

N-channel LFPAK 40 V 4.2 mΩ standard level MOSFET

Rev. 02 — 12 July 2010

Product data sheet

1. Product profile

1.1 General description

Standard level N-channel MOSFET in LFPAK package qualified to 175 °C. This product is designed and qualified for use in a wide range of industrial, communications and domestic equipment.

1.2 Features and benefits

- Advanced TrenchMOS provides low RDSon and low gate charge
- High efficiency gains in switching power converters

1.3 Applications

Table 1

- DC-to-DC convertors
- Lithium-ion battery protection

Quiek reference dete

Load switching

Improved mechanical and thermal characteristics

- LFPAK provides maximum power density in a Power SO8 package
- Motor control
- Server power supplies

1.4 Quick reference data

Table 1.	Quick reference	data				
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{DS}	drain-source voltage	T _j ≥ 25 °C; T _j ≤ 175 °C	-	-	40	V
I _D	drain current	T _{mb} = 25 °C; V _{GS} = 10 V; see <u>Figure 1</u>	-	-	100	Α
P _{tot}	total power dissipation	T _{mb} = 25 °C; see <u>Figure 2</u>	-	-	106	W
Tj	junction temperature		-55	-	175	°C
Static cha	aracteristics					
R_{DSon}	drain-source on-state	V _{GS} = 10 V; I _D = 15 A; T _j = 100 °C; see <u>Figure 12</u>	-	-	5.6	mΩ
	resistance	$\label{eq:VGS} \begin{array}{l} V_{GS} = 10 \; V; \; I_D = 15 \; A; \\ T_j = 25 \; ^\circ C; \; see \; \underline{Figure \; 12}; \\ see \; \underline{Figure \; 13} \end{array}$	-	3.2	4.2	mΩ

N-channel LFPAK 40 V 4.2 mΩ standard level MOSFET

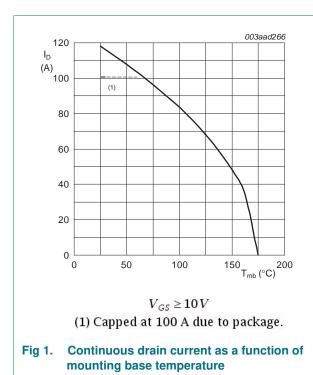
Table 1.	Quick refer	ence data	continued

$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Dynamic	characteristics					
$\begin{array}{c} \text{G}(\text{tot}) & \text{total gate charge} & \text{see } \hline \text{Figure 15} & \text{see } \hline \ \text{Figure 15} & \text{see } \hline \ \text{Figure 15} & \text{see } \hline \text{Figure 15} & \text{see } \hline \text{Figure 15} & \text{see } \hline \ \text{Figure 15} & \text{see } \hline \ Figure$	Q _{GD}	gate-drain charge		-	7	-	nC
$ \begin{array}{c} E_{DS(AL)S} & \text{non-repetitive} \\ \text{drain-source} & I_{D} = 10 \; V; \; T_{j(\text{init})} = 25 \; ^{\circ}C; \\ I_{D} = 100 \; A; \; V_{sup} \leq 40 \; V; \end{array} $	Q _{G(tot)}	total gate charge		-	38	-	nC
drain-source $I_D = 100 \text{ A}; V_{sup} \le 40 \text{ V};$	Avalanch	e ruggedness					
	E _{DS(AL)S}	drain-source	$I_D = 100 \text{ A}; V_{sup} \le 40 \text{ V};$	-	-	77	mJ

2. Pinning information

Table 2.	Pinning	information		
Pin	Symbol	Description	Simplified outline	Graphic symbol
1	S	source		_
2	S	source	mb	
3	S	source		
4	G	gate	Q	
mb	D	drain	ប៉ូប៉ូប៉ូប៉	mbb076 S
			SOT669 (LFPAK)	

3. Ordering information


Table 3. Ordering	information		
Type number	Package		
	Name	Description	Version
PSMN4R0-40YS	LFPAK	plastic single-ended surface-mounted package (LFPAK); 4 leads	SOT669

