

Monolithic Amplifier

PSA-39+

Mini-Circuits

50Ω DC to 6 GHz

THE BIG DEAL

- Wideband, DC-6 GHz
- High Gain, 23 dB typ. at 0.1GHz
- Low NF 2.2 dB typ. at 0.1GHz
- Low Current, 32mA typ.
- Protected by US Patent 6,943,629

Generic photo used for illustration purposes only

CASE STYLE: CA1389

+RoHS Compliant The +Suffix identifies RoHS Compliance. See our web site for RoHS Compliance methodologies and qualifications

APPLICATIONS

- Cellular
- PCS
- Communication receivers & Transmitters
- Satellite communication
- Military

PRODUCT OVERVIEW

The PSA-39+ is a HBT based wideband low noise MMIC Amplifier with high gain and low current. This design operates on a single 5V supply, is well matched for 50 Ohms and comes in a SOT-363 package, accommodating dense circuit board layouts.

KEY FEATURES

Feature	Feature Advantages	
High Gain, 23 dB typ. at 0.1GHz	Enables signal amplification without the need for multiple gain stages.	
Low Noise, 2.2 dB typ. at 0.1GHz	Enables lower system noise figure performance. Low NF and High Gain results in lower NF systems	
SOT-363 Package	Tiny footprint saves space in dense layouts while providing low inductance, repeatable transitions, and excellent ther- mal contact to the PCB.	

REV. A ECO-011279 PSA-39+ MCL-NY 220103

Monolithic Amplifier

Mini-Circuits

ELECTRICAL SPECIFICATIONS¹ AT 25°C, ZO=50Ω

Parameter	Condition (GHz)	Min.	Тур.	Max.	Units
Frequency Range ⁴		DC		6.0	GHz
	0.1	19.7	23.0	26.7	
	1.0	18.3	21.3	24.7	
Gain	3.0	13.5	15.7	18.2	dB
	5.0	10.4	11.4	14.1	
	6.0		10.2		
	0.1		38		
	1.0		18		
Input Return Loss	3.0		13		dB
	5.0		11		
	6.0		15		
	0.1		21		
	1.0		30		
Output Return Loss	3.0		10		dB
	5.0		7		
	6.0		10		
	0.1		10.7		
	1.0		10		
P1dB	3.0		10		dBm
	5.0		9		
	6.0		7		
	0.1		23.3		
	1.0		22.5		
OIP3 (Pout = -5dBm/Tone)	3.0		22.7		dBm
(Pout – -Sabin/Tone)	5.0		20.1		
	6.0		17.6		
	0.1		2.2		
	1.0		2.2		
Noise Figure	3.0		2.5		dB
	5.0		3.0		
	6.0		3.3		
Supply Voltage (Vs)	DC	4.75	5	5.25	V
Device Operating Current (Is)	DC		32	38	mA
Device Current Variation vs. Voltage ²			0.022		mA/mV
Device Current Variation vs. Temperature ³			42		µA/°C
Thermal Resistance, Junction to ground lead			127		°C/W

1. Measured on Mini-Circuits Characterization Test Board TB-PSA-39+. See Characterization Test Circuit (Fig. 1)

Device Current Variation vs. Voltage = (Current at 5.25V - Current at 4.75V)/(5.25V-4.75V)*1000)
Device Current Variation vs. Temperature = (Current at 85°C - Current at -45°C)/130
Guaranteed specifications DC-6 GHz. Low frequency cut-off determined by external coupling capacitor.

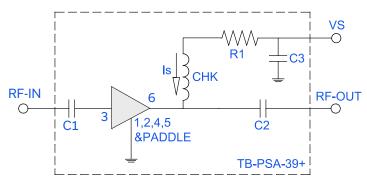
Monolithic Amplifier

MAXIMUM RATINGS⁵

Parameter	Ratings	
Operating Temperature	-40°C to 85°C	
Storage Temperature	-65°C to 150°C	
Input Power (CW)	13 dBm	
Operating Current on Pin 6	55mA	

5. Permanent damage may occur if any of these limits are exceeded. Electrical Maximum rating are not intended for continuous normal operation.

SIMPLIFIED SCHEMATIC AND PAD DESCRIPTION

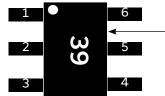

Function	Pin Number	Description (See Application Circuit, Fig. 1)	
RF-IN	3	RF input pin (connect to RF-IN via C1)	
RF-OUT & DC-IN	6	RF output pin (connected to RF-OUT via blocking cap C2 and supply voltage VDD via RF Choke L1 & Resistor R1)	
GND	1,2,4,5	Connections to ground	

Monolithic Amplifier

PSA-39+

CHARACTERIZATION TEST / APPLICATION CIRCUIT

Component	Size	Value	Part Number	Manufacturer
DUT	SOT-363		PSA-39+	MCL
C1,C2	0402	2400pF	GRM155R71H- 242JA01D	Murata
C3	0603	0.1uF	GCJ188R71H- 104KA12D	Murata
R1	0805	43.20hms	ERJ-6ENF43R2V	Panasonic
СНК	0.15x0.15		TCCH-80+	MCL


Fig 1. Block Diagram of Test Circuit used for characterization. (DUT soldered on Mini-Circuits Characterization Test Board TB-PSA-39+) Gain, Return loss, Output power at 1dB compression (P1 dB), Output IP3 (OIP3) and Noise Figure measured using Agilent's N5242A PNA-X microwave network analyzer.

Conditions:

1. Gain: Pin= -25dBm

2. Output IP3 (OIP3): Two tones, spaced 1 MHz apart, -5 dBm/tone at output.

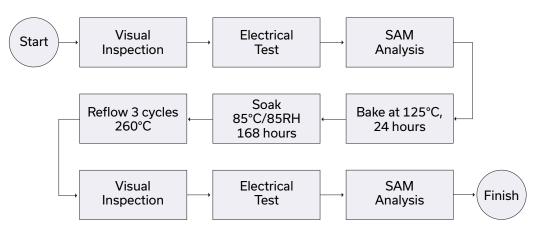
PRODUCT MARKING

black body - laser or white ink marking

Marking may contain other features or characters for internal lot control

Monolithic Amplifier

Mini-Circuits


ADDITIONAL DETAILED TECHNICAL INFORMATION IS AVAILABLE ON OUR DASH BOARD. TO ACCESS CLICK HERE

Performance Data	Data Table Swept Graphs S-Parameter (S2P Files) Data Set (.zip file)
Case Style	CA1389 Plastic molded SOT-363 package, lead finishi: Matte-Tin
Tape & Reel Standard quantities available on reel	F101 7″ reels with 20, 50, 100, 200, 500, 1K, or 2K devices
Suggested Layout for PCB Design	PL-645
Evaluation Board	TB-PSA-39+
Environmental Ratings	ENV08T2

ESD RATING

Human Body Model (HBM): Class 1A (250 to <500V) in accordance with ANSI/ESD STM 5.1 - 2001

MSL TEST FLOW CHART

NOTES

- A. Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document.
- B. Electrical specifications and performance data contained in this specification document are based on Mini-Circuit's applicable established test performance criteria and measurement instructions.
- C. The parts covered by this specification document are subject to Mini-Circuits standard limited warranty and terms and conditions (collectively, "Standard Terms"); Purchasers of this part are entitled to the rights and benefits contained therein. For a full statement of the standard. Terms and the exclusive rights and remedies thereunder, please visit Mini-Circuits' website at www.minicircuits.com/MCLStore/terms.jsp

Mini-Circuits