ON Semiconductor

Is Now

Onsemí

To learn more about onsemi[™], please visit our website at <u>www.onsemi.com</u>

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product factures, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and asfety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or by customer's technical experts. onsemi products and actal performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiari

4-Pin DIP Phototransistor Optocouplers

FOD785 Series

Description

The FOD785 series is a general-purpose family of phototransistor optocoupler. It is offered in various CTR bins to meet the needs of most applications. It consists of a gallium arsenide infrared emitting diode driving a silicon phototransistor in a compact 4-pin dual in-line package.

Features

• Wide Selection in Current Transfer Ratio (CTR):

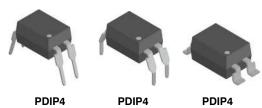
 FOD785:
 50 - 600%

 FOD785A:
 80 - 160%

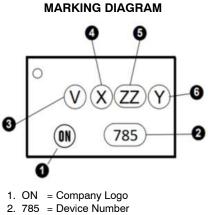
 FOD785B:
 130 - 260%

 FOD785C:
 200 - 400%

- FOD785D: 300 600%
- Safety and Regulatory Approvals:
 - UL1577, 5,000 VACRMS for 1 Minute
 - DIN EN/IEC60747-5-5, 850 V Peak Working Insulation Voltage

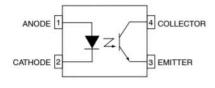

Typical Applications

- Digital Logic Inputs
- Microprocessor Inputs
- Power Supply Monitor
- Twisted Pair Line Receiver
- Telephone Line Receiver



ON Semiconductor®

www.onsemi.com


PDIP4 PDIP4 PDIP4 CASE 646CS CASE 646CT CASE 709AK

- 4. X = One-Digit Year Code
- 5. ZZ = Two-Digit Work Week
- 6. Y = Assembly Package Code

PIN CONNECTIONS

ORDERING INFORMATION

See detailed ordering and shipping information on page 6 of this data sheet.

Safety and Insulation Ratings

As per DIN EN/IEC 60747–5–5, this optocoupler is suitable for "safe electrical insulation" only within the safety limit data. Compliance with the safety ratings shall be ensured by means of protective circuits.

Table 1. SAFETY AND INSULATION RATINGS

Param	Characteristics	
Installation Classifications per DIN VDE	< 300 V _{RMS}	I–IV
0110/1.89 Table 1, For Rated Mains Voltage	< 600 V _{RMS}	I—III
Climatic Classification	55/110/21	
Pollution Degree (DIN VDE 0110/1.89)	2	
Comparative Tracking Index	Comparative Tracking Index	

Table 2.

Symbol	Parameter	Value	Unit
V _{PR}	Input-to-Output Test Voltage, Method A, $V_{IORM} x 1.6 = V_{PR}$, Type and Sample Test with $t_m = 10 \text{ s}$, Partial Discharge < 5 pC	1360	V _{peak}
	Input-to-Output Test Voltage, Method B, $V_{IORM} \times 1.875 = V_{PR}$, 100% Production Test with $t_m = 1 s$, Partial Discharge < 5 pC	1594	V _{peak}
VIORM	Maximum Working Insulation Voltage	850	V _{peak}
V _{IOTM}	Highest Allowable Over-Voltage	6000	V _{peak}
	External Creepage	≥7	mm
	External Clearance	≥7	mm
	External Clearance (for Option W, 0.4" Lead Spacing)	≥ 10	mm
DTI	Distance Through Insulation (Insulation Thickness)	≥ 0.4	mm
Τ _S	Case Temperature (Note 1)	175	°C
I _{S,INPUT}	Input Current (Note 1)	130	mA
P _{S,OUTPUT}	Output Power (Note 1)	265	mW
R _{IO}	Insulation Resistance at T_S , V_{IO} = 500 V (Note 1)	> 10 ¹¹	Ω