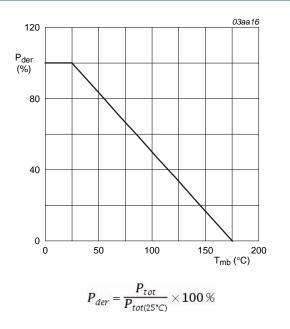
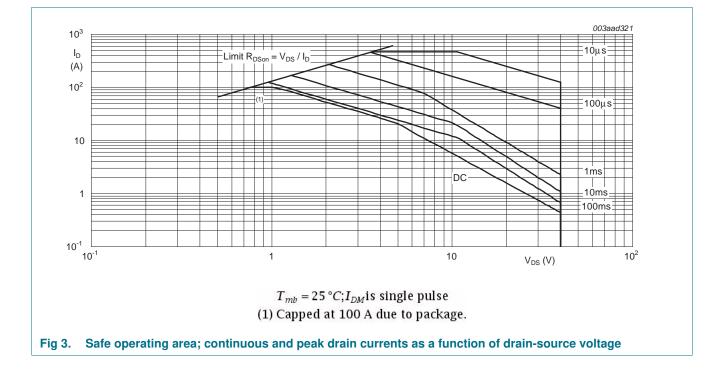
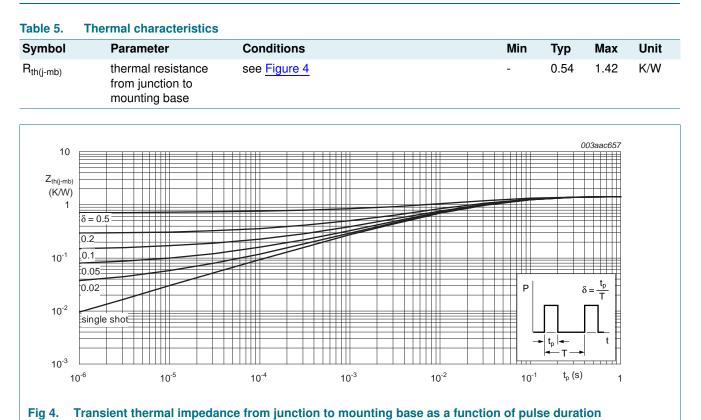

4. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).


