelerometer and display nodes (that is, a node

can assume either role).

The custom application described in this chapter will ignore the accelerometer; it will simply flash a light

(LED2) on the remote display for a one-second period.

NOTE

Both the Generic Application and this Custom Application use what is

called a private profile. Private profiles are useful for those application that

do not need to interoperate at an ZigBee application level with other

vendors’ applications. For Public Profiles which do interoperate (such as a

Home Automation On/Off Light and Switch), see the ZigBee Cluster

Library Reference Manual.

The keys for the Custom Application will be as follows:

Building A Custom Application

BeeStack™ Application Development Guide, Rev. 1.1

2-2 Freescale Semiconductor

2.1 Creating a Custom Application In BeeKit

This section describes the steps required in BeeKit to create the custom application. This is not a BeeKit

tutorial and assumes users have some familiarity with BeeKit.

1. Create a new project starting from GenericApp named ZcNcbCustomApp. The solution should be

named CustomApp. This example uses the Freescale NCB board. If using another board for the

ZigBee Coordinator besides the NCB (such as the QE128-EVB), use the name of that board in the

name of the project. Using the three-part naming convention for projects, with the ZigBee node

type (ZC, ZR or ZED), the Freescale board type (NCB, SRB, QE128-EVB), and the application

name (CustomApp) allows any project to be easily recognized by name. The location of this project

should be the folder: C:\BeeStack. Also users may select another path, but this path should be

known.

In the BeeStack configuration wizard, make sure to select the MC1321x-NCB board as the hardware target

(or the board already chosen), with LCD Display module enabled in the Platform Modules Page, ZTC

disabled, ZigBee Coordinator device type, no security without mesh routing network type, default

extended address and PAN ID and channel 25 as the default channel.

2. Modify the endpoint and simple descriptor to contain the information depicted in figure 2.2 below

(endpoint number 1, profile 0xc021, application id 0x1234, an input and output OnOff cluster

0x0100).

To edit the endpoint, click on the button in the BeeKit window as circled in Figure 2-1. This button will

only be available if the “Generic Endpoint” is selected in the Solution Explorer window.

Table 2-1. Custom Application Keys

Switch Description

SW1 Form (ZC) or join (ZR, ZED) the network

SW2 Flash remote light (LED2)

Long SW2 No action

SW3 Find a remote node with a light for sending light commands to

SW4 No action

Building A Custom Application

BeeStack™ Application Development Guide, Rev. 1.1

Freescale Semiconductor 2-3

Figure 2-1. Modifying Endpoints in BeeKit

After clicking this button, the Simple Descriptor Editor window appears as shown in Figure 2-2. Modify

the endpoint’s simple descriptor to contain the same information as shown in Figure 2-2.

Building A Custom Application

BeeStack™ Application Development Guide, Rev. 1.1

2-4 Freescale Semiconductor

Figure 2-2. Custom Application Simple Descriptor

3. Add another project in the same solution starting from GenericApp named ZedSrbCustomApp

(from the menu, use Solution ->Add New Project…). This project will be used with a Freescale

SRB board. Again, if selecting a different Freescale board, change the project name accordingly.

This time, make sure to select ZigBee node type of ZigBee End Device in the BeeStack

configuration wizard on the “Select ZigBee Device Type” page. All other settings are the same as

in Step 1.

4. Change the endpoint’s simple descriptor as described in Step 2.

5. Export the solution to the folder C:\BeeStack\CustomApp (from the menu, use Solution ->Export

Solution…). Users can employ another path; BeeKit and CodeWarrior place no restriction on using

another path.

Once the solution (containing two projects) is exported, the following two directories will exist:

C:\BeeStack\CustomApp\ZcNcbCustomApp
C:\BeeStack\CustomApp\ZedSrbCustomApp

At this point, the application is ready for importing into CodeWarrior and editing to contain custom code.

Building A Custom Application

BeeStack™ Application Development Guide, Rev. 1.1

Freescale Semiconductor 2-5

2.2 Editing the Custom Application in CodeWarrior

This section describes the steps involved to transform the source code from the Generic Application

Template to the custom application.

1. Start CodeWarrior 6.1. If CodeWarrior 6.1 (or later) is not installed on the system, obtain a copy

from Freescale. The Standard Edition or better is required (the Special Edition cannot accept a

project with so many files).

2. Import the project that was exported by BeeKit into CodeWarrior. From the menu, choose File

->Import Project… and navigate to BeeStack\CustomApp\ZcNcbCustomApp. A file called

ZcNcbCustomApp.xml is in that directory. Import the .xml file and call the resulting project

ZcNcbCustomApp.mcp.

3. Compile the project to make sure everything in BeeKit and CodeWarrior worked. The project

should compile without warnings or errors. To compile, click on the compile icon as shown in

Figure 2-3.

Figure 2-3. Compile Icon

4. Edit the BeeApp.c file to contain the custom code. This is the longest step and requires a number of

edits as outlined below. BeeApp.c can be found in the BeeApps folder.

In BeeApp.c, find the BeeAppInit() function (line 205). The key combination Ctrl-G in the CodeWarrior

editor will go to a specified line. Ctrl-F will find text.