1. Safety limit values - maximum values allowed in the event of a failure.

Table 3. ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit				
TOTAL PACKAGE							
T _{STG}	Storage Temperature	-55 to +125	°C				
T _{OPR}	Operating Temperature	–55 to +110	°C				
TJ	Junction Temperature	-55 to +125	°C				
T _{SOL}	Lead Solder Temperature	260 for 10 seconds	°C				
P _{TOT}	Total Device Power Dissipation	200	mW				
EMITTER							
١ _F	Continuous Forward Current	50	mA				
V _R	Reverse Voltage	6	V				
PD	Power Dissipation	100	mW				
	Derate Above 100°C	2.9	mW/°C				

Table 3. ABSOLUTE MAXIMUM RATINGS (continued)

Symbol	Parameter	Value	Unit			
DETECTOR	DETECTOR					
V _{CEO}	Collector-Emitter Voltage	80	V			
V _{ECO}	Emitter-Collector Voltage	6	V			
Ι _C	Continuous Collector Current	50	mA			
P _C	Collector Power Dissipation	150	mW			
	Derate Above 100°C	5.8	mW/°C			

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

Electrical Characteristics

Table 4. ELECTRICAL CHARACTERISTICS	$(T_A = 25^{\circ}C \text{ unless otherwise specified})$
-------------------------------------	--

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
EMITTER	1					
VF	Forward Voltage	I _F = 20 mA		1.2	1.4	V
I _R	Reverse Current	V _R = 4.0 V			10	μΑ
Ct	Terminal Capacitance	V = 0, f = 1 kHz		30		pF
DETECT	OR					
I _{CEO}	Collector Dark Current	$V_{CE} = 20 \text{ V}, \text{ I}_{F} = 0$			100	nA
BV_{CEO}	Collector-Emitter Breakdown Voltage	$I_{\rm C} = 0.1 \text{mA}, I_{\rm F} = 0$	80			V
BV_{ECO}	Emitter-Collector Breakdown Voltage	I _E = 0.01 mA, I _F = 0	6			V
DC TRAN	NSFER CHARACTERISTICS					
CTR	Current Transfer Ratio - FOD785	$I_F = 5 \text{ mA}, V_{CE} = 5 \text{ V}$	50		600	%
(Note 2)	– FOD785A		80		160	
	– FOD785B		130		260	
	– FOD785C		200		400	1
	- FOD785D		300		600	1
V _{CE(SAT)}	Saturation Voltage	I _F = 20 mA, I _C = 1 mA			0.2	V

tr	Rise Time	I_{C} = 2 mA, V_{CE} = 2 V, R_{L} = 100 Ω		18	μs
t _f	Fall Time	(Note 3)		18	μs
F _{CO}	Cut-Off Frequency		80		kHz

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

2. Current Transfer Ratio (CTR) = $I_C / I_F \times 100\%$. 3. Refer to test circuit setup.

Table 5. ISOLATION CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise specified)

Symbol	Parameter	Test Conditions	Min	Тур	Мах	Unit
V _{ISO}	Input-Output Isolation Voltage (Note 4)	f = 60 Hz, t = 1 minutes, $I_{I-O} \le 2 \ \mu A$	5000			VAC _{RMS}
R _{ISO}	Isolation Resistance	$V_{I-O} = 500 V_{DC}$		1 x 10 ¹¹		Ω
C _{ISO}	Isolation Capacitance	$V_{I-O} = 0, f = 1 MHz$		0.6	1.0	pf