$\begin{array}{c c c c c c c c c c c c c c c c c c c $			5, (
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Symbol	Parameter	Conditions	Min	Max	Unit
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	V _{DS}	drain-source voltage	T _j ≥ 25 °C; T _j ≤ 175 °C	-	40	V
$\begin{split} & \text{I}_{D} & \text{drain current} & \begin{array}{c} V_{\text{GS}} = 10 \text{ V}; \text{T}_{\text{mb}} = 100 \ ^{\circ}\text{C}; \text{ see Figure 1} & - & 83 & \text{A} \\ \hline V_{\text{GS}} = 10 \text{ V}; \text{T}_{\text{mb}} = 25 \ ^{\circ}\text{C}; \text{ see Figure 1} & - & 100 & \text{A} \\ \hline I_{\text{DM}} & \text{peak drain current} & \text{pulsed; } t_p \leq 10 \ \mu\text{s}; \text{T}_{\text{mb}} = 25 \ ^{\circ}\text{C}; \text{ see Figure 1} & - & 106 & \text{W} \\ \hline \text{see Figure 3} & & - & 106 & \text{W} \\ \hline \text{T}_{\text{stg}} & \text{storage temperature} & & -55 & 175 & ^{\circ}\text{C} \\ \hline \text{T}_{\text{stg}} & \text{storage temperature} & & -55 & 175 & ^{\circ}\text{C} \\ \hline \text{T}_{\text{sld}(\text{M})} & \text{peak soldering temperature} & & - & 260 & ^{\circ}\text{C} \\ \hline \text{Source-drain diode} & & & & \\ \hline \text{I}_{\text{S}} & \text{source current} & \text{T}_{\text{mb}} = 25 \ ^{\circ}\text{C} & & - & 100 & \text{A} \\ \hline \text{I}_{\text{SM}} & \text{peak source current} & \text{pulsed; } t_p \leq 10 \ \mu\text{s}; \ \ \text{T}_{\text{mb}} = 25 \ ^{\circ}\text{C} & & - & 472 & \text{A} \\ \hline \text{Avalanche ruggedness} & & & \\ \hline \text{E}_{\text{DS}(\text{AL})\text{S}} & \text{non-repetitive drain-source} & V_{\text{GS}} = 10 \ \text{V}; \ \text{T}_{\text{j(init)}} = 25 \ ^{\circ}\text{C}; \ \text{I}_{\text{D}} = 100 \ \text{A}; & - & 77 & \text{m}_{\text{A}} \\ \hline \text{C}_{\text{SM}} & \text{C}_{\text{SM}} & \text{C}_{\text{SM}} & & \\ \hline \text{C}_{\text{SM}} & \text{C}_{\text{SM}} & \text{C}_{\text{SM}} & & \\ \hline \text{C}_{\text{SM}} & \text{C}_{\text{SM}} & \text{C}_{\text{SM}} & & \\ \hline \text{C}_{\text{SM}} & & \\ \hline \text{C}_{\text{SM}} & \text{C}_{\text{SM}} & & \\ \hline \text{C}_{$	V _{DGR}	drain-gate voltage	$T_j \ge 25 \text{ °C}; T_j \le 175 \text{ °C}; R_{GS} = 20 \text{ k}\Omega$	-	40	V
$V_{GS} = 10 \text{ V}; T_{mb} = 25 \text{ °C}; \text{ see Figure 1}$ -100A I_{DM} peak drain currentpulsed; $t_p \le 10 \mu\text{s}; T_{mb} = 25 \text{ °C};$ -472A P_{tot} total power dissipation $T_{mb} = 25 \text{ °C};$ see Figure 2-106W T_{stg} storage temperature-55175°C T_j junction temperature-55175°C $T_{std}(M)$ peak soldering temperature-260°CSource-drain diodeIssource current $T_{mb} = 25 \text{ °C}$ -100AIssource current $T_{mb} = 25 \text{ °C}$ -100AIssource current $T_{mb} = 25 \text{ °C}$ -100AIssource current $V_{GS} = 10 \mu; T_{mb} = 25 \text{ °C}$ -472AEDS(AL)Snon-repetitive drain-source $V_{GS} = 10 V; T_j(init) = 25 \text{ °C}; I_D = 100 ;$ -77m	V _{GS}	gate-source voltage		-20	20	V
IDMpeak drain currentpulsed; $t_p \le 10 \ \mu s; T_{mb} = 25 \ ^{\circ}C;$ -472APtottotal power dissipation $T_{mb} = 25 \ ^{\circ}C;$ see Figure 2-106WTstgstorage temperature-55175^{\circ}CTjjunction temperature-55175^{\circ}CT_sld(M)peak soldering temperature-260^{\circ}CSource-drain diodeIssource current $T_{mb} = 25 \ ^{\circ}C$ -100AIsMpeak source currentpulsed; $t_p \le 10 \ \mu s; T_{mb} = 25 \ ^{\circ}C$ -472AAvalanche ruggednessE_DS(AL)Snon-repetitive drain-source $V_{GS} = 10 \ V; T_{j(init)} = 25 \ ^{\circ}C; \ I_D = 100 \ A;$ -77m.	I _D	drain current	V_{GS} = 10 V; T_{mb} = 100 °C; see <u>Figure 1</u>	-	83	А
