PREPARED BY:	DATE		s	SPEC NO.	NW-D004
		SHAR		SSUE Apri	il. 9, 2015
				ILE NO.	
CHECKED BY:	DATE			PAGE	1/27
		AND DEVICES GROU SHARP CORPORATION		PRESENTA	TIVE DIVISION
APPROVED BY:	DATE	SPECIFICAT		SYSTEM	DEVICE UNIT
		REFERENCE			
		ecification for e Humidity & Tempo o. QM1H0P007		Sensor	
	JSTOMER'S APPF				
		PRESE BY	ENTED		
BY					
		Hiroa	aki Fujino		
			DEPUTY GEI PARTMENT G		
		SYST		JNIT	AND DEVICES

SHARP CONFIDENTIAL AND PROPRIETARY

MODEL No. QM1H0P0073 PAGE

2/27

DOC. FIRST ISSUE

2014/06/19

IDENT. DATA No.

DATE	REF.PAGE	REVISED	SUMMARY	CHECK
	PARAGRAPH	NO.		&
	DRAWING No.			APPROVAL
June 19, 2014	-	-	Initial release	
August 8, 2014	p.8	А	- Modified storage temperature of "Absolute	
			Maximum Ratings"	
	p.9		- Updated max. value and graph of relative	
			humidity sensor accuracy	
	p.16		- Modified rehydration conditions after	
	p.19		soldering	
			- Modified rehydration procedure on "Exposure	
	p.21-25		to extreme environment"	
			- Updated Section12 "Tape and Reel	
	p.26		Specifications"	
			- Modified "Recommended storage conditions	
	p.27		after opening"	
			- Added Section14 "Compliance with	
			regulations on chemical substances"	
September 18,	p.9		- Corrected conditions of relative humidity	
2014			sensor accuracy	
December 12,	p.17	В	- Modified Common difference	
2014	p.19		- Modified Baking time	
	p.22-24		- Modified Reel & Packing Forms	

Important Notices

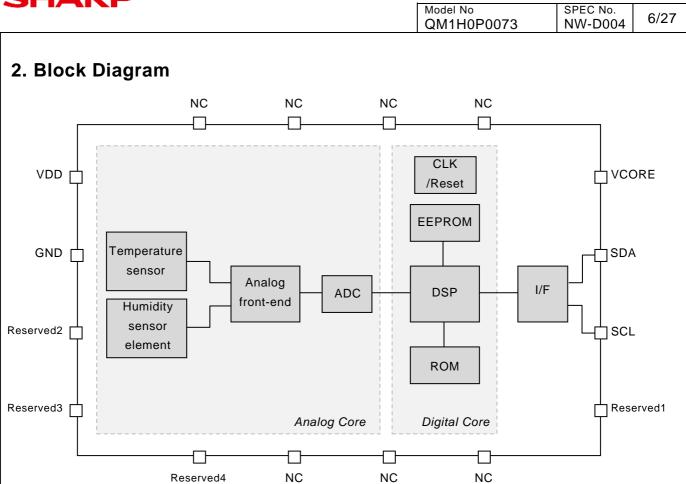
- These specification sheets include materials protected under copyright of Sharp Corporation ("Sharp").Please do not reproduce or cause anyone to reproduce them without Sharp's consent.
- When using this product, please observe the absolute maximum ratings and the instructions for use outlined in these specification sheets, as well as the precautions mentioned below. Sharp assumes no responsibility for any damage resulting from use of the product which does not comply with the absolute maximum ratings and the instructions included in these specification sheets, and the precautions mentioned below.

(Precautions)

- 1. Please do verify the validity of this part after assembling it in customer's products, when customer wants to make catalogue and instruction manual based on the specification sheet of this part.
- 2. This product is designed for use in the following application areas ;
 - Personal computers
 Office automation equipment
 - Telecommunication equipment(Terminal)
 Test and measurement equipment
 - Industrial control
 Audio visual equipment
 Consumer electronics

If the use of the product in the above application areas is for equipment listed in paragraphs3 or 4, please be sure to observe the precautions given in those respective paragraphs.

- 3. Appropriate measures, such as fail-safe design and redundant design considering the safety design of the overall system and equipment, should be taken to ensure reliability and safety when this product is used for equipment which demands high reliability and safety in function and precision, such as ;
 - · Transportation control and safety equipment (aircraft, train, automobile etc.)
 - · Traffic signals · Gas leakage sensor breakers · Rescue and security equipment
 - · Other safety equipment
- 4. Please do not use this product for equipment which require extremely high reliability and safety in function and precision, such as ;
 - Space equipment · Telecommunication equipment (for trunk lines)
 - Nuclear power control equipment · Medical equipment
- 5. Please contact and consult with a Sharp sales representative if four are any questions regarding interpretation of the above four paragraphs.
- Please contact and consult with a Sharp sales representative for any questions about this product.


SHARP	Model No QM1H0P0073	SPEC No. NW-D004	4/27
Contents			
1. Description			5
2. Block Diagram			6
3. Pin Configuration			7
4. Electrical Characteristics			8
5. Operation		1	1
6. Application Circuit Example		1	4
7. Soldering Conditions		1	5
8. Package Outline		1	7
9. PCB Land Pattern		1	8
10. Marking		1	8
11. Precaution for use		1	9
12. Tape and Reel Specifications		2	21
13. Storage Conditions		2	26
14. Compliance with Regulations on chemical	substances	2	27

1. Description

QM1H0P0073 is a digital output relative humidity/temperature sensor. In addition to electrostatic capacitance type humidity sensor and temperature sensor elements, an analog-to-digital converter, signal processing unit, data storage for calibration data, and an interface circuit are integrated into 1 package. The device features wide operating range, small in size, high resolution and high response speed, and is suitable for use in a wide range of applications. Both the temperature and humidity sensors are factory-calibrated and no any further calibration is required after installing on electronic equipments.

