

# Engineering/Process Change Notice

#### ECN/PCN No.: 4112

|                                                                                      | For Man                                             | ufacturer                               |                                                                        |                                                  |  |
|--------------------------------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------|------------------------------------------------------------------------|--------------------------------------------------|--|
| Product Description:<br>PLASTIC SMD MEMS OSCILLATOR                                  | Abracon Part Numbe                                  | -                                       | <ul> <li>□ Documentation only</li> <li>□ ECN</li> <li>□ EOL</li> </ul> | <ul><li>☑ Series</li><li>□ Part Number</li></ul> |  |
| Affected Revision:                                                                   | New Revision:<br>EC                                 | )L                                      | Application:                                                           | □ Safety<br>⊠ Non-Safety                         |  |
| Prior to Change:<br>Active<br>https://abracon.com/Oscillators/ASTMKH.                | pdf                                                 |                                         |                                                                        |                                                  |  |
| After Change:<br>EOL                                                                 |                                                     |                                         |                                                                        |                                                  |  |
| Cause/Reason for Change:<br>Discontinuation of manufacturing capabilit               | Ξ <b>γ</b> .                                        |                                         |                                                                        |                                                  |  |
|                                                                                      | Chang                                               | ge Plan                                 |                                                                        |                                                  |  |
| Effective Date:<br>2/7/2022                                                          | Additional Remarks:<br>N/A                          |                                         |                                                                        |                                                  |  |
| Change Declaration:<br>N/A                                                           |                                                     |                                         |                                                                        |                                                  |  |
| Issued Date:<br>2/7/2022                                                             | Issued By:<br>Brooke Cushman<br>Product Engineer    |                                         | Issued Department:<br>Engineering                                      |                                                  |  |
| Approval:<br>Thomas Culhane<br>Engineering Director                                  | Approval:<br>Reuben Quintanilla<br>Quality Director |                                         | Approval:<br>Ying Huang<br>Purchasing Director                         |                                                  |  |
|                                                                                      | For Abraco                                          | on EOL only                             |                                                                        |                                                  |  |
| Last Time Buy (if applicable):<br>5/7/2022                                           | Alternate Part Number / Part Series:<br>none        |                                         |                                                                        |                                                  |  |
| Additional Approval:                                                                 | Additional Approval:                                |                                         | Additional Approval:                                                   |                                                  |  |
|                                                                                      | Customer Appro                                      | val (If Applicable)                     |                                                                        |                                                  |  |
| <b>Qualification Status:</b><br><i>Note: It is considered approved if there is n</i> |                                                     | □ Not accepted<br>Istomer 1 month after | r ECN/PCN is released.                                                 |                                                  |  |
| Customer Part Number:                                                                |                                                     | Customer Project:                       |                                                                        |                                                  |  |
| Company Name:                                                                        | Company Representa                                  | ative:                                  | Representative Signature                                               | :                                                |  |
| Customer Remarks:                                                                    |                                                     |                                         |                                                                        |                                                  |  |

Form #7020 | Rev. G | Effective: 02/22/2021 |

Page **1** of **1** 













Min

🚵 ESD Sensitive

#### ASTMKH

#### Moisture Sensitivity Level (MSL) – 1

#### FEATURES:

- Ultra-miniature size: 2.0 x 1.2 x 0.6mm
- Supply Voltage: 1.2V to 3.63V (-10  $\sim$  +70°C); 1.5V to 3.63V (-40  $\sim$  +85°C)
- $\bullet$  Ultra-Low Current Consumption:  $1.4\mu A$  max. (core current, no load)
- Frequency Stabilities include:

**STANDARD SPECIFICATIONS:** 

**Parameters** 

- $\pm$ 75ppm over -10 to +70°C
- $\pm 100$  ppm over -40 to +85°C
- Internal power supply filtering eliminates external bypass capacitor for Vdd port.
- Proprietary NanoDrive<sup>™</sup> Technology enables programmable output swing for lower power