see Figure 3 P_{tot} total power dissipation $T_{mb} = 25 ^{\circ}C$; see Figure 2-106W T_{stg} storage temperature-55175°C T_{j} junction temperature-55175°C $T_{sld(M)}$ peak soldering temperature-260°CSource-drain diodeIssource currentT_mb = 25 °C-100AIsMpeak source currentpulsed; $t_p \le 10 \ \mu$; $T_{mb} = 25 ^{\circ}$ C-472AAvalanche ruggednessVGS = 10 V; $T_{j(init)} = 25 ^{\circ}$ C; $I_D = 100 \ A$;-77m.			V_{GS} = 10 V; T_{mb} = 25 °C; see <u>Figure 1</u>	-	100	А
T_{stg} storage temperature-55175°C T_j junction temperature-55175°C $T_{sld(M)}$ peak soldering temperature-260°CSource-drain diodeIssource current $T_{mb} = 25 \text{ °C}$ -100AIsMpeak source currentpulsed; $t_p \le 10 \text{ µs}; T_{mb} = 25 \text{ °C}$ -472AAvalanche ruggedness $E_{DS(AL)S}$ non-repetitive drain-source $V_{GS} = 10 \text{ V}; T_{j(init)} = 25 \text{ °C}; I_D = 100 \text{ A};$ -77m.	I _{DM}	peak drain current	· • • • • • • • • • • • • • • • • • • •	-	472	A
$\begin{array}{c cccc} T_{j} & junction \ temperature & -55 & 175 & ^{\circ}C \\ \hline T_{sld(M)} & peak \ soldering \ temperature & - & 260 & ^{\circ}C \\ \hline \hline Source-drain \ diode & & & & \\ \hline I_{S} & source \ current & T_{mb} = 25 \ ^{\circ}C & - & 100 & A \\ \hline I_{SM} & peak \ source \ current & pulsed; \ t_{p} \leq 10 \ \mu s; \ T_{mb} = 25 \ ^{\circ}C & - & 472 & A \\ \hline \hline Avalanche \ ruggedness & & & \\ \hline E_{DS(AL)S} & non-repetitive \ drain-source & V_{GS} = 10 \ V; \ T_{j(init)} = 25 \ ^{\circ}C; \ I_{D} = 100 \ A; & - & 77 & m_{A} \\ \hline \end{array}$	P _{tot}	total power dissipation	T _{mb} = 25 °C; see <u>Figure 2</u>	-	106	W
$\begin{array}{c c} T_{sld(M)} & \text{peak soldering temperature} & - & 260 & ^{\circ}\text{C}\\ \hline \textbf{Source-drain diode} & & & & & \\ \hline I_{S} & \text{source current} & T_{mb} = 25 ^{\circ}\text{C} & - & 100 & \text{A}\\ \hline I_{SM} & \text{peak source current} & \text{pulsed; } t_{p} \leq 10 \mu\text{s; } T_{mb} = 25 ^{\circ}\text{C} & - & 472 & \text{A}\\ \hline \textbf{Avalanche ruggedness} & & & & \\ \hline E_{DS(AL)S} & \text{non-repetitive drain-source} & V_{GS} = 10 \text{V; } T_{j(init)} = 25 ^{\circ}\text{C; } I_{D} = 100 \text{A;} & - & 77 & \text{m}_{S} \end{array}$	T _{stg}	storage temperature		-55	175	°C
Source-drain diodeIssource current $T_{mb} = 25 \text{ °C}$ -100AIsMpeak source currentpulsed; $t_p \le 10 \mu\text{s}; T_{mb} = 25 \text{ °C}$ -472AAvalanche ruggednessEDS(AL)Snon-repetitive drain-sourceVGS = 10 V; Tj(init) = 25 °C; ID = 100 A;-77m.	Tj	junction temperature		-55	175	°C
Issource current $T_{mb} = 25 \text{ °C}$ -100AI_{SM}peak source currentpulsed; $t_p \le 10 \mu\text{s}$; $T_{mb} = 25 \text{ °C}$ -472AAvalanche ruggednessVGS = 10 V; $T_{j(init)} = 25 \text{ °C}$; $I_D = 100 \text{ A}$;-77m	T _{sld(M)}	peak soldering temperature		-	260	°C
$\label{eq:lsm} \begin{array}{c c} peak \mbox{ source current} & pulsed; t_p \leq 10 \ \mu s; T_{mb} = 25 \ ^{\circ} C & - & 472 \ \ A \\ \hline \mbox{ Avalanche ruggedness} & & & \\ \hline E_{DS(AL)S} & \mbox{ non-repetitive drain-source} & V_{GS} = 10 \ V; \ T_{j(init)} = 25 \ ^{\circ} C; \ I_D = 100 \ \ A; & - & 77 \ \ mbox{ model} \end{array}$	Source-drain	n diode				
Avalanche ruggedness $E_{DS(AL)S}$ non-repetitive drain-source $V_{GS} = 10 \text{ V}; T_{j(init)} = 25 \text{ °C}; I_D = 100 \text{ A};$ -77model	I _S	source current	T _{mb} = 25 °C	-	100	А
$E_{DS(AL)S}$ non-repetitive drain-source $V_{GS} = 10 \text{ V}; T_{j(init)} = 25 \text{ °C}; I_D = 100 \text{ A};$ - 77 m.	I _{SM}	peak source current	pulsed; $t_p \le 10 \ \mu s$; $T_{mb} = 25 \ ^{\circ}C$	-	472	А
	Avalanche ru	uggedness				
	$E_{DS(AL)S}$	•		-	77	mJ



