Loop powered sensors

PCC421 series

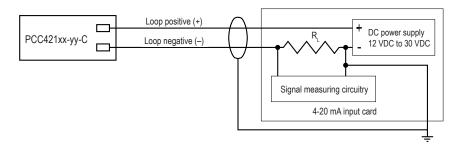


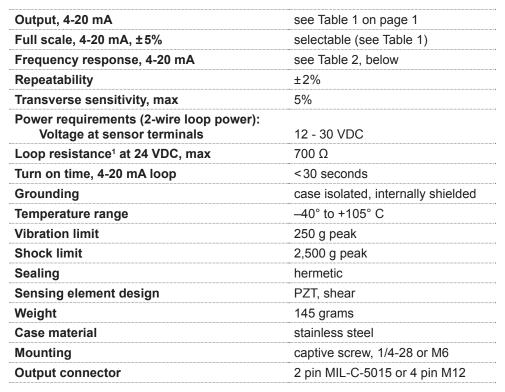
Table 1: PCC421xx-yy-C model selection guide

xx (4-20 mA output type)	yy (4-20 mA full scale)	C (output connector)
AR = acceleration, RMS AP = acceleration, peak	05 = 5 g (49 m/sec ²) 10 = 10 g (98 m/sec ²) 20 = 20 g (196 m/sec ²)	R6 = 2 pin, MIL-C-5015
VR = velocity, RMS VP = velocity, peak	05 = 0.5 ips (12.8 mm/sec) 10 = 1.0 ips (25.4 mm/sec) 20 = 2.0 ips (50.8 mm/sec) 50 = 5.0 ips (127 mm/sec)	M12-4 = 4 pin, M12

PCC421xx-yy-C wiring

Certifications

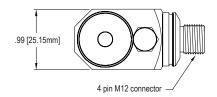
Key features

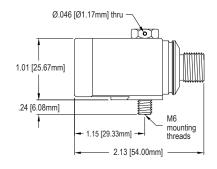

- Choice of true RMS or calculated peak output (in acceleration or velocity units)
- Connector options: 2 pin MIL-C-5015 or 4 pin M12
- Integral cable option available (PCC423 models)
- Enables continuous trending of machine vibration
- Manufactured in an approved ISO 9001 facility

Note: Due to continuous process improvement, specifications are subject to change without notice. This document is cleared for public release.

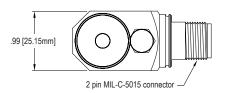
Loop powered sensors

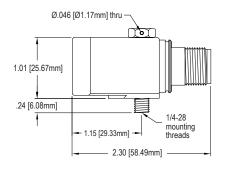
PCC421 series


Accessories supplied: Mounting screw; calibration data (level 2)


Notes: ¹ Maximum loop resistance (R_L) can be calculated by: R_L = $\frac{V_{DC power} - 10 \text{ V}}{20 \text{ mA}}$

DC supply voltage	R _L (max resistance) ²	R _L (minimum wattage capability) ³
12 VDC	100 Ω	1/8 watt
20 VDC	500 Ω	1/4 watt
24 VDC	700 Ω	1/2 watt
26 VDC	800 Ω	1/2 watt
30 VDC	1,000 Ω	1/2 watt


- $^{\rm 2}$ Lower resistance is allowed, greater than 10 Ω recommended.
- 3 Minimum R_L wattage determined by: (0.0004 x R_L) .


PCC421xx-yy-M12-4

PCC421xx-yy-R6

Table 2: PCC421 frequency response				
Acceleration	±10%	10 Hz - 1 kHz		
	±3 dB	1 Hz - 2 kHz		
Velocity	±10%	10 Hz - 1 kHz		
	±3 dB	3.5 Hz - 2 kHz		

MIL-C-5015 pin out (-R6 models)		
Function	Connector pin	
loop positive (+)	Α	
loop negative (-)	В	
ground	shell	

M12 pin out (-M12-4 models)		
Function	Connector pin	
loop positive (+)	1	
loop negative (–)	2	
N/C	3	
N/C	4	
ground	shell	

Note: Due to continuous process improvement, specifications are subject to change without notice. This document is cleared for public release.