#### Pb RoHS/RoHS II compliant

2.0 x 1.2 x 0.6mm

#### APPLICATIONS:

- Timekeeping
- Battery Management
- Mobile devices
- RTC reference clock
- Wireless accessories
- Fitness/Medical monitoring sensors

Notes

Sport video cams

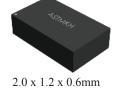
Ùni

Max

| Output Frequency (Fout)                                        |                     | 32.768          |                         | kHz               |                                                                                                                                                                                                                                           |
|----------------------------------------------------------------|---------------------|-----------------|-------------------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Initial Frequency Tolerance $(F_{tol})^{(1)}$                  | -20                 |                 | +20                     | ppm               | $T_A = +25^{\circ}C$ , post reflow,<br>$V_{dd}: 1.5 - 3.63V$                                                                                                                                                                              |
|                                                                | -75                 |                 | +75                     |                   | $T_A = -10^{\circ}C$ to $+70^{\circ}C$ , $V_{dd}$ : 1.5-3.63V                                                                                                                                                                             |
| Frequency Stability over Temperature $(F_{stab})^{(2)}$        | -100                |                 | +100                    | ppm               | $T_A = -40^{\circ}C$ to $+85^{\circ}C$ , $V_{dd}$ : 1.5-3.63V                                                                                                                                                                             |
| (r <sub>stab</sub> )                                           | -250                |                 | +250                    |                   | $T_{A}$ = -10°C to +70°C, $V_{dd}$ .1.2-1.5V                                                                                                                                                                                              |
| Aging (@+25°C)                                                 | -1                  |                 | +1                      | ppm               | First year                                                                                                                                                                                                                                |
| Supply Voltage (V <sub>dd</sub> )                              | 1,2                 |                 | 3.63                    | v                 | $T_A = -10^{\circ}C$ to $+70^{\circ}C$                                                                                                                                                                                                    |
| Suppry Voltage (V <sub>dd</sub> )                              | 1.5                 |                 | 3.63                    | v                 | $T_A = -40^{\circ}C$ to +85°C                                                                                                                                                                                                             |
|                                                                |                     | 0.90            |                         |                   | $T_A = +25^{\circ}C$ , Vdd: 1.8V. No load.                                                                                                                                                                                                |
| Core Operating Current ( $I_{dd}$ ) <sup>(3)</sup>             |                     |                 | 1.3                     | μA                | $T_A = -10^{\circ}C$ to +70°C,<br>$V_{dd}$ max: 3.63V. No load                                                                                                                                                                            |
|                                                                |                     |                 | 1.4                     |                   | $T_A = -40^{\circ}C$ to +85°C,<br>V <sub>dd</sub> max; 3.63V. No load.                                                                                                                                                                    |
| Output Stage Operating Current $(I_{dd out})^{(3)}$            |                     | 0.065           | 0.125                   | $\mu A/V_{pp}$    | $T_{A}$ = -40°C to +85°C,<br>V <sub>dd</sub> max: 1.5-3.63V. No load.                                                                                                                                                                     |
| Power Supply Ramp (t <sub>Vdd Ramp</sub> )                     |                     |                 | 100                     | ms                | $T_{A} = -40^{\circ}$ C to +85°C, 0 to 90%*V <sub>dd</sub>                                                                                                                                                                                |
| Start-up Time at Power-up (T <sub>start</sub> ) <sup>(4)</sup> |                     | 180             | 300                     |                   | $T_A = -40^{\circ}C \le T_A \le +50^{\circ}C$ , valid output                                                                                                                                                                              |
| Start-up Time at Power-up (T <sub>start</sub> )                |                     |                 | 450                     | ms                | $T_A = +50^{\circ}C \le T_A \le +85^{\circ}C$ , valid output                                                                                                                                                                              |
| Operating Temperature Range (T <sub>use</sub> )                | -10                 |                 | +70                     | °C                | Option "M"                                                                                                                                                                                                                                |
| operating remperature Range (T <sub>use</sub> )                | -40                 |                 | +85                     | C                 | Option "L"                                                                                                                                                                                                                                |
| Period Jitter                                                  |                     | 35              |                         | ns <sub>RMS</sub> | Cycles=10000, T <sub>A</sub> = +25°C,<br>V <sub>dd</sub> :1.5-3.63V                                                                                                                                                                       |
| <b>LVCMOS Output Option</b> (T <sub>A</sub> = -40°C            | to +85°C. Typ       | ical values are | at $T_A = +25^{\circ}C$ | C)                |                                                                                                                                                                                                                                           |
| Output Rise/Fall Time (t <sub>r</sub> /t <sub>f</sub> )        |                     | 100             | 200                     | ns                | 10-90%(V <sub>dd</sub> ), 15pF load, Vdd:1.5-<br>3.63V                                                                                                                                                                                    |
| -                                                              |                     |                 | 50                      |                   | 10-90%(V <sub>dd</sub> ), 5pF load, Vdd≥1.62V                                                                                                                                                                                             |
| Output Clock Duty Cycle                                        | 48                  |                 | 52                      | %                 |                                                                                                                                                                                                                                           |
| Output Voltage                                                 | 90%*V <sub>dd</sub> |                 |                         | V                 | $V_{dd}$ :1.5-3.63V. $I_{OH}$ = -10 $\mu$ A, 15pF                                                                                                                                                                                         |
| V <sub>OL</sub>                                                |                     |                 | $10\%*V_{dd}$           | v                 | $V_{dd}$ :1.5-3.63V. $I_{OL}$ = 10 $\mu$ A, 15pF                                                                                                                                                                                          |
| NanoDrive <sup>TM(5)</sup> Programmable, Reduce                | ced Swing O         | utput Optio     | n                       |                   |                                                                                                                                                                                                                                           |
| Output Rise/Fall Time (t <sub>r</sub> /t <sub>f</sub> )        |                     |                 | 200                     | ns                | 30-70%<br>(V $_{OL}$ / V $_{OH}$ ), 10pF load                                                                                                                                                                                             |
| Output Clock Duty Cycle                                        | 48                  |                 | 52                      | %                 |                                                                                                                                                                                                                                           |
| AC-coupled Programmable Output Swing $(V_{SW})$                |                     | 0.20 to<br>0.80 |                         | V                 | ASTMKH does not internally AC-<br>couple. This output description is<br>intended for a receiver that is AC-<br>coupled. See Part Identification<br>section for available AC-coupled<br>signal swing options.<br>Vdd:1.5-3.63V. 10pF load, |