Features

- High precision
 - Relative humidity: ±2%RH (typ.)
 - Temperature: ±0.3°C (typ.)
- Wide operating range
 - Relative humidity: 0 to 100%RH
 - Temperature: -20 to 85°C
 - Operating voltage: 2.7 to 5.5V
- Low power consumption
- 3.0uA (max) non-operation current
- I²C digital interface
- Small, Low profile QFN 16pin package
- footprint: 3mm × 3mm
- Industry-leading levels of height: 0.8mm
- Factory calibrated
- RoHS Compliant

SHA	HARP											
						Model No QM1H0P0073			SPEC No. NW-D004		7/27	
3. Pin C	onfigurati	on										
•••••	-											
	12 11 I I	10 9 IIII				NC	NC	NC	NC			
						9	10	11	12			
13 -			-8	VCORE	8					13	VDD	
14 -			-7	SDA	7					14	VSS	
15 -			-6	SCL	6					15	Rese	rved2
16 -			-5	Reserved1	5					16	Rese	rved3
						4	3	2	1			
	1 1	1 1				NC	NC	NC	Re			
	1 2	3 4							Se			
									۳.			
									erved∠			
	то					D			Reserved4			
		P VIEW					OTTOI		W			
	(Not	P VIEW to scale)					OTTOI Not to		W			
Pin	(Not Pin Name	to scale) Type		Function			Not to	scale Rem	W e) arks			
1	(Not Pin Name Reserved4	to scale) Type -	Te	st Terminal			Not to	scale Rem eave	W arks Ope			
1 2	(Not Pin Name Reserved4 NC	to scale) Type - -	Te: Not	st Terminal Connected			Not to	scale Rem eave eave	W arks Ope Ope	n		
1 2 3	(Not Pin Name Reserved4 NC NC	to scale) Type - - -	Te: Not Not	st Terminal Connected Connected			Not to	scale Rem eave eave eave	W arks Ope Ope	n n		
1 2 3 4	(Not Pin Name Reserved4 NC NC NC	to scale) Type - - - -	Te: Not Not Not	st Terminal Connected Connected Connected			Not to	scale Rem eave eave eave eave	W arks Ope Ope Ope	n n n		
1 2 3 4 5	(Not Pin Name Reserved4 NC NC NC Reserved1	to scale) Type - - -	Te: Not Not Not Te:	st Terminal Connected Connected Connected st Terminal			Not to	scale Rem eave eave eave	W arks Ope Ope Ope	n n n		
1 2 3 4 5 6	(Not Pin Name Reserved4 NC NC NC Reserved1 SCL	to scale) Type - - - - - - I	Tes Not Not Tes I ² C	st Terminal Connected Connected Connected st Terminal Serial Clock			Not to	scale Rem eave eave eave eave	W arks Ope Ope Ope	n n n		
1 2 3 4 5	(Not Pin Name Reserved4 NC NC NC Reserved1	to scale) Type - - - -	Tes Not Not Tes I ² C	st Terminal Connected Connected Connected st Terminal			Not to	scale Rem eave eave eave eave eave	W ope Ope Ope Ope	n n n		
1 2 3 4 5 6 7	(Not Pin Name Reserved4 NC NC NC Reserved1 SCL SDA	to scale) Type - - - I I/O	Tes Not Not Tes I ² C I ² C Core vol	st Terminal Connected Connected Connected st Terminal Serial Clock Serial Data tage: Decou	pling	(Not to	scale Rem eave eave eave eave	W ope Ope Ope Ope	n n n ct to		
1 2 3 4 5 6	(Not Pin Name Reserved4 NC NC NC Reserved1 SCL	to scale) Type - - - - - - I	Tes Not Not Tes I ² C I ² C Core vol	st Terminal Connected Connected Connected st Terminal Serial Clock Serial Data	pling	(Not to	scale Rem _eave _eave _eave _eave _eave _avs ca an ex pacito	W ope Ope Ope Ope Ope Ope	n n n ct to l uF)		
1 2 3 4 5 6 7 8	(Not Pin Name Reserved4 NC NC NC Reserved1 SCL SDA VCORE	to scale) Type I I I/O Power	Tes Not Not Tes I ² C I ² C Core volt input for	st Terminal Connected Connected Connected st Terminal Serial Clock Serial Data tage: Decou	pling uitry	(Not to	scale Rem eave eave eave eave eave ave avs co an ex pacito to 0	W Ope Ope Ope Ope Ope Ope c onne terna r(0.1	n n n ct to l uF)		
1 2 3 4 5 6 7 8 8	(Not Pin Name Reserved4 NC NC NC Reserved1 SCL SDA VCORE	to scale) Type I I I/O Power	Tes Not Not Tes I ² C I ² C Core vol input for	st Terminal Connected Connected Connected st Terminal Serial Clock Serial Data tage: Decou internal circ	pling uitry	(Not to	scale Rem eave eave eave eave eave avs co an ex pacito to C eave	W arks Ope Ope Ope Ope Ope onne terna r(0.1 SND. Ope	n n n ct to l uF)		
1 2 3 4 5 6 7 7 8 8 9 10	(Not Pin Name Reserved4 NC NC NC Reserved1 SCL SDA VCORE VCORE	to scale) Type I I I/O Power	Tes Not Not Tes I ² C I ² C Core vols input for Not	st Terminal Connected Connected St Terminal Serial Clock Serial Data tage: Decou internal circ	pling uitry	(Not to	scale Rem _eave _eave _eave _eave _eave _ays co an ex pacito to C _eave _eave	W arks Ope Ope Ope Ope onne terna r(0.1 SND. Ope Ope	n n n ct to l uF) n n		
1 2 3 4 5 6 7 8 8 9 10 11	(Not Pin Name Reserved4 NC NC NC Reserved1 SCL SDA VCORE VCORE	to scale) Type I I/O Power	Tes Not Not Tes I ² C I ² C Core volt input for Not Not	st Terminal Connected Connected Connected st Terminal Serial Clock Serial Data tage: Decou internal circ Connected Connected	pling uitry	(Not to	scale Rem _eave _eave _eave _eave _eave _ays co an ex pacito to C _eave _eave _eave	W arks Ope Ope Ope Ope Ope c c c onne terna r(0.1 SND. Ope Ope Ope Ope	n n n ct to l uF) n n		
1 2 3 4 5 6 7 7 8 8 9 10 11 12	(Not Pin Name Reserved4 NC NC NC SCL SDA VCORE VCORE	to scale) Type I I I/O Power	Tes Not Not Tes I ² C I ² C Core vol input for Not Not Not	st Terminal Connected Connected St Terminal Serial Clock Serial Data tage: Decou internal circ Connected Connected Connected	pling uitry	(Not to	scale Rem _eave _eave _eave _eave _eave _ays co an ex pacito to C _eave _eave _eave _eave	W arks Ope Ope Ope Ope Ope c onne terna r(0.1 SND. Ope Ope Ope Ope	n n n ct to l uF) n n		
1 2 3 4 5 6 7 7 8 8 9 10 11 12 13	(Not Pin Name Reserved4 NC NC NC SCL SDA VCORE VCORE	to scale) Type	Tes Not Not Tes I ² C I ² C Core vol input for Not Not Not	st Terminal Connected Connected St Terminal Serial Clock Serial Data tage: Decou internal circ Connected Connected Connected Connected wer Supply	pling uitry	(Not to	scale Rem _eave _eave _eave _eave _eave _ays co an ex pacito to C _eave _eave _eave	W arks Ope Ope Ope Ope Ope c onne terna r(0.1 Ope Ope Ope Ope	n n n ct to l uF) n n		
1 2 3 4 5 6 7 7 8 8 9 10 11 11	(Not Pin Name Reserved4 NC NC NC SCL SDA VCORE VCORE	to scale) Type I I I/O Power	Tes Not Not Not Tes I ² C I ² C Core volt input for Not Not Not Not	st Terminal Connected Connected St Terminal Serial Clock Serial Data tage: Decou internal circ Connected Connected Connected	pling uitry	(Not to	scale Rem eave eave eave eave ays cr an ex bacito to C eave eave eave eave	W arks Ope Ope Ope Ope Ope c onne terna r(0.1 SND. Ope Ope Ope Ope	n n n ct to l uF) n n n		

