International Rectifier # IRF2807PbF HEXFET® Power MOSFET - Advanced Process Technology - Ultra Low On-Resistance - Dynamic dv/dt Rating - 175°C Operating Temperature - Fast Switching - Fully Avalanche Rated - Lead-Free $$V_{DSS} = 75V$$ $R_{DS(on)} = 13m\Omega$ $I_D = 82A$ ### **Description** Advanced HEXFET® Power MOSFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications. The TO-220 package is universally preferred for all commercial-industrial applications at power dissipation levels to approximately 50 watts. The low thermal resistance and low package cost of the TO-220 contribute to its wide acceptance throughout the industry. ### **Absolute Maximum Ratings** | 82⑦
58
280 | А | |------------------------|--| | | Α | | 280 | 1 | | | 1 | | 230 | W | | 1.5 | W/°C | | ± 20 | V | | 43 | Α | | 23 | mJ | | 5.9 | V/ns | | -55 to + 175 | | | | °C | | 300 (1.6mm from case) | | | 10 lbf•in (1.1N•m) | | | | 1.5
± 20
43
23
5.9
-55 to + 175
300 (1.6mm from case) | #### **Thermal Resistance** | | Parameter | Тур. | Max. | Units | |-----------------|-------------------------------------|------|------|-------| | $R_{\theta JC}$ | Junction-to-Case | | 0.65 | | | $R_{\theta CS}$ | Case-to-Sink, Flat, Greased Surface | 0.50 | | °C/W | | $R_{\theta JA}$ | Junction-to-Ambient | | 62 | | ### Electrical Characteristics @ T_J = 25°C (unless otherwise specified) | Parameter | Min. | Тур. | Max. | Units | Conditions | |--|--|---|--|--|--| | Drain-to-Source Breakdown Voltage | 75 | | | V | $V_{GS} = 0V, I_D = 250\mu A$ | | Breakdown Voltage Temp. Coefficient | | 0.074 | | V/°C | Reference to 25°C, I _D = 1mA | | Static Drain-to-Source On-Resistance | | | 13 | mΩ | V _{GS} = 10V, I _D = 43A ④ | | Gate Threshold Voltage | 2.0 | | 4.0 | V | $V_{DS} = V_{GS}$, $I_D = 250\mu A$ | | Forward Transconductance | 38 | | | S | V _{DS} = 50V, I _D = 43A④ | | Drain-to-Source Leakage Current | | | 25 | μА | $V_{DS} = 75V, V_{GS} = 0V$ | | | | | 250 | | $V_{DS} = 60V, V_{GS} = 0V, T_{J} = 150^{\circ}C$ | | Gate-to-Source Forward Leakage | | | 100 | nΛ | V _{GS} = 20V | | Gate-to-Source Reverse Leakage | | | -100 | IIA | V _{GS} = -20V | | Total Gate Charge | | | 160 | | $I_D = 43A$ | | Gate-to-Source Charge | | | 29 | nC | $V_{DS} = 60V$ | | Gate-to-Drain ("Miller") Charge | | | 55 | | $V_{GS} = 10V$, See Fig. 6 and 13 | | Turn-On Delay Time | | 13 | | | $V_{DD} = 38V$ | | Rise Time | | 64 | | no | $I_D = 43A$ | | Turn-Off Delay Time | | 49 | | 115 | $R_G = 2.5\Omega$ | | Fall Time | | 48 | | | $V_{GS} = 10V$, See Fig. 10 $\textcircled{4}$ | | Internal Drain Industrance | | 15 | | | Between lead, | | Internal Drain Inductance | | 4.5 | | ,u | 6mm (0.25in.) | | Internal Source Inductance | | 7.5 | | | from package | | | | | | | and center of die contact | | Input Capacitance | | 3820 | | | $V_{GS} = 0V$ | | Output Capacitance | | 610 | | | $V_{DS} = 25V$ | | Reverse Transfer Capacitance | | 130 | | pF | f = 1.0MHz, See Fig. 5 | | Single Pulse Avalanche Energy ^② | | 1280 ଔ | 340⑥ | mJ | I _{AS} = 50A, L = 370μH | | | Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Forward Transconductance Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Total Gate Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Internal Drain Inductance Internal Source Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance | Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Forward Transconductance Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Total Gate Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Internal Drain Inductance Internal Source Inductance Reverse Transfer Capacitance — Toefficient | Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Forward Transconductance Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Total Gate Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Turn-Off Delay Time Fall Time January 13 Internal Drain Inductance Drain-to-Source Inductance A.5 Internal Source Inductance Output Capacitance D.0.074 7.5 1.0.074 0.0074 | Drain-to-Source Breakdown Voltage 75 — Breakdown Voltage Temp. Coefficient — 0.074 — Static Drain-to-Source On-Resistance — — 13 Gate Threshold Voltage 2.0 — 4.0 Forward Transconductance 38 — — Drain-to-Source Leakage Current — 25 Gate-to-Source Leakage Current — — 25 Gate-to-Source Forward Leakage — — 100 Gate-to-Source Reverse Leakage — — 160 Gate-to-Source Charge — — 29 