Тур




5101 Hidden Creek Ln Spicewood TX 78669 Phone: 512-371-6159 | Fax: 512-351-8858 For terms and conditions of sales, please visit: www.abracon.com

REVISED: 05.27.2021

 $I_{OH}/I_{OL} = \pm 0.2 \mu A$ 

### ASTMKH

**RoHS/RoHS II compliant** 



#### (Continued)

| Parameters                                                    | Min    | Тур              | Max    | Unit | Notes                                                                                                                             |
|---------------------------------------------------------------|--------|------------------|--------|------|-----------------------------------------------------------------------------------------------------------------------------------|
| DC-biased Programmable Output Voltage High Range ( $V_{OH}$ ) |        | 0.60 to<br>1.225 |        | V    | $V_{dd}$ :1.5-3.63V. $I_{OH}$ =-0.2µA.10pF<br>load. See Part Identification section<br>for available $V_{OH}/V_{OL}$ levels.      |
| DC-biased Programmable Output Voltage Low Range $(V_{OL})$    |        | 0.35 to<br>0.80  |        | V    | $V_{dd}$ :1.5-3.63V. $I_{OL}$ =0.2 $\mu$ A.10pF<br>load. See Part Identification section<br>for available $V_{OH}/V_{OL}$ levels. |
| Programmable Output Voltage Swing<br>Tolerance                | -0.055 |                  | +0.055 | V    | $T_A = -40^{\circ}C$ to +85°C, $V_{dd}$ :1.5-3.63V                                                                                |

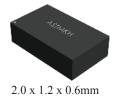
Note:

- Measured peak-to-peak. Tested with Agilent 53132A frequency counter. Due to the low operating frequency, the gate time 1. must be  $\geq 100$ ms to ensure an accurate frequency measurement.
- Stability is specified for two operating voltage ranges. Stability progressively degrades with supply voltage below 1.5V. 2. Measured peak-to-peak. Inclusive of initial tolerance at +25°C, and variations over operating temperature, rated power supply voltage and load.
- 3. Core operating current does not include output driver operating current or load current. To derive total operating current (no load), add core operating current + output driver operating current, where output driver operating current =  $C_{driver} * V_{out} * F_{out}$ .
- Measured from the time V<sub>dd</sub> reaches 1.5V.
   NanoDrive<sup>TM</sup> is a SiTime trademark.

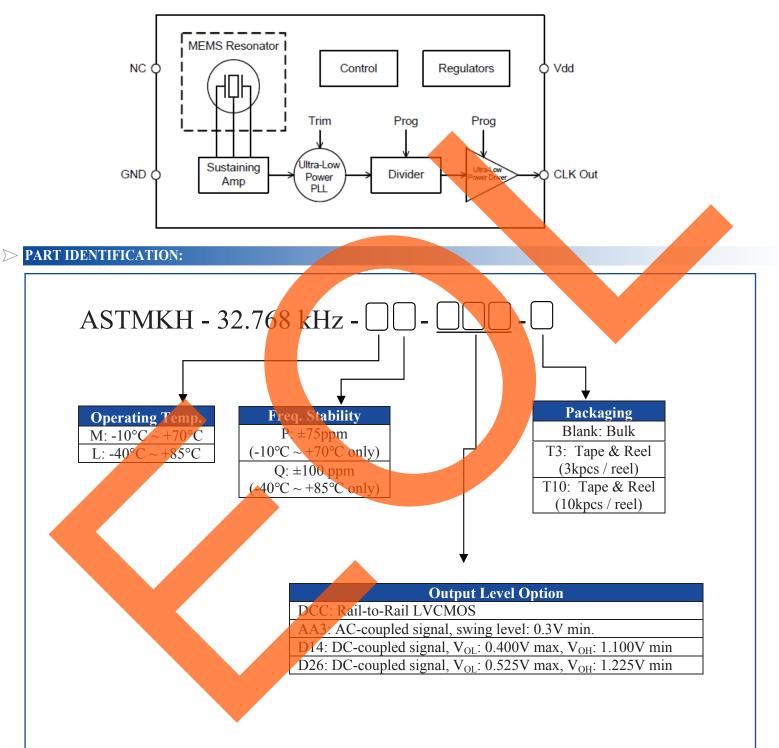
#### **Absolute Maximum Ratings**

Attempted operation outside the absolute maximum ratings may cause permanent damage to the part. Actual performance of the IC is only guaranteed within the operational specifications, not at absolute maximum ratings.

| Parameters                                                  | Test Condition             | Value        | Unit |  |  |
|-------------------------------------------------------------|----------------------------|--------------|------|--|--|
| Continuous Power Supply Voltage Range (V <sub>dd</sub> )    |                            | -0.5 to 3.63 | V    |  |  |
| Short Duration Max. Power Supply Voltage (V <sub>dd</sub> ) | ≤30 minutes                | 4.0          | V    |  |  |
| Continuous Maximum Operating Temperature Range              | Vdd:1.5-3.63V              | 105          | °C   |  |  |
| Short Duration Max. Operating Temperature Range             | Vdd:1.5-3.63V, ≤30 minutes | 125          | °C   |  |  |
| Human Body Model (HBM) ESD Protection                       | JESD22-A114                | 3000         | V    |  |  |
| Charge-Device Model (CDM) ESD Protection                    | JESD22-C101                | 750          | V    |  |  |
| Machine Model (MM) ESD Protection                           | JESD22-A115                | 300          | V    |  |  |
| Latch-up Tolerance                                          | JESD78 Compliant           |              |      |  |  |
| Mechanical Shock Resistance                                 | Mil 883, Method 2002       | 10000        | g    |  |  |
| Mechanical Vibration Resistance                             | Mil 883, Method 2007       | 70           | g    |  |  |
| 2012 SMD Junction Temperature                               |                            | 150          | °C   |  |  |
| Storage Temperature                                         |                            | -65 to +150  | °C   |  |  |
|                                                             |                            |              |      |  |  |




5101 Hidden Creek Ln Spicewood TX 78669 Phone: 512-371-6159 | Fax: 512-351-8858 For terms and conditions of sales, please visit: www.abracon.com


REVISED: 05.27.2021

#### ASTMKH

(Pb) RoHS/RoHS II compliant

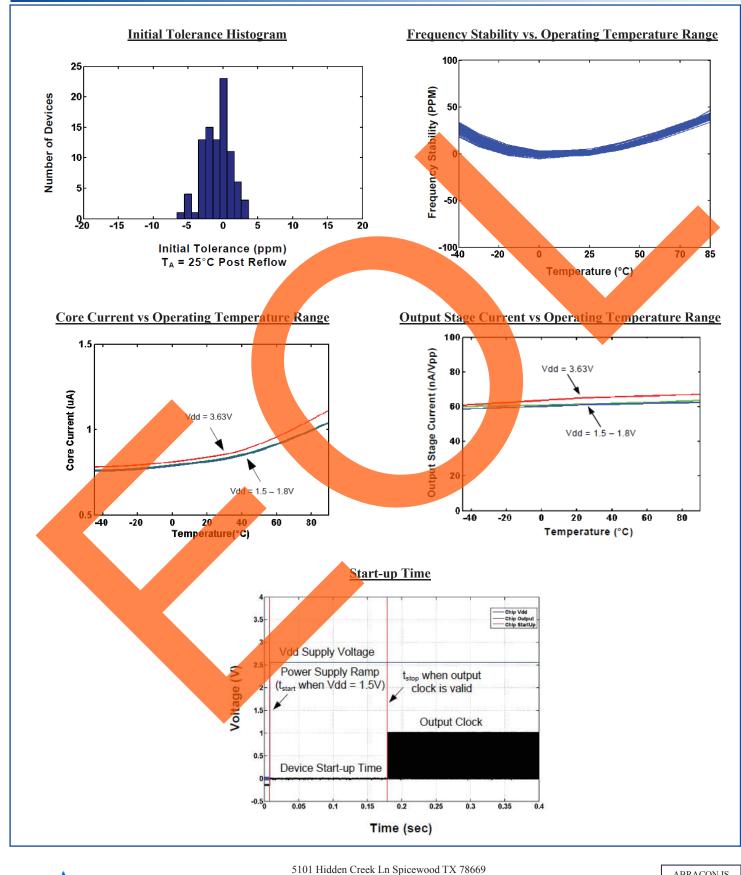


#### **Block Diagram**





5101 Hidden Creek Ln Spicewood TX 78669 Phone: 512-371-6159 | Fax: 512-351-8858 For terms and conditions of sales, please visit: www.abracon.com


**REVISED**: 05.27.2021

# 2.0 x 1.2 x 0.6mm

#### ASTMKH

(Pb) RoHS/RoHS II compliant

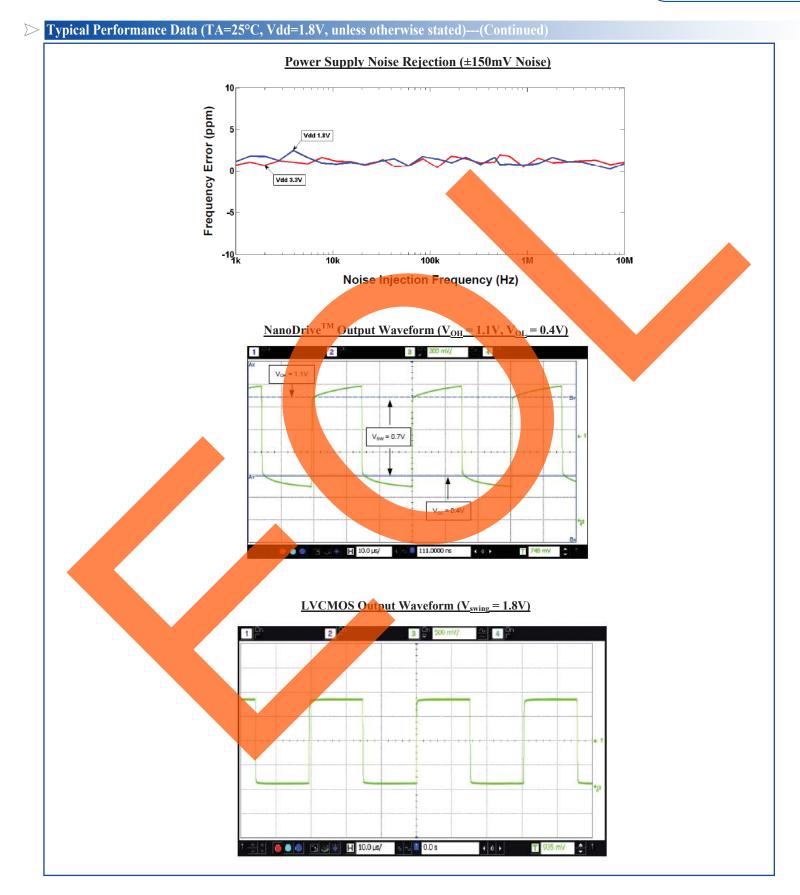




Phone: 512-371-6159 | Fax: 512-351-8858

www.abracon.com

For terms and conditions of sales, please visit:


ABRACON

REVISED: 05.27.2021 ABRACON IS ISO9001-2015 CERTIFIED

#### ASTMKH

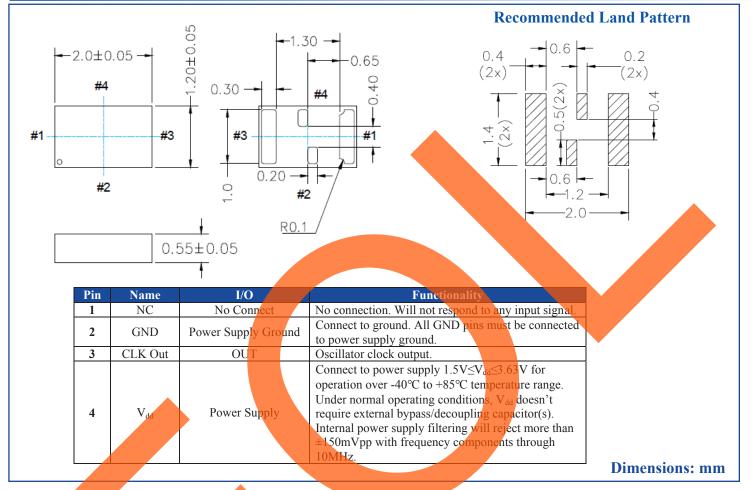
(Pb) RoHS/RoHS II compliant







5101 Hidden Creek Ln Spicewood TX 78669 Phone: 512-371-6159 | Fax: 512-351-8858 For terms and conditions of sales, please visit: www.abracon.com