PSMN4R0-40YS

5. Thermal characteristics

6. Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Static chara	cteristics					
V _{(BR)DSS}	drain-source	I _D = 250 μA; V _{GS} = 0 V; T _i = -55 °C	36	-	-	V
	breakdown voltage	I _D = 250 μA; V _{GS} = 0 V; T _j = 25 °C	40	-	-	V
V _{GS(th)}	gate-source threshold voltage	$I_D = 1 \text{ mA}; V_{DS} = V_{GS}; T_j = -55 \text{ °C};$ see <u>Figure 10</u> ; see <u>Figure 11</u>	-	-	4.6	V
		$I_D = 1 \text{ mA}; V_{DS} = V_{GS}; T_j = 175 \text{ °C};$ see Figure 10; see Figure 11	1	-	-	V
		$I_D = 1 \text{ mA}; V_{DS} = V_{GS}; T_j = 25 \text{ °C};$ see <u>Figure 10</u> ; see <u>Figure 11</u>	2	3	4	V
I _{DSS}	drain leakage current	$V_{DS} = 40 \text{ V}; V_{GS} = 0 \text{ V}; T_j = 25 \text{ °C}$	-	-	3	μA
		V_{DS} = 40 V; V_{GS} = 0 V; T_j = 125 °C	-	-	40	μA
I _{GSS}	gate leakage current	$V_{GS} = 20 \text{ V}; V_{DS} = 0 \text{ V}; T_j = 25 ^{\circ}\text{C}$	-	-	100	nA
		$V_{GS} = -20 \text{ V}; V_{DS} = 0 \text{ V}; T_j = 25 ^{\circ}\text{C}$	-	-	100	nA
R _{DSon}	drain-source on-state resistance	V _{GS} = 10 V; I _D = 15 A; T _j = 100 °C; see <u>Figure 12</u>	-	-	5.6	mΩ
		V_{GS} = 10 V; I_D = 15 A; T_j = 175 °C; see <u>Figure 12</u>	-	-	8	mΩ
		V_{GS} = 10 V; I_D = 15 A; T_j = 25 °C; see <u>Figure 12</u> ; see <u>Figure 13</u>	-	3.2	4.2	mΩ
R _G	internal gate resistance (AC)	f = 1 MHz	-	0.62	-	Ω
Dynamic ch	aracteristics					
Q _{G(tot)}	total gate charge	$I_D = 0 \text{ A}; V_{DS} = 0 \text{ V}; V_{GS} = 10 \text{ V}$	-	31	-	nC
		$I_D = 25 \text{ A}; V_{DS} = 20 \text{ V}; V_{GS} = 10 \text{ V};$	-	38	-	nC
Q _{GS}	gate-source charge	see Figure 14; see Figure 15	-	12	-	nC
Q _{GS(th)}	pre-threshold gate-source charge	$I_D = 25 \text{ A}; V_{DS} = 20 \text{ V}; V_{GS} = 10 \text{ V};$ see Figure 14	-	7	-	nC
Q _{GS(th-pl)}	post-threshold gate-source charge		-	5	-	nC
Q _{GD}	gate-drain charge	$I_D = 25 \text{ A}; V_{DS} = 20 \text{ V}; V_{GS} = 10 \text{ V};$ see <u>Figure 14</u> ; see <u>Figure 15</u>	-	7	-	nC
V _{GS(pl)}	gate-source plateau voltage	$I_D = 25 \text{ A}; V_{DS} = 20 \text{ V}; \text{ see } \frac{\text{Figure } 14}{100000000000000000000000000000000000$	-	4.8	-	V
C _{iss}	input capacitance	$V_{DS} = 20 V; V_{GS} = 0 V; f = 1 MHz;$	-	2410	-	pF
C _{oss}	output capacitance	T _j = 25 °C; see <u>Figure 16</u>	-	504	-	pF
	reverse transfer		-	266	-	pF
C _{rss}	capacitance					
	capacitance turn-on delay time	$V_{DS} = 20 \text{ V}; \text{ R}_{L} = 0.8 \Omega; \text{ V}_{GS} = 10 \text{ V};$	-	18	-	ns
C _{rss} t _{d(on)} t _r		$\label{eq:VDS} \begin{split} V_{DS} &= 20 \text{ V}; \text{R}_{\text{L}} = 0.8 \Omega; \text{V}_{\text{GS}} = 10 \text{V}; \\ \text{R}_{\text{G}(\text{ext})} &= 4.7 \Omega \end{split}$	-	18 19	-	ns ns