4. Electrical Characteristics

Absolute Maximum Ratings

Parameter	Symbol	Ratings	Unit	Remarks
VDD to GND	-	-0.3 to 6.0	V	
SDA/SCL to GND	-	-0.3 to VDD+0.3	V	
Storage Temperature -		-40 to 140	°C	

Note that operation of the device at these conditions is not implied and may affect the performance, reliability or life of the device.

This product is ESD sensitive. In order to prevent deterioration or damage due to ESD, this product must be protected against static electricity at all times.

Recommended Operating Conditions

Parameter	Symbol	Min	Тур.	Max	Unit	Remarks
Power Supply	VDD	2.7		5.5	V	
Ambient Temperature	TA	-20		85	°C	
I ² C Pull-Up Register	RP	1	2.2		kΩ	
External Capacitance between VCORE and GND	Cvcore	0.09	0.1	0.33	μF	Must be connected between VCORE and GND

DC Electrical Characteristics

(Conditions at V_{DD} =3V or 5V, T_A =25°C unless otherwise noted.)

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Operation Current	I _{DD}		-	750	1,100	μA
Non-operation Current	I _{NOP}	-20 to 85°C	-	1	3	μA
Power-on-Reset Level	V_{POR}		1.6	1.7	1.75	V
Output Low Voltage	V _{OL}		-	-	0.2	V _{DD}
Output Current	Iol		1.5	-	-	mA
Input Low Voltage	VIL		-	-	0.2	Vdd
Input High Voltage	Vін		0.8	-	-	Vdd
Input Current	١L				10	μA

Model No	
QM1H0P0073	

SPEC No. 9/27 **NW-D004**

Relative Humidity Sensor

(Conditions at $V_{DD}=3V$, $T_A=25$ °C unless otherwise noted.)

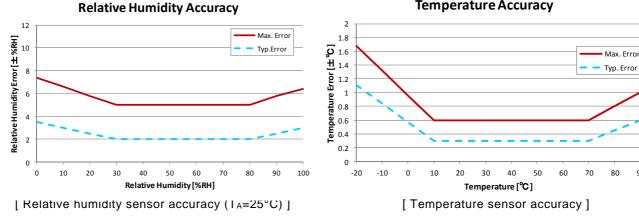
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
		30 to 80%RH	-	±2	±5	%RH
Accuracy ^{1,2}		0 to 100%RH	See figure "Relative hum	idity sensor ac	curacy" below	%RH
Resolution			-	0.1	-	%RH
Hysteresis			-	±1	-	%RH
Repeatability			-	0.1	-	%RH
Response Time ³		1m/s air flow	-	7	-	sec
Operating Range ⁴			0	-	100	%RH

Notes

1: Applicable to non-condensing environments only. Excludes hysteresis and certain other factors.

2: Recommended humidity operating range is 20 to 80%RH (non-condensing) over 0 to 60°C.

Prolonged operation beyond these ranges may result in a shift of sensor reading.


3: Time to reach 63% of a step change.

4: Applicable to non-condensing environments only.

Temperature Sensor

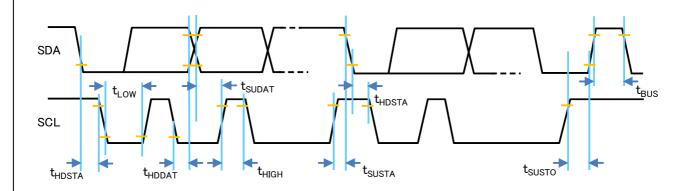
(Conditions at V_{DD}=3V, T_A=25°C unless otherwise noted.)

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
		Typical at 25°C	-	±0.3	±0.6	°C
Accuracy		-20 to 85°C	See figure "Temperature	sensor accurad	cy" below	°C
Resolution			-	0.015	-	°C
Repeatability			-	0.1	-	°C
Operating Range			-20	-	85	°C

Temperature Accuracy

90

Model No QM1H0P0073 SPEC No. NW-D004 10/27


AC Characteristics

Parameter	Symbol	Min	Тур	Max	Unit
SCL clock Frequency	fscl	100	-	400	kHz
Start Condition hold time relative to SCL edge	t hdsta	0.1	-	-	μs
Minimum SCL clock low width	t _{LOW}	0.6	-	-	μs
Minimum SCL clock high width	t _{ніGн}	0.6	-	-	μs
Start condition setup time relative to SCL edge	t susta	0.1	-	-	μs
Data hold time on SDA relative to SCL edge	t hddat	0	-	0.5	μs
Data setup time on SDA relative to SCL edge	t sudat	0.1	-	-	μs
Stop condition setup time on SCL	tsusto	0.1	-	-	μs
Bus free time between stop condition and start condition	t _{BUS}	1	-	-	μs

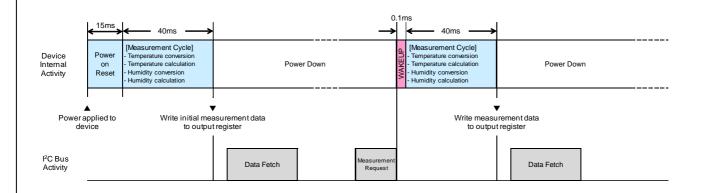
Note)

For more information on I²C specification, please refer to the following Website:

http://www.nxp.com/documents/other/UM10204_v5.pdf

I²C Timing Diagram

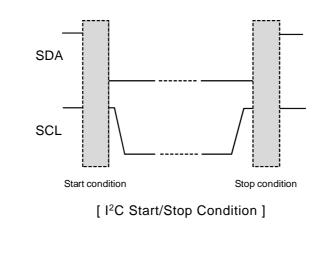
Model No	SPEC No.	44/07
QM1H0P0073	NW-D004	11/27


5. Operation

I²C Interface

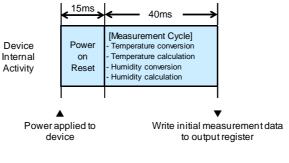
This product communicates with I2C-compatible protocol with support for 100kHz and 400kHz bit rates. All sensors are set to the same I2C slave address (28H).

Note) For more information on I²C specification, please refer to the following Website: http://www.nxp.com/documents/other/UM10204_v5.pdf


The overview of the measurement sequence is as follows:

[I²C Measurement Sequence]

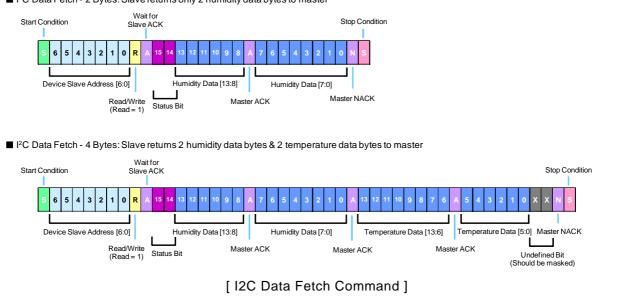
I²C-BUS is a bi-directional 2-wire serial bus, consists of serial data line (SDA) and serial data clock (SCL). When the bus is free, both SDA and SCL are HIGH.


Each communication sequence begins with a Start Condition, and ends with a Stop Condition. A Start Condition is defined as a HIGH to LOW transition on the SDA line while SCL is HIGH. A Stop Condition is defined as a LOW to HIGH transition on the SDA line while SCL is HIGH. Between the Start and Stop conditions, the data on the SDA can change when SCL is LOW and the data is fetched during SCL is HIGH. Each data bit is transferred by one clock pulse of SCL.

SHARP			
	Model No	SPEC No.	40/07
	QM1H0P0073	NW-D004	12/27

Startup

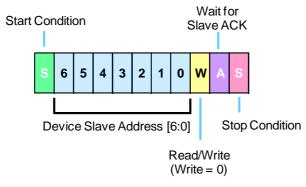
Through the system power-on reset (POR) after power-up, the sensor will perform an initial measurement cycle. This initial measurement data is written to the output register. The sensor needs at most 55ms to be ready for fetching data. SCL keeps HIGH during this period.

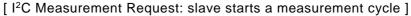

[Power-On sequence]

Data Fetch

The Data Fetch (DF) command is used to fetch humidity and temperature measurement data from the output register. The master issues a Start Condition, followed by the 7-bit slave address 28H ('010'1000') and the 8th bit=1 (Read). The sensor sends an acknowledge (ACK) when receiving the command from the master properly. The 14 bits of humidity data are fetched in the first two bytes. The higher 2 bits of the first byte are the status bits. After the humidity data, the 14 bits of temperature data can be fetched. The last two bits of the fourth byte are undetermined and should be masked off in the application.

A6	A5	A4	A3	A2	A1	A0
0	1	0	1	0	0	0


■ I²C Data Fetch - 2 Bytes: Slave returns only 2 humidity data bytes to master



Measurement Request

After the measurement cycle, the sensor goes to power down to suppress power consumption. To wake up the part from power down and start a new measurement cycle, the master sends an MR (Measurement Request) command. The master issues a Start Condition, followed by the 7-bit slave address 28H('010'1000') and the 8th bit=0(Write). When receiving the command from the master properly, the sensor sends an acknowledge (ACK) by lowering SDA automatically. Then the master sends a Stop Condition. When a MR is received properly, the part wakes up with a small period and then a new measurement cycle is performed.

Another MR can be sent to start a new measurement cycle without fetching the previous data.

Output Data Conversion

[Relative Humidity Conversion] The Humidity Data bytes (14 bits raw value) can be converted to %RH using the following equation:

Relative Humidity[%RH] =
$$\frac{\text{Humidity Data[13: 0]}}{2^{14}} \times 100$$

[Temperature Conversion]

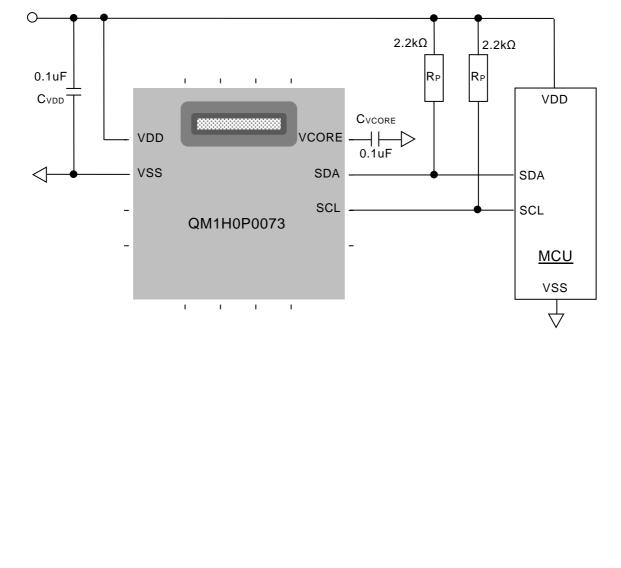
The Temperature Data bytes (14 bits raw value) can be converted to °C using the following equation:

Temperature[°C] = $\frac{\text{Temperature Data[13:0]}}{2^{14}} \times 165 - 40$

14/27

6. Application Circuit Example

The following shows the application circuit example.


Both SDA and SCL are connected to VDD via pull-up resisters R_P. When the bus is free, both lines are HIGH.

The values of the pull-up resisters are determined in consideration of the capacitance of the I²C bus lines. Note that I²C pull-up resisters may be integrated in I/O of MCUs.

Be sure to connect C_{VCORE} with appropriate value between VCORE terminal and GND. If C_{VCORE} is not connected, or if the value is not appropriate, it may affects the measurement accuracy of temeperature and relative humidity.

In order to stably operate this product, C_{VDD} and C_{VCORE} should be as close to this device as possible.