**REVISED**: 05.27.2021

#### ASTMKH

#### **OUTLINE DIMENSION:**

RoHS/RoHS II compliant

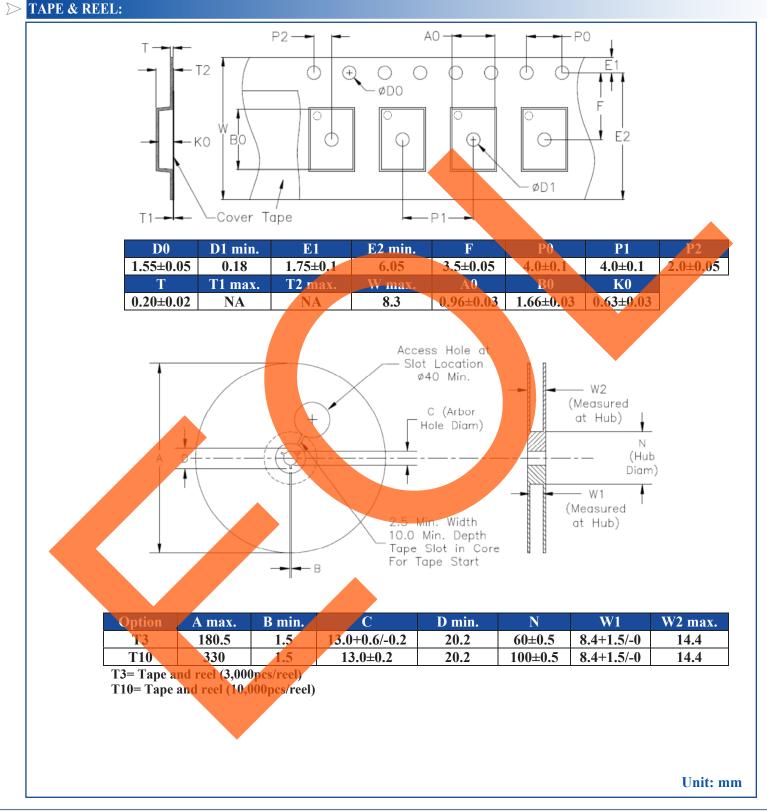




# REFLOW PROPILE:

| Item                                            | Conditions       |  |
|-------------------------------------------------|------------------|--|
| $T_{S}$ MAX to $T_{L}$ (Ramp-up Rate)           | 3°C/second max   |  |
| Preheat                                         |                  |  |
| Temperature Minimum (T <sub>S</sub> MIN)        | 150°C            |  |
| Temperature Typical (T <sub>S</sub> TYP)        | 175℃             |  |
| Temperature Maximum (T <sub>S</sub> MAX)        | 200°C            |  |
| Time (t <sub>s</sub> )                          | 60 - 180 seconds |  |
| Ramp-up Rate $(T_L \text{ to } T_P)$            | 3°C/second max   |  |
| Time Maintained Above                           |                  |  |
| Temperature (T <sub>L</sub> )                   | 217°C            |  |
| Time (t <sub>L</sub> )                          | 60 - 150 seconds |  |
| Peak Temperature (T <sub>P</sub> )              | 260°C max        |  |
| Target Peak Temperature (T <sub>P</sub> Target) | 255°C            |  |
| Time within 5°C of actual peak $(t_P)$          | 20-40 seconds    |  |
| Max. Number of Reflow Cycles                    | 3                |  |
| Ramp-down Rate                                  | 6°C/second max   |  |
| Time 25°C to Peak Temperature (t)               | 8 minutes max    |  |




5101 Hidden Creek Ln Spicewood TX 78669 Phone: 512-371-6159 | Fax: 512-351-8858 For terms and conditions of sales, please visit: www.abracon.com

**REVISED**: 05.27.2021

# 2.0 x 1.2 x 0.6mm



(Pb) RoHS/RoHS II compliant



ATTENTION: Abracon LLC's products are COTS – Commercial-Off-The-Shelf products; suitable for Commercial, Industrial and, where designated, Automotive Applications. Abracon's products are not specifically designed for Military, Aviation, Aerospace, Life-dependent Medical applications or any application requiring high reliability where component failure could result in loss of life and/or property. For applications requiring high reliability and/or presenting an extreme operating environment, written consent and authorization from Abracon LLC is required. Please contact Abracon LLC for more information.



5101 Hidden Creek Ln Spicewood TX 78669 Phone: 512-371-6159 | Fax: 512-351-8858 For terms and conditions of sales, please visit: www.abracon.com

**REVISED**: 05.27.2021

ABRACON IS

ISO9001-2015

CERTIFIED