PSMN4R0-40YS Product data sheet Symbol

Source-drain diode

PSMN4R0-40YS

Тур

Unit

Мах

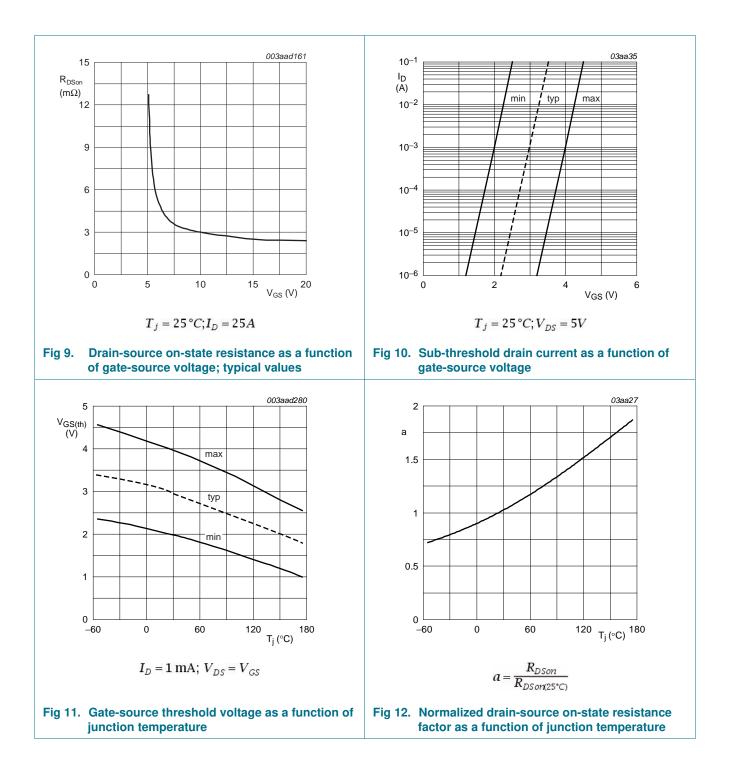
N-channel LFPAK 40 V 4.2 mΩ standard level MOSFET