4. For this test, Pins 1 and 2 are common, and Pins 3 and 4 are common.

TYPICAL CHARACTERISTICS

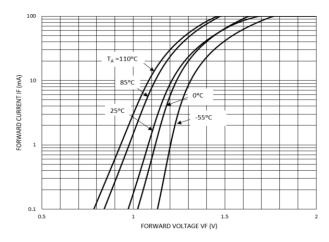


Figure 1. Forward Current vs. Forward Voltage

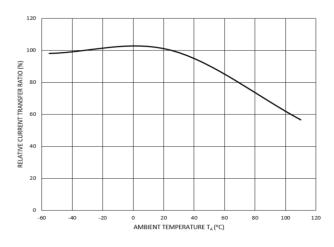


Figure 3. Relative Current Transfer Ratio vs. Ambient Temperature

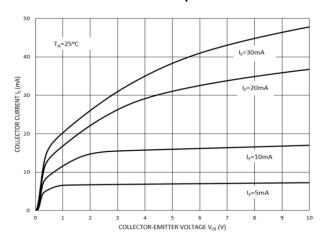


Figure 5. Collector Current vs. Collector-Emitter Voltage

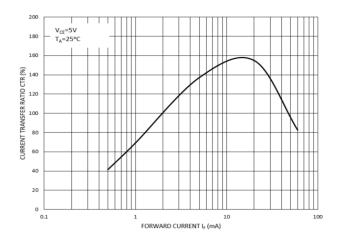


Figure 2. Current Transfer Ratio vs. Forward Current

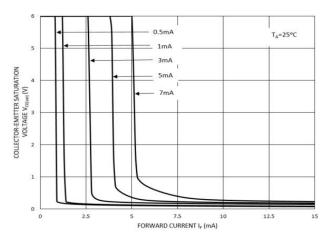
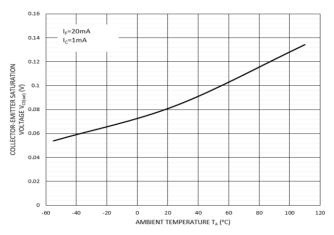
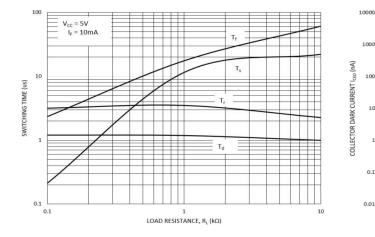
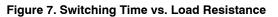
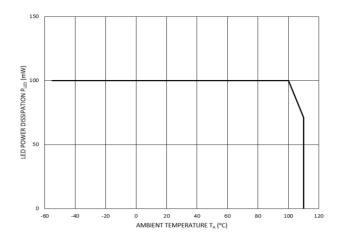
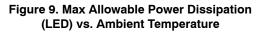



Figure 4. Collector-Emitter Saturation Voltage vs. Forward Current


TYPICAL CHARACTERISTICS


100


10


1

V_{CE}=20V

120

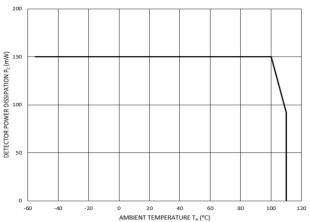


Figure 10. Max Allowable Power Dissipation (Detector) vs. Ambient Temperature

Test Circuit

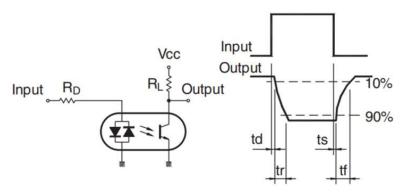



Figure 11. Test Circuit

0.1 0.01 -60 -20 0 20 40 60 AMBIENT TEMPERATURE T_A (°C) 80 100

Reflow Profile

Figure	12.	Reflow	Profile
· · · · · · ·			

Table 6.

Profile Feature	Pb-Free Assembly Profile
Temperature Min. (Tsmin)	150°C
Temperature Max. (Tsmax)	200°C
Time (t _S) from (Tsmin to Tsmax)	60-120 seconds
Ramp-up Rate (t _L to t _P)	3°C/second max.
Liquidous Temperature (TL)	217°C
Time (t _L) Maintained Above (T _L)	60–150 seconds
Peak Body Package Temperature	260°C +0°C / -5°C
Time (t _P) within 5°C of 260°C	30 seconds
Ramp-down Rate (T _P to T _L)	6°C / second max.
Time 25°C to Peak Temperature	8 minutes max.

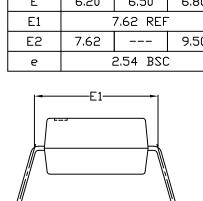
Table 7. ORDERING INFORMATION

Part Number	Package	Packing Method [†]
FOD785	DIP 4-Pin	Tube (100 units per tube)
FOD785S	SMT 4-Pin (Lead Bend)	Tube (100 units per tube)
FOD785SD	SMT 4-Pin (Lead Bend)	Tape and Reel (1,500 units per reel)
FOD785300	DIP 4-Pin, DIN EN/IEC60747-5-5 option	Tube (100 units per tube)
FOD7853S	SMT 4-Pin (Lead Bend), DIN EN/IEC60747-5-5 option	Tube (100 units per tube)
FOD7853SD	SMT 4-Pin (Lead Bend), DIN EN/IEC60747-5-5 option	Tape and Reel (1,500 units per reel)
FOD785300W	DIP 4-Pin, 0.4" Lead Spacing, DIN EN/IEC60747-5-5 option	Tube (100 units per tube)