In BeeAppInit(), change the name of the application. Change the following lines from:

/* indicate the app on the LCD */
LCD_WriteString(2, “Accelerometer”);

To:

/* indicate the app on the LCD */
LCD_WriteString(2, “CustomApp”);

In BeeAppInit(), remove the accelerometer timer and initialization code. Change the following lines from:

/* allocate timers for use by this application */
appTimerId = TMR_AllocateTimer();
accelModeTimerId = TMR_AllocateTimer();

/* initialize accelerometer */
AccelerometerInit();

To:

/* allocate timers for use by this application */
appTimerId = TMR_AllocateTimer();

Next, modify the defines for the Accelerometer to be those for the custom app. Find these defines (line

110):

/* BeeAppTask events */
#define accelEventReport_c (1 << 0) /* send a report */
#define accelEventState_c (1 << 1) /* move on to next state */
#define accelEventDisplay_c (1 << 2) /* display data */

Building A Custom Application

BeeStack™ Application Development Guide, Rev. 1.1

2-6 Freescale Semiconductor

Add an event, so the lines read:

/* BeeAppTask events */
#define accelEventReport_c (1 << 0) /* send a report */
#define accelEventState_c (1 << 1) /* move on to next state */
#define accelEventDisplay_c (1 << 2) /* display data */
#define customAppTurnOffLed2_c (1 << 3) /* turn off light */

Find the function, BeeAppTask() (line 257). Find the lines that read:

/* display the accelerometer data */
if(events & accelEventDisplay_c) {
AccelerometerDisplayData();
}

/* report accelerometer data */
if(events & accelEventReport_c) {

/* report data over-the-air (assumes SW3 has been pressed to find display) */
AccelerometerReportData();

/* start up state machine again */
giAccelDemoState = accelStateStart_c;
TS_SendEvent(gAppTaskID, accelEventState_c);
}

/* handle accelerometer events */
if(events & accelEventState_c) {
AccelerometerStateMachine(giAccelDemoState);
}

And replace these lines in BeeAppTask() with the following lines of code:

if(events & customAppTurnOffLed2_c)
LED_SetLed(LED2, gLedOff_c);

Next, find the function BeeAppHandleKeys() (line 290). Find the lines that read as follows, and remove

them:

uint8_t led;
uint8_t accelData;

Next find the lines in BeeAppHandleKeys() that read:

case gKBD_EventSW2_c:
 /* walk through value of accelerometer */
 accelData = gaAccelDemoXYZ[giAccelIndex];
 if(accelData < accelDemo1Led_c)
 accelData = accelDemo1Led_c;
 else if(accelData < accelDemo2Leds_c)
 accelData = accelDemo2Leds_c;
 else if(accelData < accelDemo3Leds_c)
 accelData = accelDemo3Leds_c;
 else if(accelData < accelDemo4Leds_c)
 accelData = accelDemo4Leds_c;
 else
 accelData = 0;
 gaAccelDemoXYZ[giAccelIndex] = accelData;

 /* display on LEDs, LCD */

Building A Custom Application

BeeStack™ Application Development Guide, Rev. 1.1

Freescale Semiconductor 2-7

 TS_SendEvent(gAppTaskID, accelEventDisplay_c);
 break;

And replace them with:

 case gKBD_EventSW2_c:
 CustomAppToggleLED2();
 break;

Remove the code from the case statements for gKBD_EventSW4_c and gKBD_EventLongSW2_c so they

have no action, as shown below:

 case gKBD_EventSW4_c:
 break;

Find the BeeAppDataIndication() function (line 360). Find the text that reads:

 if(pIndication->aClusterId[0] == appDataCluster[0]) {

 /* indicate we're the display */
 gfAccelIsDisplay = TRUE;

 /* get the new accelerometer readings */
 FLib_MemCpy(gaAccelDemoXYZ, pIndication->pAsdu, sizeof(gaAccelDemoXYZ));

 /* update display with new data */
 TS_SendEvent(gAppTaskID, accelEventDisplay_c);
 }

And change that text to read:

if(pIndication->aClusterId[0] == appDataCluster[0]) {
LED_SetLed(LED2, gLedOn_c);
TMR_StartSingleShotTimer(appTimerId, 1000, CustomAppTimerCallBack);

/* update display with new data */
TS_SendEvent(gAppTaskID, accelEventDisplay_c);

 }

Add the following two functions at the end of the file:

void CustomAppTimerCallBack
 (
 tmrTimerID_t timerId /* IN: */
)
{
 (void)timerId; /* to prevent compiler warnings */

 TS_SendEvent(gAppTaskID, customAppTurnOffLed2_c);
}

void CustomAppToggleLED2
 (
 void
)
{
 afAddrInfo_t addrInfo;

 /* don't have a place to send data to, give up */
 if(!gfAccelFoundDst)
 return;

Building A Custom Application

BeeStack™ Application Development Guide, Rev. 1.1

2-8 Freescale Semiconductor

 /* set up address information */
addrInfo.dstAddrMode = gZbAddrMode16Bit_c;

 Copy2Bytes(addrInfo.dstAddr.aNwkAddr, gaAccelDstAddr);
 addrInfo.dstEndPoint = gAccelDstEndPoint;
 addrInfo.srcEndPoint = appEndPoint;
 addrInfo.txOptions = gApsTxOptionNone_c;
 addrInfo.radiusCounter = afDefaultRadius_c;

 /* set up cluster */
 Copy2Bytes(addrInfo.aClusterId, appDataCluster);

 /* send the data request */
 (void)AF_DataRequest(&addrInfo, 10, “ToggleLed2”, NULL);
}

Finally, add prototypes for those functions in the “Private Prototypes” section of the file, near line 140.

void CustomAppTimerCallBack (tmrTimerID_t timerId);
void CustomAppToggleLED2(void);

At this point, all changes are made to the code. Press Ctrl-S to save the file.