Min

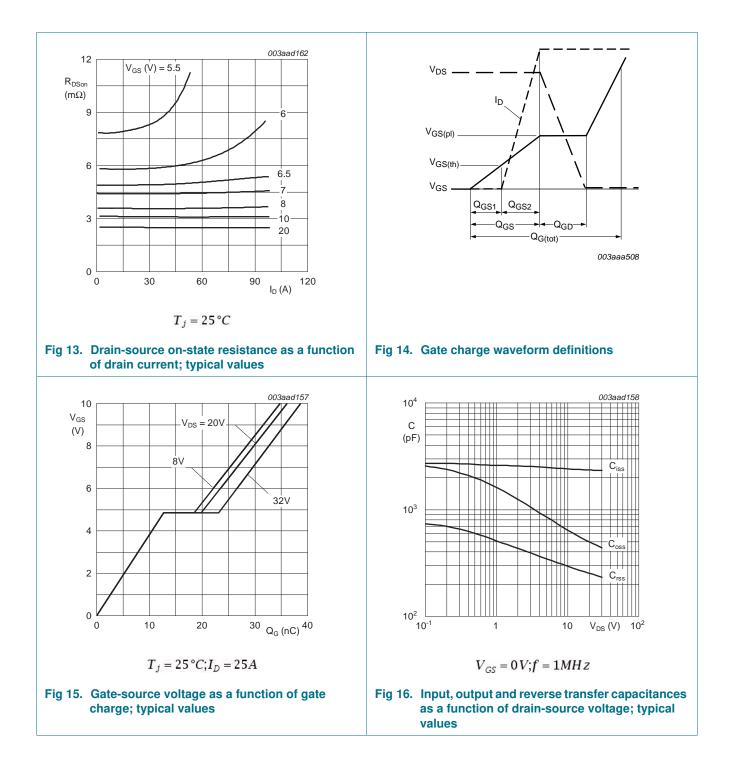
D	source-drain voltage	$I_S = 25 \text{ A}; V_{GS} = 0$ see <u>Figure 17</u>	$v_{j}, v_{j} = 25 0,$	-	0.83	1.2	V
	reverse recovery time		100 A/µs; V _{GS} = 0 V;	-	42	-	ns
	recovered charge	V _{DS} = 20 V		-	45	-	nC
100 80 60 40 20		003aad154	0	T _j = 150 °C	T _j = 25 °C		
0	1 2	3 _{V_{DS} (V)} 4	0	2 4	6	8 V _{GS} (V)	
0		V _{DS} (V)				•65(•)	
Ū	$T_j = 25 ^{\circ}C$	V _{DS} (V)		$V_{DS} = 25$		•63 (•7	
g 5. Out		n current as a		$V_{DS} = 25$ characteristic of gate-source	5 <i>V</i> s: drain d	current a	
g 5. Out	$T_j = 25 ^{\circ}C$ tput characteristics: drain	n current as a		characteristic	5 <i>V</i> es: drain d e voltage	current a	
1g 5. Out fun 4000 C (pF)	$T_j = 25 ^{\circ}C$ tput characteristics: drain	n current as a tage; typical values	80 g _{rs} (S)	characteristic	5 <i>V</i> es: drain d e voltage	current a ; typical	
g 5. Out fun 4000 C (pF) 3000	$T_j = 25 ^{\circ}C$ tput characteristics: drain	n current as a tage; typical values	80 9 grs 60	characteristic	5 <i>V</i> es: drain d e voltage	current a ; typical	
g 5. Out fun 4000 C (pF) 3000 2000	$T_j = 25 ^{\circ}C$ tput characteristics: drain	n current as a tage; typical values	Solution Solution 91s 0	characteristic	5 <i>V</i> es: drain d e voltage	current a ; typical	valu
g 5. Our fun 4000 C (pF) 3000 2000 1000	$T_j = 25 ^{\circ}C$	003aad159 003aad159 Ciss Ciss Crss Crss VGS (V) 12	function o 80 9/s (S) 60 40 20 0 0 0 2 2 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2	characteristic	5V es: drain o e voltage	current a ; typical	valu

Characteristics ... continued Table 6.

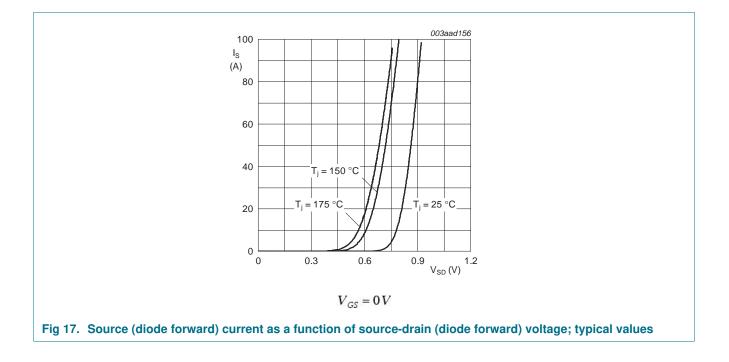
Parameter


Tested to JEDEC standards where applicable.

Conditions


All information provided in this document is subject to legal disclaimers.

PSMN4R0-40YS


PSMN4R0-40YS

PSMN4R0-40YS

PSMN4R0-40YS

N-channel LFPAK 40 V 4.2 mΩ standard level MOSFET

7. Package outline

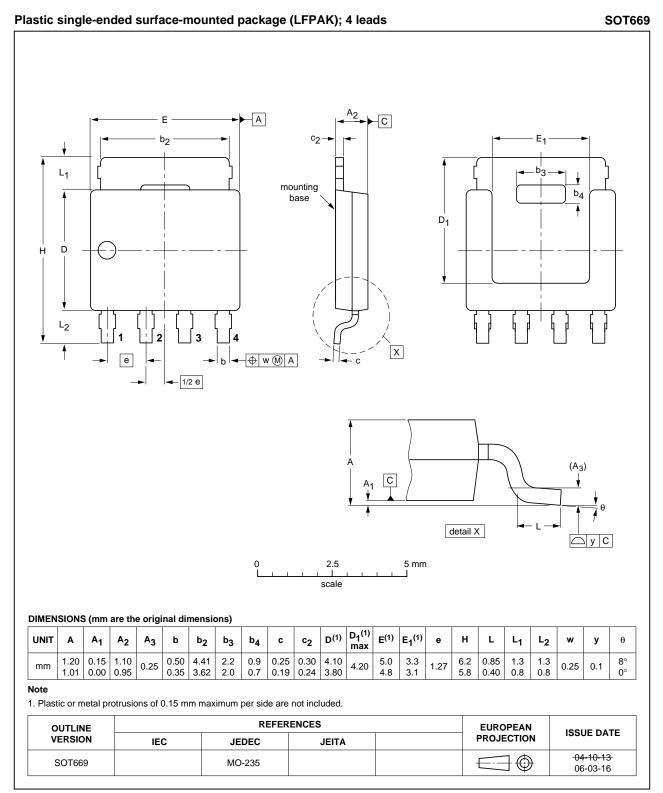


Fig 18. Package outline SOT669 (LFPAK)

information	provided in	n this	document	is	subject	to	legal	disclaim	ers.

PSMN4R0-40YS

All

8. Revision history

Table 7.Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
PSMN4R0-40YS v.2	20100712	Product data sheet	-	PSMN4R0-40YS v.1
Modifications:	 Various changes 	to content.		
PSMN4R0-40YS v.1	20090625	Product data sheet	-	-

9. Legal information

9.1 Data sheet status

Document status[1][2]	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL <u>http://www.nexperia</u>.com.

9.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and

customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

9.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of Nexperia.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof. Suitability for use — Nexperia products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of a Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia accepts no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Nexperia does not accept any liability related to any default, damage, costs or problem which is based on a weakness or default in the customer application/use or the application/use of customer's third party customer(s) (hereinafter both referred to as "Application"). It is customer's sole responsibility to check whether the Nexperia product is suitable and fit for the Application planned. Customer has to do all necessary testing for the Application in order to avoid a default of the Application and the product. Nexperia does not accept any liability in this respect.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding. Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale - Nexperia

products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

Product data sheet

N-channel LFPAK 40 V 4.2 mΩ standard level MOSFET

Notice: All referenced brands, product names, service names and trademarks

Trademarks

are the property of their respective owners.

9.4

Non-automotive qualified products — Unless this data sheet expressly states that this specific Nexperia product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. Nexperia accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without Nexperia's warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond Nexperia's specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies Nexperia for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond Nexperia's standard warranty and Nexperia's product specifications.

10. Contact information

For more information, please visit: http://www.nexperia.com

For sales office addresses, please send an email to: <u>salesaddresses@nexperia</u>.com

PSMN4R0-40YS Product data sheet

N-channel LFPAK 40 V 4.2 mΩ standard level MOSFET

11. Contents

1	Product profile1
1.1	General description1
1.2	Features and benefits1
1.3	Applications1
1.4	Quick reference data1
2	Pinning information2
3	Ordering information2
4	Limiting values
5	Thermal characteristics5
6	Characteristics6
7	Package outline11
8	Revision history12
9	Legal information13
9.1	Data sheet status
9.2	Definitions
9.3	Disclaimers
9.4	Trademarks14
10	Contact information14