Gate-to-Source Charge — — 29 Gate-to-Drain ("Miller") Charge — — 55 Turn-On Delay Time — 13 — Rise Time — 64 — Turn-Off Delay Time — 48 — Internal Drain Inductance — 4.5 — Internal Source Inductance — 7.5 — | Drain-to-Source Breakdown Voltage 75 — — V Breakdown Voltage Temp. Coefficient — 0.074 — V/°C Static Drain-to-Source On-Resistance — — 13 mΩ Gate Threshold Voltage 2.0 — 4.0 V Forward Transconductance 38 — — S Drain-to-Source Leakage Current — 25 μA Gate-to-Source Forward Leakage — — 100 nA Gate-to-Source Reverse Leakage — — 160 nA Total Gate Charge — — 160 nC Gate-to-Source Charge — — 29 nC Gate-to-Drain ("Miller") Charge — — 55 Turn-On Delay Time — 13 — Rise Time — 49 — Fall Time — 48 — Internal Drain Inductance — 7.5 — Internal Source Inductance | ### **Source-Drain Ratings and Characteristics** | | Parameter | Min. | Тур. | Max. | Units | Conditions | | |-----------------|---------------------------|--|------|------|-------|---|---------------------| | Is | Continuous Source Current | | | 000 | | MOSFET symbol | | | | (Body Diode) | | | 820 | 82⑦ | A | showing the | | I _{SM} | Pulsed Source Current | | | 280 |] ^ | integral reverse | | | | (Body Diode)① | | | | 280 | | p-n junction diode. | | V_{SD} | Diode Forward Voltage | | | 1.2 | V | $T_J = 25^{\circ}C$, $I_S = 43A$, $V_{GS} = 0V$ ④ | | | t _{rr} | Reverse Recovery Time | | 100 | 150 | ns | T _J = 25°C, I _F = 43A | | | Q _{rr} | Reverse Recovery Charge | | 410 | 610 | nC | di/dt = 100A/µs ④ | | | t _{on} | Forward Turn-On Time | Intrinsic turn-on time is negligible (turn-on is dominated by L _S +L _D) | | | | | | #### Notes: - ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11) - $\begin{tabular}{ll} \hline @ Starting $T_J = 25^\circ C$, $L = 370\mu H$ \\ $R_G = 25\Omega$, $I_{AS} = 43A$, $V_{GS} = 10V$ (See Figure 12) \\ \hline \end{tabular}$ - $\label{eq:loss} \begin{array}{l} \mbox{ } 3 \mbox{ } I_{SD} \leq 43A, \mbox{ } di/dt \leq 300A/\mu s, \mbox{ } V_{DD} \leq V_{(BR)DSS}, \\ \mbox{ } T_{J} \leq 175^{\circ} \mbox{C} \end{array}$ - 4 Pulse width $\leq 400 \mu s$; duty cycle $\leq 2\%$. - ⑤ This is a typical value at device destruction and represents operation outside rated limits. - 6 This is a calculated value limited to $T_J = 175^{\circ}C$. - ② Calculated continuous current based on maximum allowable junction temperature. Package limitation current is 75A. Fig 1. Typical Output Characteristics Fig 2. Typical Output Characteristics Fig 3. Typical Transfer Characteristics **Fig 4.** Normalized On-Resistance Vs. Temperature **Fig 5.** Typical Capacitance Vs. Drain-to-Source Voltage **Fig 6.** Typical Gate Charge Vs. Gate-to-Source Voltage **Fig 7.** Typical Source-Drain Diode Forward Voltage Fig 8. Maximum Safe Operating Area **Fig 9.** Maximum Drain Current Vs. Case Temperature Fig 10a. Switching Time Test Circuit Fig 10b. Switching Time Waveforms Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case Fig 12a. Unclamped Inductive Test Circuit Fig 12b. Unclamped Inductive Waveforms Fig 13a. Basic Gate Charge Waveform Fig 12c. Maximum Avalanche Energy Vs. Drain Current Fig 13b. Gate Charge Test Circuit ### Peak Diode Recovery dv/dt Test Circuit * Reverse Polarity of D.U.T for P-Channel *** V_{GS} = 5.0V for Logic Level and 3V Drive Devices Fig 14. For N-channel HEXFET® power MOSFETs International TOR Rectifier TO-220AB Package Outline(Dimensions are shown in millimeters (inches)) ### **TO-220AB Part Marking Information** ASSEMBLED ON WW 19, 2000 IN THE ASSEMBLY LINE "C" Note: "P" in assembly line position indicates "Lead - Free" TO-220AB package is not recommended for Surface Mount Application. #### Notes: 8 - 1. For an Automotive Qualified version of this part please see http://www.irf.com/product-info/auto/ - 2. For the most current drawing please refer to IR website at http://www.irf.com/package/ Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR's Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 07/2010 #### IMPORTANT NOTICE The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party. In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications. The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application. For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com). #### WARNINGS Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office. Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.