5. Make sure the code compiles without errors or warnings (if users cut and paste from this document,

it should). Resolve any compiler warnings or errors before running the custom application. (See

Section 2.3, “Installing and Running The Custom Application”)

6. Copy the BeeApp.c file created in the BeeStack\CustomApp\ZcNcbCustomApp\BeeApps directory to

the BeeStack\CustomApp\ZedSrbCustomApp\BeeApps directory. This overwrites the previous

BeeApp.c in that directory.

7. Import and compile the ZedSrbCustomApp application. CodeWarrior allows multiple projects to

be open at the same time.

2.3 Installing and Running The Custom Application

This section describes how to download the custom application created in the previous section.

1. Connect the P&E USB Multilink pod to the BDM port on the NCB board. Click the green debug

icon in the ZcNcbCustomApp project to download the code to the NCB board. Note: the red

portion of the ribbon cable should be toward the edge of the board. The 6-pin connector is labelled

BDM.

2. Connect the P&E USB Multilink pod to the BDM port on the SRB board. Click the green debug

icon in the ZedSrbCustomApp project to download the code to the SRB board. Note: the red

portion of the ribbon cable should be toward the edge of the board. The 6-pin connector is labelled

BDM. Disconnect the BDM pod.

3. Reset each board. Press SW1 on each board. The LEDs should chase each other for a few seconds

while BeeStack forms a ZigBee network.

4. Tell each board to find the other in the network by pressing SW3 on each board. LED3 should light

indicating a remote custom application was found.

5. Press SW2 on the device that has LED3 on to toggle the remote LED2 on for 1 second.

Building A Custom Application

BeeStack™ Application Development Guide, Rev. 1.1

Freescale Semiconductor 2-9

2.4 Examining the Custom Application

In addition to using the tools, this example demonstrates a number of concepts.

• All application initialization takes place in BeeAppInit().

• Events for the application task come into the function BeeAppTask().

• Incoming ZigBee messages come into the function BeeAppDataIndication().

• Keyboard events come into the function BeeAppHandleKeys().

Examine the BeeAppDataIndication() function. Notice the newly added code both starts a timer and sends

an event to the application task. The timer is used to turn off the LED that was turned on in the data

indication handler.

Notice also the data indication handler didn’t need to worry about the application profile or endpoints,

because these are taken care of when the application registered the endpoint in BeeAppInit(). The lower

layers will filter any incoming data not for that registered endpoint or on the wrong application profile ID.

The application needs only to concern itself with clusters.

The cluster ID itself was retrieved from the endpoint’s simple descriptor, as found in

BeeAppDataIndication().

Examine the function BeeAppHandleKeys(). Note how SW1 starts the network with a single call to ZDO.

Note how SW3 finds the other node using the ASL_MatchDescriptor_req() function. The results of that

function come back to the callback registered in BeeAppInit(), in the line that reads:

Zdp_AppRegisterCallBack(BeeAppZdpCallBack);

The function BeeAppZdpCallBack() stores the results of a successful match descriptor so that LED3 can

be lit and the application can now know which node to send its commands to. Note that match descriptor

will return ALL nodes that match, so it’s only useful if the application knows there will be no or only a

few nodes in the network with the same profile ID and cluster list as described by their endpoint’s simple

descriptor.

This same set of nodes will work in any sized ZigBee network, filled with many devices on many

application profiles, and they can still communicate with each other.

Building A Custom Application

BeeStack™ Application Development Guide, Rev. 1.1

2-10 Freescale Semiconductor

BeeStack™ Application Development Guide, Rev. 1.1

Freescale Semiconductor 3-1

Chapter 3
Designing A Custom Profile

This chapter describes some issues to consider when designing a new custom-profile application,

including selecting a profile ID, clusters, attributes and endpoints. It also describes ZigBee 2006 security

options and includes a discussion on channel and bandwidth use.

3.1 Application Profiles

Application profiles are a collection of related services designed to be interoperable. In the case of public

application profiles, the ZigBee Alliance specifies these services to allow for interoperability between

OEM vendors’ products. An Application Profile ID is a 16-bit number assigned by the ZigBee Alliance.

Private Application Profile IDs must also be obtained from the ZigBee Alliance. The Freescale Private

Profile ID 0xc021 is used for the example code provided by Freescale.

ZigBee Alliance public profiles include

• Home Automation

• Commercial Building Automation

• Industrial Plant Monitoring

Most profiles require the use of the ZigBee Cluster Library, a common library of services shared among

profiles.

Every ZigBee node contains one or more application profiles. As an OEM, the only decision to make is

whether to use a public ZigBee Alliance profile or a private profile. Private profiles have the advantage of

being simple to implement and flexible for the project. Public profiles have the advantage of being

interoperable among vendors, but at the expense of extra code size and complexity.

Public profiles are given an ID by the ZigBee alliance, for example 0x0104 for Home Automation. Contact

the ZigBee Alliance (http://www.zigbee.org) for a private profile ID.

One public profile is available in every ZigBee node: the ZigBee Device Profile (profile ID 0x0000). This

profile provides common services to all ZigBee nodes.

As an OEM, users should choose a public profile ID that matches their particular application or request a

private profile from the ZigBee Alliance.

http://www.zigbee.org

Designing A Custom Profile

BeeStack™ Application Development Guide, Rev. 1.1

3-2 Freescale Semiconductor

3.2 Endpoints, Clusters and Attributes

Think of endpoints as a virtual wire. Endpoints serve three purposes in ZigBee:

• To provide a location within a node to connect two services. For example, an endpoint on an on/off

switch connects to an endpoint on an on/off light

• To provide addressing within the node. Separate endpoints could control separate lights within a

single node, for example

• To support multiple application profiles within a node (every endpoint supports exactly one

profile)

Application endpoints are numbered 1-240. Endpoint 0 is for the ZigBee Device Profile (a set of common

ZigBee services available in all nodes). Endpoint 255 is the broadcast endpoint; a message to endpoint 255

is delivered to all endpoints in the receiving node with the same application profile as the sender.

Clusters are the services on that endpoint. For example, a single home automation endpoint which supports

an on/off light, supports an on/off cluster for turning the light on and off. In addition, that endpoint will

contain a groups cluster for grouping a set of lights together and a scenes cluster so that the light can be

set up to go to various scenes (movie viewing or gone on vacation, for example).

In the ZigBee Cluster Library, a cluster can support zero or more attributes. Where clusters are commands,

attributes define the state of the application on that endpoint. For example, an on/off light has an attribute

that describes whether the light is on or off.

3.3 Customizing A Public Profile

Public profiles using the ZigBee Cluster Library can be augmented with OEM specific extensions. For

example, an HaOnOffLight, which normally can only turn a light on and off, could be augmented with a

feature of adjusting the hue of the light in addition to turning it on and off. Check with the latest ZigBee

Alliance profile specifications, however, because the feature may exist in the profile already.

To augment a cluster, a payload must be created starting with the zclMfgFrame_t type. This frame contains

a manufacturer specific ID which must be obtained from the ZigBee Alliance.

3.4 Stack Profiles

ZigBee networking, in addition to supporting multiple application profiles within a network, must reside

on a single stack profile. ZigBee 2006 uses a single stack profile, the Home Controls Stack Profile. Its

profile ID is 0x01. Although the stack profile is called Home Controls, it supports both Home and

Commercial applications and is used by Industrial Plant Monitoring.

This stack profile has the following characteristics:

• Supports up to 31,101 nodes in the network, theoretically.

• Uses both tree and mesh routing. Tree routing allows reduced routing tables.

• Supports full AES 128-bit encryption with a network-wide key. The network key may be

predetermined, or it may be sent over the air to nodes as they join. Note: it is sent over the air in

the clear, so there is a small time window when the network is open for joining that would allow a

rogue node to obtain the network key.

Designing A Custom Profile

BeeStack™ Application Development Guide, Rev. 1.1

Freescale Semiconductor 3-3

• Supports a maximum of 10 hops (maxdepth 5 * 2) across the network.

• Supports 20 children per router, 14 of which may be ZigBee End Devices.

• End Devices can sleep for up to 1 hour.

• End Devices will be compatible with upcoming ZigBee specifications.

It is possible to make a custom stack profile with a different number of maximum hops across the network

or number of children, but it is not recommended, except under very rare circumstances.

See also gNwkMaximumDepth_c, gNwkMaximumChildren_c and gNwkMaximumRouters_c in

BeeStackConfiguration.h.

Designing A Custom Profile

BeeStack™ Application Development Guide, Rev. 1.1

3-4 Freescale Semiconductor

BeeStack™ Application Development Guide, Rev. 1.1

Freescale Semiconductor 4-1

Chapter 4
Selecting Platform Components

This chapter describes how to select the appropriate hardware-related platform components, including the

use of non-volatile memory, LEDs, the keyboard, serial port, and general hardware.

Platform components are optional for any given ZigBee application. Platform components are enabled in

BeeKit using the Platform Property List in the Solution Explorer pane. They include:

• Display (LCD, not available on all standard Freescale platforms)

• Keyboard

• LED

• NVM

• Power

• Timer

• UART

4.1 The Display Component

The display component can be used to support an LCD controller. There is a LCD display built into the

Freescale NCB board. Enable this in BeeKit to support an LCD. The file Display.c (found in the PLM

folder) will also need to be modified, unless using the same controller as found on the NCB board.

4.2 The Keyboard Component

The keyboard component supports 8 key inputs using only 4 physical keys. Each keypress can be detected

as either a short or long press. This component can be disabled if not needed. The keyboard interface is

also a way to wake low power units on interrupt. For example, a keyboard pin could be used to detect that

a window or door was opened. This could wake a low power node which would then inform a security

monitor of a breach. From the application’s standpoint, it received a key-press and can act accordingly.

4.3 The LED Component

The LED interface allows for LEDs to be independently controlled. The LED interface simply sets a GPIO

pin to high or low. This interface can also be used to control any sort of device, such as starting a motor,

or communicating data on the GPIO pins. See Led.h for a definition of the pins used.

The function LED_SetLed() is used for almost all of the LED interaction. The states a particular LED can

be set to are:

• gLedFlashing_c — flash at a fixed rate

• gLedBlip_c — just like flashing, but blinks only once

Selecting Platform Components

BeeStack™ Application Development Guide, Rev. 1.1

4-2 Freescale Semiconductor

• gLedOn_c — on solid

• gLedOff_c — off solid

• gLedToggle_c — toggle state

The LEDs can be combined using bitwise OR. This save code space. For example:

LED_SetLed(LED2 | LED3, gLedOn_c);

4.4 The NVM Component

Non-volatile Memory (NVM) is used to preserve the state of the ZigBee network across reboots and power

outages. For example, it is critical for a light switch to remember which lights it is controlling after a power

outage is over and power returns.

The application can also use NVM to store critical application data that should be preserved across resets.

The following join modes are available from ZDO:

• gStartAssociationRejoinWithNvm_c

• gStartOrphanRejoinWithNvm_c

• gStartNwkRejoinWithNvm_c

• gStartSilentRejoinWithNvm_c

To start the network using NVM (or not), use the ZDO_Start() function. For example:

ZDO_Start(gStartSilentRejoinWithNvm_c);

NVM uses flash pages of 512 bytes in size to store the non-volatile data. Due to the limitations of flash,

the entire page is erased before rewriting to it. The NVM engine keeps a spare page, so when new data is

written, it is written to the spare before the old page is erased.

One page is devoted entirely to network structures, such as the neighbor and routing tables. A second page

is partially available for the application to use, and is partly in use by BeeStack.

See NV_Data.c. Each page is called a “data set”, which contains a collection of pointers and sizes of the

items to store in that page when the data is “dirty” or has been changed. Data is marked “dirty” when one

of the following functions is used:

void NvSaveOnIdle(NvDataSetID_t dataSetID);
void NvSaveOnInterval(NvDataSetID_t dataSetID);
void NvSaveOnCount(NvDataSetID_t dataSetID);

Notice that only the data set ID is used. The entire data set is saved, even if one byte in the data set has

changed.

Make sure not to save data to NVM too often. For a 20 year product life, the system should not save to

NVM more than once every 1.8 hours (This is calculated assuming 100,000 erase cycles). Typically,

applications will save often when first forming or joining the network and during the commissioning

process. From then on, saving should occur rarely.

See the Freescale Platform Reference Manual for more information on non-volatile memory.

Selecting Platform Components

BeeStack™ Application Development Guide, Rev. 1.1

Freescale Semiconductor 4-3

4.5 The Low-Power Component

BeeStack allows for low power devices on ZigBee End Devices (ZEDs) only. ZigBee Routers (ZR) and

the ZigBee Coordinator (ZC) do not have this capability.

To enable low power, disable the MAC Capability: Rx On When Idle property and enable the ZDO:
Low Power Mode Enabled property in BeeKit in a ZigBee End Device. The low-power component is

shared by other Freescale networking solutions, such as the IEEE 802.15.4 MAC and the SMAC. The

power library options can be found in PWR_Configuration.h.

Keep in mind also that the power library will not enter deep sleep unless all of the BeeStack timers are off.

Timers may still be active if, for example, BeeStack is still attempting to deliver an acknowledged message

or broadcast. Also, the power library will not enter sleep at all unless every task is idle. See the Freescale

Platform Reference Manual for more information on power management.

4.6 The Timer Component

BeeStack timers are used to gain control within a task after a certain period of time has elapsed. Timers

can be one-time events (single-shot) or repeating (interval), and can range in duration from 4 to 262,143

milliseconds (about 4 minutes). Interval timers will continue to repeat until stopped.

Use timers to blink LEDs, pace ZigBee data requests, or for application timing purposes.

BeeStack timers are implemented using a single hardware timer (TPM1 on the HCS08), leaving any other

hardware timer resources available to the application.

In BeeStack, the number of timers available to the application is defined at compile-time through a

property in BeeKit called gTmrApplicationTimers_c, in TMR_Interface.h. The default number of

application timers is 4. Each timer requires 7 bytes of RAM.

Like all BeeStack platform (PLM) components, timers retrieve control via a callback. The callback is a

function with the following prototype (it can have any name the application chooses)

void BeeAppTimerCallBack
 (
 tmrTimerID_t timerId /* IN: */
);

Timers are initiated through the use of one of the following functions

void TMR_StartSingleShotTimer
 (
 tmrTimerID_t timerID,
 tmrTimeInMilliseconds_t timeInMilliseconds,
 void (*pfTimerCallBack)(tmrTimerID_t)
);

void TMR_StartIntervalTimer
 (
 tmrTimerID_t timerID,
 tmrTimeInMilliseconds_t timeInMilliseconds,
 void (*pfTimerCallBack)(tmrTimerID_t)
);

Timers (both interval and single-shot) are stopped through the use of

Selecting Platform Components

BeeStack™ Application Development Guide, Rev. 1.1

4-4 Freescale Semiconductor

void TMR_StopTimer
 (
 tmrTimerID_t timerID
);

4.7 The UART Component

One platform component that is often useful in ZigBee applications is the UART component. This allows

one or both of the HCS08 SCI (serial communications interface) ports to be used to connect to a PC or

another host processor.

All standard Freescale development boards provide a hardware connection to one or more UARTs. Some

boards offer a USB connection, and others offer RS-232. The UART software component does not need

to distinguish between these two port types because the differences are handled by external hardware.

The UART can be used to communicate all networking traffic. The ZigBee Test Client (ZTC) interface is

very useful for this function, or a custom serial protocol can be developed. See the Freescale ZigBee Test

Client (ZTC) Reference Manual for more information on the ZigBee Test Client.

BeeStack™ Application Development Guide, Rev. 1.1

Freescale Semiconductor 5-1

Chapter 5
Managing BeeStack Resources

This chapter describes using the non-hardware related platform components appropriately, including the

use of messages, timers, data queues, and the task scheduler. It also describes how to determine how much

RAM and Flash is available to the application and what to do if an application exceeds memory size. It

also describes managing ZigBee channels and bandwidth.

5.1 BeeStack Start-up Sequence

BeeStack begins control (at least from a C language point of view) in a module called BeeAppInit.c, at the

function main(). From there, main() initializes the radio, MAC, platform components and ZigBee

networking stack. After all of BeeStack is initialized, the application is initialized when BeeAppInit() is

called in the application.

The typical application BeeAppInit() (which is found in BeeApp.c, not BeeAppInit.c) registers endpoints

with the stack (to be able to receive ZigBee networking communications), registers with the keyboard to

receive key presses, and initializes the Application Support Layer (ASL) and possibly the ZigBee Cluster

Library (ZCL).

Most applications will not need to modify the start-up sequence, however it is provided in full source code,

so that it can be modified as appropriate for any given application.

5.2 Managing Tasks

BeeStack relies on a platform component called the task scheduler to accomplish ZigBee networking. This

scheduler is a non-pre-emptive priority based scheduler. It can have up to 255 tasks.

BeeStack contains a task for each of the ZigBee functional modules (NWK, APS, AF, ZDP, ZDO, ZCL),

and for some platform components (such as UART).

The application is contained in one task by default but can be split up into multiple tasks for a particularly

complex application.

NOTE

MCU interrupts operate independently of tasks, and may often pass control

to a task through the use of the TS_SendEvent() function.

The maximum number of tasks in a BeeStack system is allocated at compile-time using the TS: Number of

tasks BeeKit property, which defaults to 14 tasks. Each task requires 6 bytes of RAM. Depending on

BeeKit property settings, BeeStack uses up to 11 tasks.

Each task is comprised of at least two (2) functions:

• Task initialization – this function is run once on start-up to initialize the task

Managing BeeStack Resources

BeeStack™ Application Development Guide, Rev. 1.1

5-2 Freescale Semiconductor

• Task event handler – this function is run every time there is an event for the task

The task prototypes are as follows:

void TaskInit(void);
void TaskEventHandler (event_t events);

Each task may define up to 16 distinct events, each of which is an event of the event_t type. Events are

unique per task (that is, the event mask for one task is distinct from the event masks of all other tasks).

Each event is a single bit in the events bit mask.

In the application task, defined by the functions BeeAppInit() and BeeAppTask(), the events are used as

in Table 5-1.

The following compile-time tasks are defined in BeeStack:

• idle task – gains control when there is nothing else to do

• MAC task – services MAC layer primitives

• NWK task – services network layer primitives

• ZDO task – services ZigBee Device Object primitives

• APS task – services Application Support Sub-layer primitives

• AF task – services application framework primitives

• PLM task – services platform management primitives

• Application Task – services the application

BeeStack tasks are non-pre-emptive. Once a task gains control, it has full control until the task completes

(returns from the task event handler function). Tasks should complete quickly (less than 2ms) to avoid

starving other tasks of processing time.

BeeStack tasks are priority based, with the idle task being the lowest priority. The highest priority task is

the MAC task, to service network data traffic. Applications may use task priority 0x40 – 0xbf. The default

priority for the BeeAppTask() is 0x80, as defined by gTsAppTaskPriority_c.

Table 5-1. Application Events

Event Bit Mask Description

gAppEvtDataConfirm_c 0x8000 Sent by APS when a data confirm is received on an endpoint

gAppEvtDataIndication_c 0x4000 Sent by APS when a data indication is received on an endpoint

gAppEvtSyncReq_c 0x2000 Sent by ZDO when it’s time to poll for data from a parent (ZigBee End

Devices only)

gAppEvtAddGroup_c 0x1000 Sent by the ZigBee Cluster Library (ZCL) when it’s time to add a group.

gAppEvtStoreScene_c 0x0800 Sent by ZCL when it’s time to store a scene

Available variable Bits 0-10 are available for the application. If the ZigBee Cluster Library is not

used, bits 11 and 12 are available also. If the device is a ZigBee Router or

Coordinator, bit 13 is also available.

Managing BeeStack Resources

BeeStack™ Application Development Guide, Rev. 1.1

Freescale Semiconductor 5-3

The decision of whether to make more than one application task is up to the application designer.

Generally, a single application task is sufficient, but if an application is particularly complex, or if it

contains an independent hardware component, adding a task can simplify the coding.

Call TS_TaskCreate() to add a task, usually in BeeAppInit(), and make sure to call an initialization

function for the task.

5.3 Managing Timers

Use timers whenever some event must be timed. When a timer expires, it calls a callback function of the

application’s choice, as given to the start timer functions, TMR_StartSingleShotTimer() and

TMR_StartIntervalTimer(). Typically, the callback function should set an event, but it could do any work

required. The callback is in the timer task context.

The stop timer function, TMR_StopTimer() is safe to call at any time, even if a timer is already stopped.

Timers must be allocated before they can be started or stopped. Use the TMR_AllocateTimer() function

for this purpose.

The total number of timers for the application is defined by gTmrApplicationTimers_c.

When one or more timer is active (currently counting down), low-power mode will not enter deep sleep,

but will use light sleep only. Make sure all application timers are stopped to enter deep sleep on ZigBee

End Devices (Routers and Coordinators do not sleep).

5.4 Managing Message Buffers

BeeStack uses message buffers to transmit data over the ZigBee network (data requests) and to receive

data from other nodes (data indications). This section describes some tips and techniques to manage these

buffers so the network runs smoothly and to reduce or eliminate packet loss due to insufficient buffers.

The number of BeeStack message buffers is determined at compile-time through a set of BeeStack

properties, one called gTotalBigMsgs_d, and another called gTotalSmallMsgs_d. The defaults for these are

5 each.

Big messages are 137 bytes in size and are large enough to hold the largest ZigBee packet, including all

over-the-air frame headers plus some additional information for housekeeping. Big messages are used for

both data transmit and receive. If the network is expected to be very busy, transmitting or routing many

packets over a short period of time, the number of big buffers should be increased as much as RAM allows.

The value 5 is reasonable for a modestly busy network.

Small messages are used for temporary data within BeeStack and the number of these buffers should not

be changed.

When the application initiates a ZigBee data request (to transmit data) using AF_DataRequest(), it

allocates a big buffer. AF_DataRequest() will fail if no big buffers are available. ZDP commands also

allocate big buffers to do their work.

Freeing buffers once they are no longer needed is of course critical to system operation. BeeStack follows

very specific rules for freeing buffers, as follows:

Managing BeeStack Resources

BeeStack™ Application Development Guide, Rev. 1.1

5-4 Freescale Semiconductor

When the higher layer allocates a message buffer (e.g., a data request) and passes it to a lower layer, the

lower layer is responsible for freeing the message buffer.

When a lower layer allocates a message buffer (e.g. a data indication) and passes it to a higher layer, the

higher layer is responsible for freeing the message buffer.

Lower layers may retain the message buffer for up to a number of seconds, depending on the operation.

For example, if an application initiates an AF_DataRequest() to transmit data and has the

gApsTxOptionAckTx_c flag set in the txOptions field, the big message buffer will be retained until the

acknowledgement (ACK) is received from the remote node or a time-out of 4.5 seconds occurs, whichever

comes first. If required, the packet will be resent by the APS layer up to 3 times to ensure reliable

transmission of the packet.

BeeStack issues a confirm on each data request, received through the BeeAppDataConfirm() callback.

This confirm can be used to regulate the pace of data requests, and thus regulate the use of big buffers.

Follow these rules to effectively manage message buffers:

• Do not issue broadcasts more often than once every 2 seconds. Be aware that other nodes may

issues broadcasts. Broadcasts must retain big buffers for up to 2 seconds

• Do not issue another unicast until the confirm has been received

• Check the confirm value. If the confirm is gZbBusy_c, the request was not sent due to a busy

system (many routing packets). Try again after waiting 100 milliseconds or so

Two message buffers are always reserved by the MAC for data indications.

5.5 Managing Memory

In BeeStack, memory is generally allocated statically at compile-time. There is no concept in BeeStack of

a heap, and there is no malloc(). Do not use the message buffers for application allocation as they are

needed by BeeStack to operate ZigBee networking.

5.6 Managing The C Stack

The C Stack is 352 bytes by default. When a task gains control, it is at the top of the stack. When a callback

(such as a timer or keyboard callback) is made, it is not at the top of the stack, because callbacks are not

in the context of some stack.

The number of bytes used in the stack is dependant on the application. To detect how many bytes are used,

look at offset 0x0100 in memory (the bottom of the stack) and count the number of bytes that are equal to

0x55 (the stack initialization value).

Make sure the stack doesn’t overflow in an application during its testing phase. A rule of thumb is to make

sure there are at least 40 bytes of stack unused after worst case testing.

If the stack is largely unused in a particular application, some RAM can be saved by adjusting the size of

the stack. The size of the stack can be adjusted in the linker file BeeStack.prm.

Managing BeeStack Resources

BeeStack™ Application Development Guide, Rev. 1.1

Freescale Semiconductor 5-5

5.7 What To Do When Applications Do Not Fit

In deeply embedded systems, both RAM and ROM are a very scarce resource. In the Freescale

HCS08GT60 and the MC13213, the MCU contains 4K of RAM and approximately 60K of Flash.

Depending on the BeeStack options chosen, a given application could exceed either RAM or Flash.

Here are some tips to help reduce Flash:

• Only include those ZDP functions actually used by the application. These can be adjusted in

BeeKit.

• Do not use ZTC or the UART driver unless the application needs them.

• Do not use a secure network unless required. ZigBee security is about 8K.

• Look in the .map file for the largest functions and modules. Try to eliminate functions that are not

required by the application.

• Remove debugging code (if any).

• Use a ZigBee End Device rather than a ZigBee Router. ZEDs tend to be about 10K smaller in Flash.

ZEDs can be set to be RxOnIdle, which means they do not need to poll and can respond

immediately.

• If possible, reduce NVM storage needs.

Here are some tips to help reduce RAM:

• Make tables as small as possible. The routing table, neighbor table or group table can be reduced,

for example.

• Reduce the C stack size if the application doesn’t use the full stack.

5.8 Managing ZigBee Channels

ZigBee communicates on the IEEE® 802.15.4 MAC and PHY standard. In the 2.4 GHz band, this standard

allows for 16 channels, numbered 11-26 (channels 0-11 are used for sub 1GHz bands). The 2.4 GHz

channels are physically separated by 5 MHz, so they cannot hear each other. ZigBee operates on one

channel at a time.

Some application profiles require a specific channel selection. For example, Home Automation requires a

node to be able to operate in a network on any channel.

Private profiles can restrict the application to a particular set of channels. Channels 11 and 26 (the edge

channels) are often good choices for a private profile.

Channels 15, 20, 25 and 26 tend to be clear of WiFi channels. In practice, ZigBee tends to co-exist with

WiFi and other 2.4 GHz technologies. ZigBee uses CSMA-CA, so it takes advantage of silence on the

channels to communicate.

Managing BeeStack Resources

BeeStack™ Application Development Guide, Rev. 1.1

5-6 Freescale Semiconductor

5.9 Managing ZigBee Bandwidth

On any given channel, in a given location, only one radio may be transmitting at the same time. That means

that a dense network with lots of traffic could end up interfering with itself.

Keep the following items in mind when planning or deploying a network:

• ZigBee End Devices (ZEDs) that sleep, poll their parent to receive messages. Keep this polling rate

to 5 seconds or longer if possible. Most ZEDs can wait for responses

• Use a “push” rather than a “pull” method of communicating. That is, have a sensor report a change,

rather than querying the sensor constantly for change

• Keep the broadcast radius small (1-3) for broadcasts that are expected to be serviced by nearby

nodes. Do not use up bandwidth on other parts of the network

• If gateways are used, do not create a bottleneck by sending all traffic to a single data aggregator or

gateway. Instead, aggregate the data in intermediate nodes, which in turn send combined packets

back to the gateway to reduce network traffic

• If the network is large (200+ nodes) consider multiple gateways

• Do not use ACK on data requests unless the application will use the data confirm results

• Do not use security unless the application needs it. Security makes larger packets

• ZigBee is a low-speed network. Use it as such

• Always keep bandwidth in mind. Bandwidth is finite

BeeStack™ Application Development Guide, Rev. 1.1

Freescale Semiconductor 6-1

Chapter 6
Debugging BeeStack Applications

This section describes how to debug a networking application, including use of the BDM, LEDs, ZigBee

Test Client, and Sensor Network Analyzers.

6.1 The P&E MultiLink BDM

One of the most powerful tools for debugging a BeeStack application is the use of the P&E MultiLink

Background Debug Mode (BDM) pod. This device plugs into a 6-pin connector on each development

board and not only allows code download into the on-board flash of the HCS08 MCU, but it also allows

stepping through the source code.

When using the CodeWarrior TrueTime debugger, the following tips can be helpful

• Only 2 breakpoints at any given time are allowed

• Only set or clear breakpoints when the debugger is stopped

• When single stepping through the code, if the debugger ends up in an interrupt handler instead of

the next C source line, use single step (F10) again (in the interrupt handler) and then step out

(Shift-F11). It may take several iterations if the interrupts are particularly active

• If the BDM will not download the code, disconnect the BDM, reset the board and try again

• Multiple BDMs (and debuggers) can be used simultaneously

• Only keep at most one debugger window open per BDM

For details on the CodeWarrior TrueTime debugger, see the CodeWarrior documentation.

6.2 LEDs and the Display

The BeeStack LED component contains a function, LED_SetHex(), which allows a hex nibble (the lower

4 bits of a byte) to be displayed on the 4 LEDs on the Freescale reference boards. This function can be used

to show the latest state of the application.

Another technique is to toggle the LED every time the application task gets control. Use LED_SetLED()

with gLedToggle_c as the state parameter.

LEDs can also be useful to see when the board enters low power (see the idle task in BeeAppInit.c) or when

the board is communicating over ZigBee on BeeAppDataIndication(), for example.

The LCD display on those boards that support them, such as the NCB and Axiom, is also a very useful

debugging tool. LCD_WriteString() and LCD_WriteStringValue() can be used to great effect, indicating

where the problem lies.

Debugging BeeStack Applications

BeeStack™ Application Development Guide, Rev. 1.1

6-2 Freescale Semiconductor

6.3 Network Protocol Analyzers

A network protocol analyzer is a tool that captures over-the-air data for later examination to aid in

debugging network activity. Freescale offers “sniffer” hardware that can passively monitor an 802.15.4

channel for activity, and reports each packet through a USB port to the desktop PC. Communication

problems that are extremely difficult to identify in the code are frequently very easy to understand from

the over-the-air behavior.

Third parties offer protocol analyzers. Figure 6-1 shows the Daintree Networks Sensor Network Analyzer

window. Notice that the network is shown as a graphic and with packet decode. This includes time stamps

on the packets. The Daintree Networks protocol analyzer was used in the development of BeeStack.

Figure 6-1. Daintree Sensor Network Analyzer

6.4 ZigBee Test Client

Another method for debugging a network is the Test Tool and ZigBee Test Client combination. Test Tool,

a desktop PC tool from Freescale, uses a serial (USB) port to communicate to one or more boards. An

XML file describes the commands Test Tool uses, which in turn communicates to Freescale ZigBee

development boards. A small network of 2-10 nodes can easily be set up and controlled by Test Tool for

manual testing of application commands.

ZTC and Test Tool can be extended to support any commands over the serial link allowing a very flexible

tool for debugging. The standard ZTC configuration supports all BeeStack ZigBee commands.

ZTC also allows for automated testing. Freescale uses this technique to test BeeStack itself, with a large

test suite covering the BeeStack API and ZigBee commands.

For a complete list of ZTC commands, see the ZigBee Test Client Reference Manual. For more information

about Test Tool, see the Freescale Test Tool User’s Guide.

	About This Book
	Audience
	Organization
	Revision History
	Conventions
	Definitions, Acronyms, and Abbreviations
	Reference Materials
	Chapter 1 Introduction
	1.1 What This Document Describes
	1.2 What This Document Does Not Describe
	1.3 BeeKit
	1.4 CodeWarrior
	1.5 BeeStack
	1.6 The Development Process

	Chapter 2 Building A Custom Application
	2.1 Creating a Custom Application In BeeKit
	2.2 Editing the Custom Application in CodeWarrior
	2.3 Installing and Running The Custom Application
	2.4 Examining the Custom Application

	Chapter 3 Designing A Custom Profile
	3.1 Application Profiles
	3.2 Endpoints, Clusters and Attributes
	3.3 Customizing A Public Profile
	3.4 Stack Profiles

	Chapter 4 Selecting Platform Components
	4.1 The Display Component
	4.2 The Keyboard Component
	4.3 The LED Component
	4.4 The NVM Component
	4.5 The Low-Power Component
	4.6 The Timer Component
	4.7 The UART Component

	Chapter 5 Managing BeeStack Resources
	5.1 BeeStack Start-up Sequence
	5.2 Managing Tasks
	5.3 Managing Timers
	5.4 Managing Message Buffers
	5.5 Managing Memory
	5.6 Managing The C Stack
	5.7 What To Do When Applications Do Not Fit
	5.8 Managing ZigBee Channels
	5.9 Managing ZigBee Bandwidth

	Chapter 6 Debugging BeeStack Applications
	6.1 The P&E MultiLink BDM
	6.2 LEDs and the Display
	6.3 Network Protocol Analyzers
	6.4 ZigBee Test Client