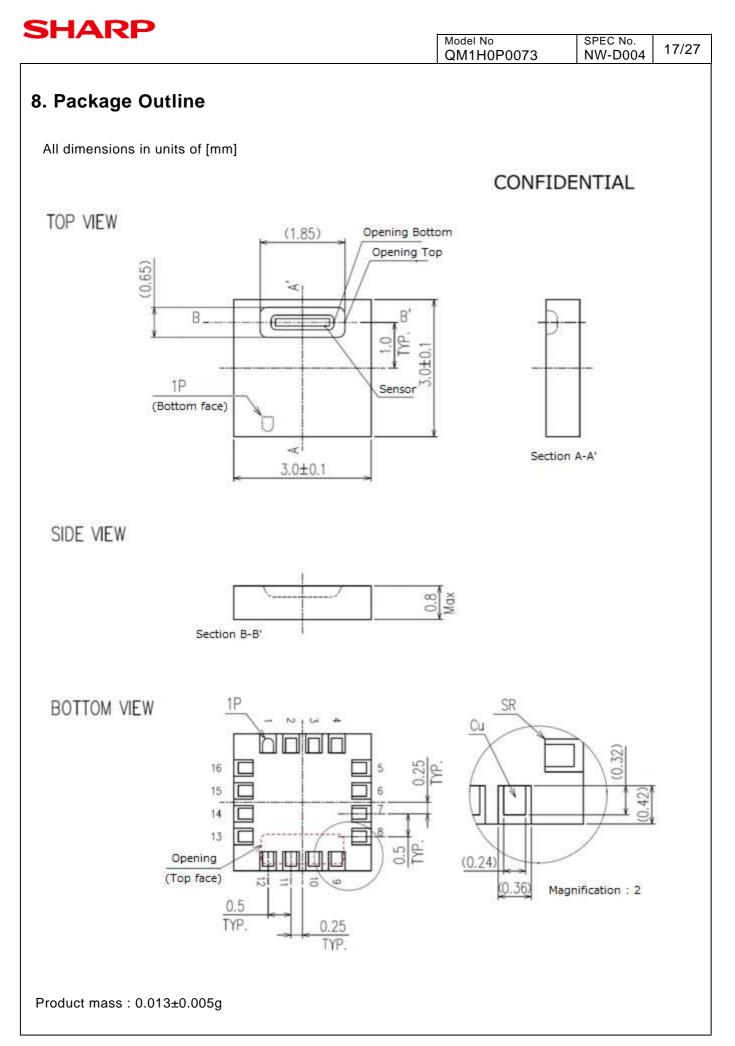
VDD = 2.7 to 5.5V

SHAN	KP			Model No QM1H0P0073	SPEC No. 3 NW-D004	15/27
7. Solderi	ng Conditions					
Soldering	methods and su	itability of	this produc	t		
Soldering methods	Reflow soldering	Flow(dip, v solderir	vave) Hand	d soldering by Idering iron	Hot plate Soldering	
Suitability	\bigcirc	×		×	\cap	
	U	Not suita for this pro		ot suitable this product	U	
Reflow Solde	ering ng conditions are rec	ommended fo	or reflow solde	ering this produc	ct by lead-free solo	der.
	Paramete			ed Condition		
	Type of proc			Convection reflo	W	
	Atmospher Number of reflow			litrogen e only		
Package Surface		190°C	Reflow 220°C or 20 to 50s	above 3 to	np-Down Rate 6°C/sec.	
				Time		
	Reflow Profile for Lead-free					
Hot Plate So Recommend	Idering ded hot plate solderi	ng conditions	is as follows	:		
	Parar			ded Condition		
	PCB surface	-		250°C	_	
	Solderi	ng time	<	5 sec.	_	

Η	Α	R	Ρ
		ΗД	$H \Delta I $

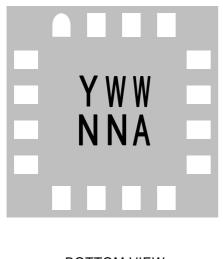
Rework

Hot air reworking is not recommended as the hot air may cause irreversible damage for humidity sensor elements.


Removed device should not be reused because of the possibility of thermal and mechanical damage in rework.

Notice of soldering

- ▲ Only one reflow process is allowed for this product. In case the PCB passes through multiple solder cycles, it is strongly recommended to assemble this product only in the last solder cycle.
- Ensure good ventilation in assembly lines. If any volatile gas exists, it may cause damage to this product.
- If possible, it is recommended to mount this product after all materials that are used in the assembly process have completely cured or dried out.
- After soldering, the devices may read a slight offset. In this case, the rehydration process under the following conditions may eliminate the offset.


Rehydration conditions: Store the devices at 85°C/85%RH for 2 hours Note: Be sure to observe the storing time (2 hours)

- Keep the opening of humidity sensors clean and undamaged.
- Do not wash the PCB after reflow soldering or hand soldering. It may affect the accuracy of humidity sensors. "No clean" type solder paste is strongly recommended.
- Contamination of the humidity sensor element by flux shall be avoided. Liquid flux is not recommended.

SHARP			
SIAN	Model No QM1H0P0073	SPEC No. NW-D004	18/27
9. PCB Land Pattern			
All dimensions in units of [mm]			
< 3.6	>		
	Α		
5	3.6		
< 2.0 >			
	v		
< 1.5 >			

10. Marking

Symbol	Name	Remarks
Y	Last one digit of the year	1 digit number Y="0" to "9"
WW	Week	2 digit number WW="00" to "53"
NN	Assembly lot	2 digit number NN="00" to "99"
A	Product name	1 alphabetic digit A="1" : QM1H0P0073

BOTTOM VIEW (Not to scale)

SPEC No.

11. Precaution for Use

Effect of temperature

Since the relative humidity strongly depends on temperature, be careful of the following points:

- Keep the temperature of humidity sensors same as temperature of the air which is measurement subject of relative humidity.
- If this product is mounted close to the heating component, it should be considered to prevent heat transfer or to keep it as low as possible.

Exposure to chemicals

Exposure to the following chemicals may cause irreversible effects. Avoid exposure to such chemicals and provide sufficient ventilation.

• Volatile chemicals

Example: Acetone, Ethanol, Isopropyl Alcohol, Toluene, etc.

These volatile chemicals also exist in epoxy compounds, adhesives, adhesive tapes, etc, and may be emitted as outgas component.

Acids and bases

Example: HCI, H₂SO₄, HNO₃, NH₃, etc.

- High concentration Ozone or H₂O₂
- Cleaning agents

Example: Alcohol, detergents, brominated/fluorinated solvents, etc Do not apply PCB board wash after soldering.

Exposure to extreme environment

Prolonged exposure to very low/high humidity environment may cause gradual shifts of the relative humidity reading and errors may increase. In order to eliminate these errors, the following procedure is useful.

[In case of very low humidity]

The performance of the humidity sensor can be recovered after a few days under typical ambient conditions(40 - 60%RH).

[In case of very high humidity]

Compared with exposure to very low humidity, recovery of sensor performance may be slower. In this case, the following bake and rehydration procedure can accelerate recovery.

Baking: 140°C for 48 hours

Rehydration: 27°C/75%RH for 24 hours

Following this procedure, the performance of the humidity sensor will recover after a few days under typical ambient conditions.

Note that the sensor read value may drift due to aging of the device for a long period of time. Specifications of relative humidity sensor accuracy do not include the effect of aging, contamination and exposure to extreme environment conditions.

Packing material

Because both sensors as a part and sensors mounted on the final product need to avoid contamination by outgas emitted from packing materials, careful attention must be paid in the selection of the packaging materials.

- Avoid using adhesives, adhesive tapes and stickers as much as possible.
- Do not use antistatic polyethylene bags.
- Be very careful to use foamed plastics.

Hygroscopic material

Since hot melts may absorb moisture and affect the response time of the relative humidity sensor, using hot melt sparingly is recommended.

Protection of the sensor opening

Avoid adhering contaminants (e.g. liquids (especially salt water), solvents, fats, dust, etc.) so as not to affect sensor performance. Care must also be taken to the following points for protection of the sensor opening.

- Do not cover the sensor opening by any adhesive tapes (e.g. Scotch Tape, Sellotape, etc.) which may affect sensor performance by outgas.
- Avoid covering the sensor opening with coatings.
- Do not directly touch the sensor opening.

Others

- This product is NOT intended for use in the following special environments, such as:
 - Use in liquids such as water, oil, chemical, and organic solvent.
 - Use under direct sunlight, in outdoor, heat and dusty atmospheres.
 - Use in places full of corrosive gases such as sea breeze, SO₂, H₂S, Cl₂, NH₃, acid, and alkali.
 - Use in environment with strong electromagnetic waves or large static electricity.
 - Use in such a place where the product is condensation or freezing.
- This product is not designed to be radiation-resistant.

Model No QM1H0P0073

φDo

 ϕD_1

 SPEC No.
 21/27

 NW-D004
 21/27

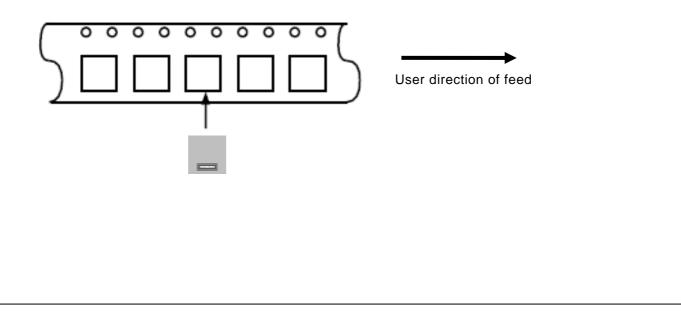
 T_2

12. Tape and Reel Specifications

Packing unit

Item	Packing unit	Packing parts	Remarks
Emboss tape		Emboss carrier tape	-
	1,500pcs	Reel	-
		Cover tape	-
		Label	Printed with a logotype
Inner nacking case	1reel (1,500pcs)	Inner packing case	Plain
		Aluminum laminated bag	Plain
		Label	Printed with a logotype
Outer packing case	5reels	Outer packing case	Printed with a logotype
	(7,500pcs)	Label	Printed with a logotype

Po

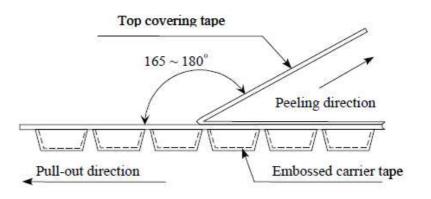

 P_1

Tape structure and dimensions

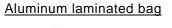
Index	Dimensions	
А	3.3±0.1	
В	3.3±0.1	
D0	φ1.5 +0.1/-0	
D1	φ1.5 +0.1/-0	
E	1.75±0.1	
F	5.5±0.05	
P0	4.0±0.1	
P1	8.0±0.1	
P2	2.0±0.05	
Т	0.3±0.05	
T2	0.9±0.05	
W	12.0 +0.3/-0.1	

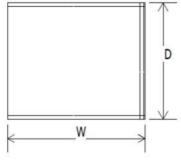
All dimensions in units of [mm]

1pin orientation in tape

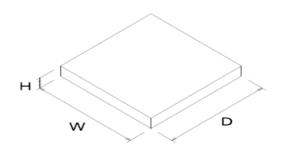

SHARP Model No SPEC No. 22/27 QM1H0P0073 NW-D004 **Reel structure and dimensions** W_1 Index Dimensions φ180 +0/-3 А В φ60 **+**1/-0 С φ13±0.3 D φ21±0.8 Е 2.0±0.5 W 13.0 ±0.3 W1 1.5 All dimensions in units of [mm] α W **Tape Leader/Trailer Specification** DD DD Direction of feed Sealed with cover tape Tape Trailer Tape Leader (NO Components) Components (NO Components) Cover tape 100mm Min. 160mm Min. One round (Min.) Empty pockets + Cover tape Direction of feed 400mm Min.

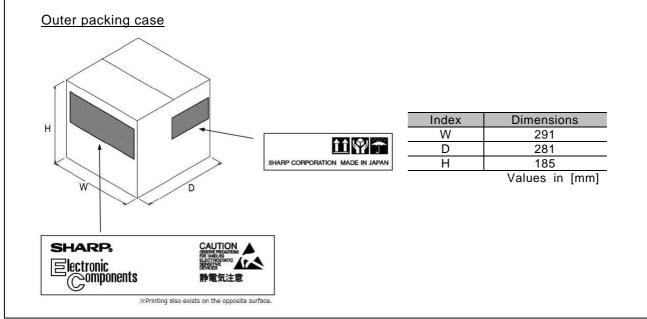
Model No QM1H0P0073	SPEC No. NW-D004	23/27


Peeling strength of the top covering tape

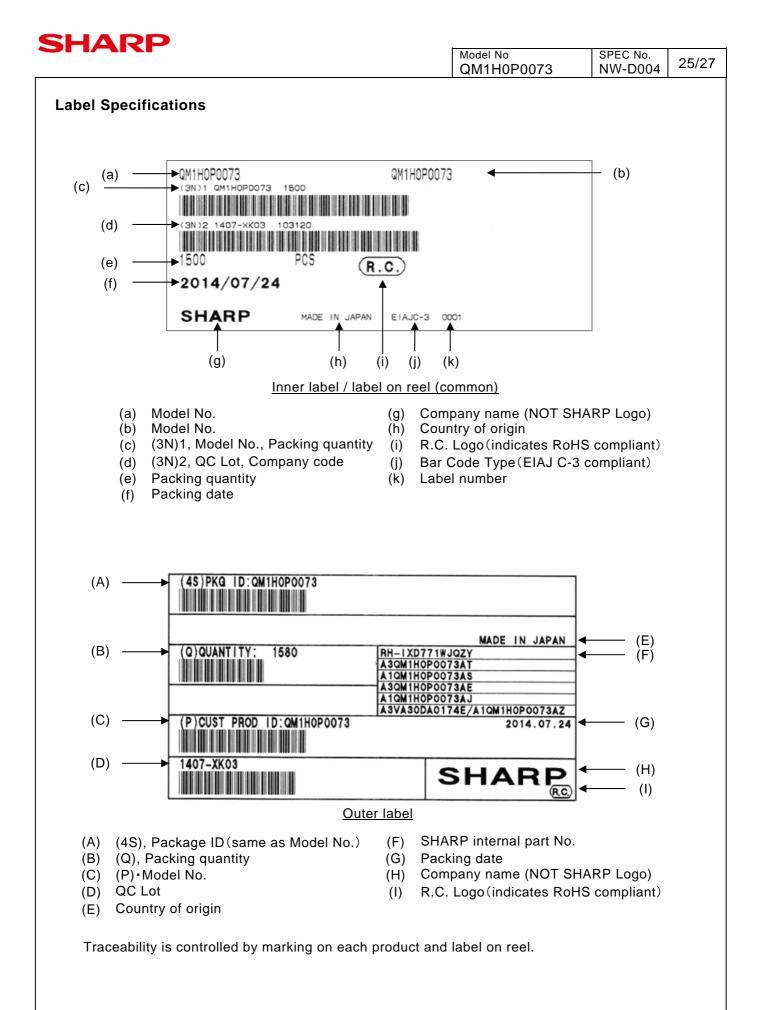

Peeling strength meets the following conditions.

- Peeling angle : 165~180°
- Peeling speed : 300mm/min
- Peeling strength : 0.2~0.7N


Packing Forms



Index	Dimensions	
W	260	
D	260	
	Values in [mm]	


Inner packing case

Index	Dimensions			
W	268			
D	262			
Н	30			
	Values in [mm]			

SHARP				
	Model No QM1H0P0073	SPEC No. NW-D004	24/27	
Store in inner packing case	<u>Store in outer p</u>	acking case		
Put a reel into a heat-sealed aluminum laminated bag.	Store 5 inner packing of	packing cas		
Attach the label on the aluminum laminated bag and store in the inner packing case.				
	Seal the outer packing	case with OPP ta	pe.	
Attach the label in place and seal with adhesive tape of Japanese paper.	Attach the label in place	ce.		

SHARP CONFIDENTIAL AND PROPRIETARY

13. Storage Conditions

Store this product under the following temperature and relative humidity conditions. Avoid condensation, direct sunlight, heat, sea breeze and corrosive chemicals (SO₂, H₂S, Cl₂, acids, alkalies, NH₃, etc.) and keep free from dust.

Recommended storage conditions before opening

Temperature	Relative Humidity	Storage Period
5 to 40°C	20 to 60 %RH	< 1 year

Recommended storage conditions after opening

U		
Temperature	Relative Humidity	Storage Period
5 to 30°C	40 to 70 %RH	< 168 hours

Notes:

Storage conditions after opening the packing is equivalent to MSL=3.

Significant drying of relative humidity sensor element caused by prolonged exposure to high temperature, etc. may increase error of relative humidity readout value, so only one reflow process is allowed for this product after opening the packing.

Use this product within the specified period as above, and do not apply baking (desiccation) process.

Notice on opening the packing

- Open the packing on the anti-static work bench with taking measures against static electricity to a worker.
- Use the anti-static tray when transferring products from reel. To fix the trays, avoid using materials such as rubber bands that may generate corrosive gas.
- Using this product within one (1) year after delivery is recommended. After more than one year, check solderability of each terminal before use.

14. Compliance with regulations on chemical substances

RoHS Compliant

This product does not contain any of the following substances restricted by the RoHS directive (2002/95/EC)

Restricted substances:

lead^{*}, mercury, cadmium, hexavalent chromium, polybrominated biphenyl(PBB), polybrominated diphenyl ether(PBDE)

*: Except lead in high melting temperature type solders (i.e. lead-based alloys containing 85% by weight or more lead) as RoHS exemption.

ACPEIP Information (Administration on the Control of Pollution caused by Electronic Information Products, Chinese:电子信息产品污染控制管理办法)

	Toxic and hazardous substances					
Category	Lead (Pb)	Mercury (Hg)	Cadmium (Cd)	Hexavalent chromium (Cr ⁶⁺)	Polybrominated biphenyls (PBB)	Polybrominated diphenyl ethers (PBDE)
Temperature/ Relative Humidity Sensor	~	1	1	1	1	1

NOTE: ✓ indicates that the content of the toxic and hazardous substance in all the homogeneous materials of the part is below the concentration limit requirement as described in SJ/T 11363-2006 standard.

Specific brominated flame retardants

This product is free of specific brominated flame retardants(Polybrominated biphenyl(PBB), Polybrominated diphenyl ether(PBDE)).

Ozone depleting chemicals(ODCs)

This product does not contain any of the following ozone depleting chemicals (ODCs), and no ODCs are used in any manufacturing processes.

Restricted substances:

CFCs (Chloro-fluoric Carbons), halon, carbon tetrachloride, 1-1-1 trichloroethane (methylchloroform)