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

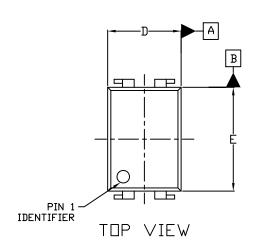
NOTE: The product orderable part number system listed in this table also applies to the FOD785A, FOD785B, FOD785C, and FOD785D products.

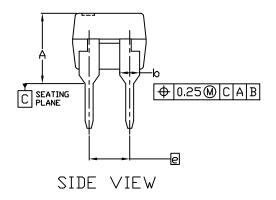
PACKAGE DIMENSIONS


PDIP4 6.50mm (STANDARD LEAD FORM)

CASE 646CS ISSUE O

NDTES:

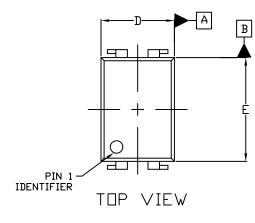

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009.
- 2. CONTROLLING DIMENSION: MILLIMETERS
- 3. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH AND TIE BAR PROTRUSIONS.

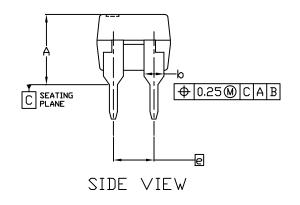

	MILLIMETERS				
DIM	MIN.	NDM.	MAX.		
A	4.20	4.50	4.80		
b	1.35	1.45	1.55		
С	0.25 REF				
D	4.28 4.58 4.88				
E	6.20	6.50	6.80		
E1	7.62 REF				
E2	7.62 9.50				
e	2.54 BSC				

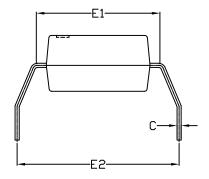
-E2-

END VIEW

PACKAGE DIMENSIONS

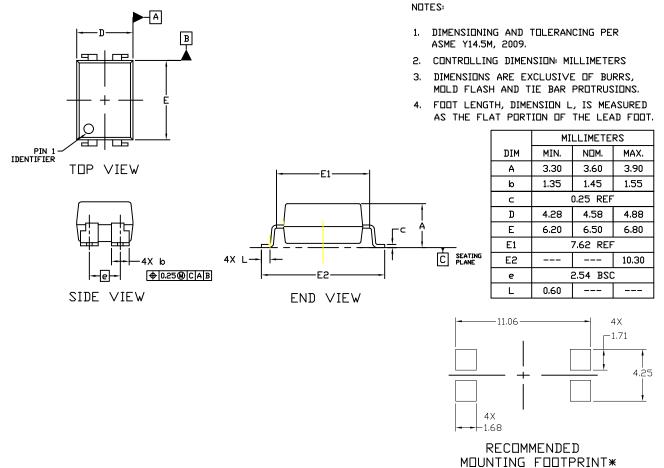

PDIP4 6.50mm (M LEAD FORM)


CASE 646CT ISSUE O


NDTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009.
- 2. CONTROLLING DIMENSION: MILLIMETERS
- 3. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH AND TIE BAR PROTRUSIONS.

	MILLIMETERS		
DIM	MIN.	NDM.	MAX.
A	4.20	4.50	4.80
b	1.35	1.45	1.55
с	0.25 REF		
D	6.20	6.50	6.80
D1	7.62 REF		
D2	10.16 REF		
E	4.28	4.58	4.88
e	2.54 BSC		



END VIEW

PACKAGE DIMENSIONS

PDIP4 6.50mm (GULL WING) CASE 709AK

ISSUE O

For additional information on our Pb-Free strategy and soldering details, please download the DN Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights or the rights of others. ON Semiconductor are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor handles, casts, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated wi

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative