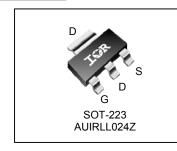

Features

- Advanced Process Technology
- Ultra Low On-Resistance
- Logic Level Gate Drive
- 150°C Operating Temperature
- Fast Switching
- Repetitive Avalanche Allowed up to Tjmax
- · Lead-Free, RoHS Compliant
- Automotive Qualified *


Description

Specifically designed for Automotive applications, this HEXFET® Power MOSFET utilizes the latest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of this design are a junction operating temperature, fast switching speed and improved repetitive avalanche rating. These features combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety of other applications.

V _{DSS}	55V
R _{DS(on)} typ.	48mΩ
max.	60mΩ
I _D	5.0A

G	D	S
Gate	Drain	Source

Dage nort number	nart number Rockage Type Standard Pack		Orderable Part Number	
Base part number	Package Type	Form Quantity		Orderable Part Number
AUIRLL024Z	SOT-223	Tape and Reel	2500	AUIRLL024ZTR

Absolute Maximum Ratings

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only; and functional operation of the device at these or any other condition beyond those indicated in the specifications is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Ambient temperature (TA) is 25°C, unless otherwise specified.

Symbol	Parameter	Max.	Units
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ 10V ⑦	5.0	
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ 10V ⑦	4.0	Α
I _{DM}	Pulsed Drain Current ①	40	
P _D @T _A = 25°C	Maximum Power Dissipation (PCB Mount) ∅	2.8	10/
P _D @T _A = 25°C	Maximum Power Dissipation (PCB Mount) ®	1.0	W
	Linear Derating Factor (PCB Mount) ⑦	0.02	W/°C
V_{GS}	Gate-to-Source Voltage	± 16	V
E _{AS}	Single Pulse Avalanche Energy (Thermally Limited) ②	21	I
E _{AS (Tested)}	Single Pulse Avalanche Energy (Tested Value) ®		mJ
I_{AR}	Avalanche Current ()		Α
E _{AR}	Repetitive Avalanche Energy ®		mJ
T _J	Operating Junction and -55 to + 150		°C
T_{STG}	Storage Temperature Range		C

Thermal Resistance

Symbol	Parameter	Тур.	Max.	Units
$R_{ hetaJA}$	Junction-to-Ambient (PCB Mount, steady state) ♡		45	°C // //
$R_{\theta JA}$	Junction-to-Ambient (PCB Mount, steady state) ®		120	°C/W

 $\label{eq:hexpectation} \mbox{HEXFET} \mbox{\ensuremath{\mathbb{R}}} \mbox{ is a registered trademark of Infineon}.$

^{*}Qualification standards can be found at www.infineon.com

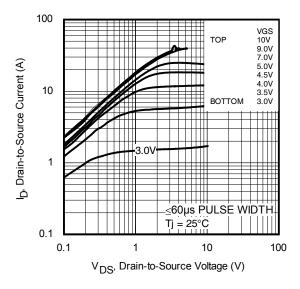
Static @ T_J = 25°C (unless otherwise specified)

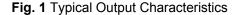
	Parameter	Min.	Тур.	Max.	Units	Conditions
$V_{(BR)DSS}$	Drain-to-Source Breakdown Voltage	55			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient		0.049		V/°C	Reference to 25 $^{\circ}$ C, I _D = 1mA
			48	60		$V_{GS} = 10V, I_D = 3.0A$ ③
$R_{DS(on)}$	Static Drain-to-Source On-Resistance			80	mΩ	$V_{GS} = 5.0V, I_D = 3.0A$ ③
				100		V _{GS} = 4.5V, I _D = 3.0A ③
$V_{GS(th)}$	Gate Threshold Voltage	1.0		3.0	V	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$
gfs	Forward Trans conductance	7.5			S	$V_{DS} = 25V, I_{D} = 3.0A$
I _{DSS}	Drain-to-Source Leakage Current			20		$V_{DS} = 55V, V_{GS} = 0V$
				250	μA	$V_{DS} = 55V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
	Gate-to-Source Forward Leakage			200	- A	V _{GS} = 16V
I _{GSS}	Gate-to-Source Reverse Leakage			-200		V _{GS} = -16V

Dynamic Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

Qq	Total Gate Charge	T	7.0	11		I _D = 3.0A
Q_{gs}	Gate-to-Source Charge		1.5		nC	V _{DS} = 44V
Q_{gd}	Gate-to-Drain Charge		4.0			V _{GS} = 5.0V ③
$t_{d(on)}$	Turn-On Delay Time		8.6			$V_{DD} = 28V$
t _r	Rise Time		33		20	$I_{D} = 3.0A$
$t_{d(off)}$	Turn-Off Delay Time		20		ns	$R_G = 56\Omega$
t _f	Fall Time		15			V _{GS} = 5.0V ③
C_{iss}	Input Capacitance		380			$V_{GS} = 0V$
Coss	Output Capacitance		66			$V_{DS} = 25V$
C_{rss}	Reverse Transfer Capacitance		36			f = 1.0MHz
Coss	Output Capacitance		220		pF	$V_{GS} = 0V, V_{DS} = 1.0V, f = 1.0MHz$
C _{oss}	Output Capacitance		53			$V_{GS} = 0V, V_{DS} = 44V, f = 1.0MHz$
Coss eff.	Effective Output Capacitance		93			$V_{GS} = 0V, V_{DS} = 0V \text{ to } 44V $

Diode Characteristics


	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current (Body Diode)			5.0	_	MOSFET symbol showing the
I _{SM}	Pulsed Source Current (Body Diode) ①			40		integral reverse p-n junction diode.
V_{SD}	Diode Forward Voltage			1.3	V	$T_J = 25^{\circ}C, I_S = 3.0A, V_{GS} = 0V $ @
t _{rr}	Reverse Recovery Time		15	23	ns	$T_J = 25^{\circ}C$, $I_F = 3.0A$, $V_{DD} = 28V$
Q_{rr}	Reverse Recovery Charge		9.1	14	nC	di/dt = 100A/µs ③
t_{on}	Forward Turn-On Time	Intrinsio	turn-or	time is	negligil	ole (turn-on is dominated by LS+LD)


Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11)

- \odot C_{oss eff.} is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS}.
- © This value determined from sample failure population, starting T_J = 25°C, L = 4.8mH, R_G = 25Ω, I_{AS} = 3.0A, V_{GS} =10V.
- When mounted on 1 inch square copper board.
- ® When mounted on FR-4 board using minimum recommended footprint.

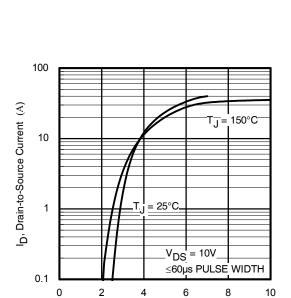


Fig. 3 Typical Transfer Characteristics

 $V_{\mbox{GS}}$, Gate-to-Source Voltage (V)

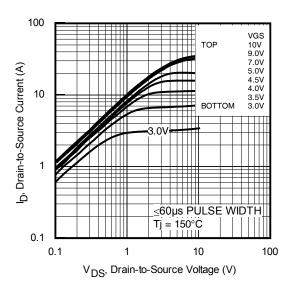
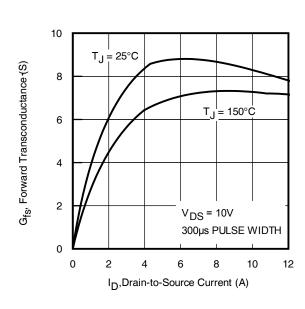
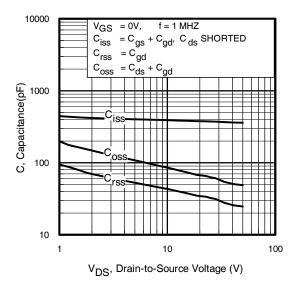




Fig. 2 Typical Output Characteristics

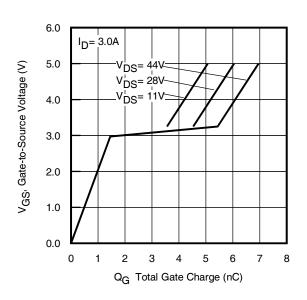


Fig. 4 Typical Forward Trans conductance vs. Drain Current

Fig 5. Typical Capacitance vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage

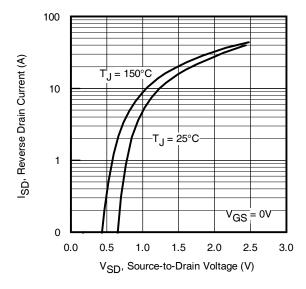


Fig. 7 Typical Source-to-Drain Diode Forward Voltage

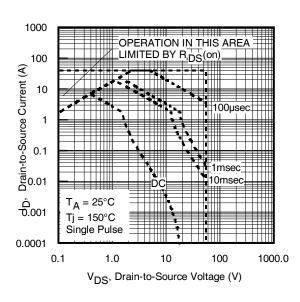
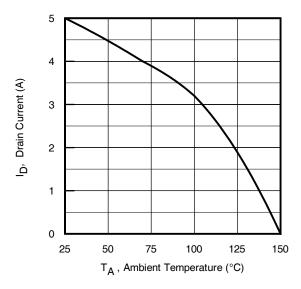



Fig 8. Maximum Safe Operating Area

4

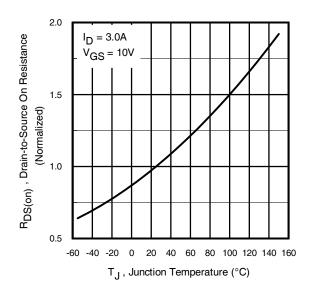


Fig 9. Maximum Drain Current Vs. Ambient Temperature

Fig 10. Normalized On-Resistance vs. Temperature

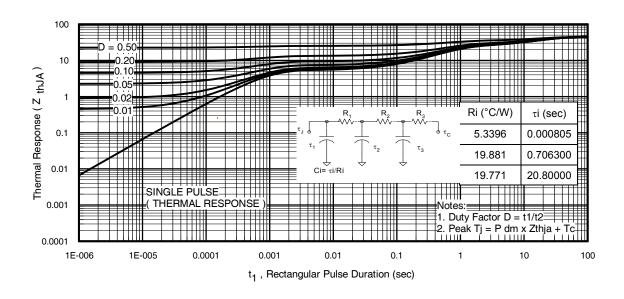


Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

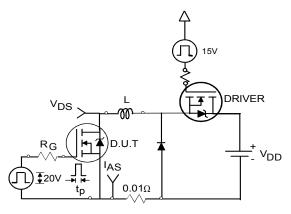


Fig 12a. Unclamped Inductive Test Circuit

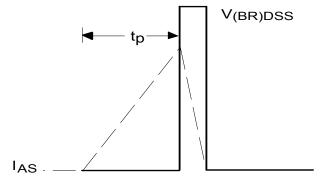


Fig 12b. Unclamped Inductive Waveforms

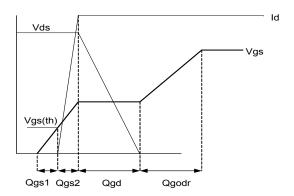


Fig 13a. Basic Gate Charge Waveform

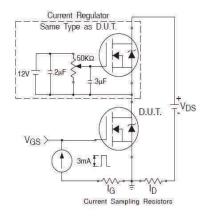
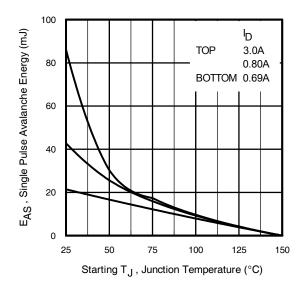



Fig 13b. Gate Charge Test Circuit

Fig 12c. Maximum Avalanche Energy Vs. Drain Current

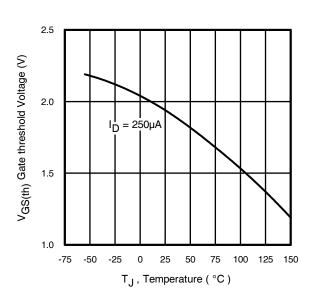


Fig 14. Threshold Voltage vs. Temperature

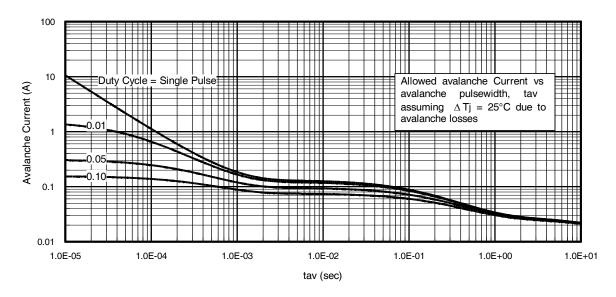
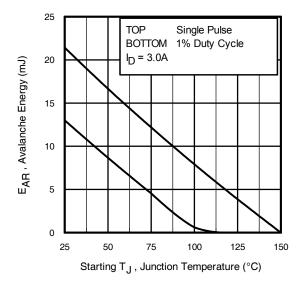



Fig 15. Typical Avalanche Current vs. Pulse width

Fig 16. Maximum Avalanche Energy vs. Temperature

Notes on Repetitive Avalanche Curves , Figures 15, 16: (For further info, see AN-1005 at www.infineon.com)

- Avalanche failures assumption:
 Purely a thermal phenomenon and failure occurs at a temperature far in excess of T_{jmax}. This is validated for every part type.
- 2. Safe operation in Avalanche is allowed as long as T_{jmax} is not exceeded.
- 3. Equation below based on circuit and waveforms shown in Figures 12a, 12b.
- 4. PD (ave) = Average power dissipation per single avalanche pulse.
- 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche).
- 6. lav = Allowable avalanche current.
- 7. ΔT = Allowable rise in junction temperature, not to exceed T_{jmax} (assumed as 25°C in Figure 14, 15).

tav = Average time in avalanche.

D = Duty cycle in avalanche = tav ·f

ZthJC(D, tav) = Transient thermal resistance, see Figures 13)

$$\begin{split} P_{D \, (ave)} &= 1/2 \, \left(\, 1.3 \cdot BV \cdot I_{av} \right) = \Delta T / \, Z_{thJC} \\ I_{av} &= 2\Delta T / \, \left[1.3 \cdot BV \cdot Z_{th} \right] \\ E_{AS \, (AR)} &= P_{D \, (ave)} \cdot t_{av} \end{split}$$

2015-10-29

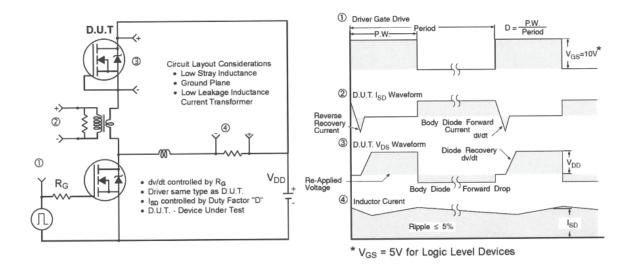
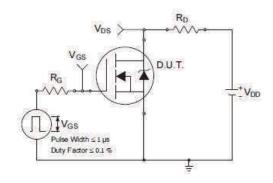


Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs



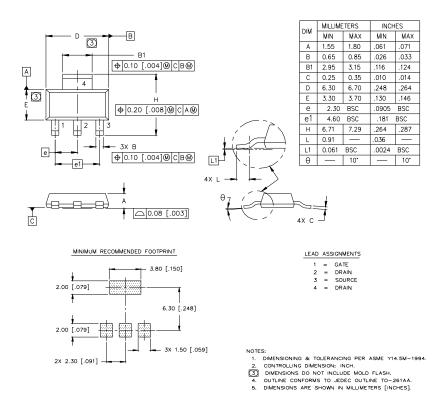
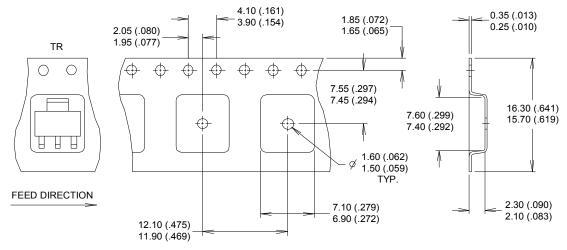
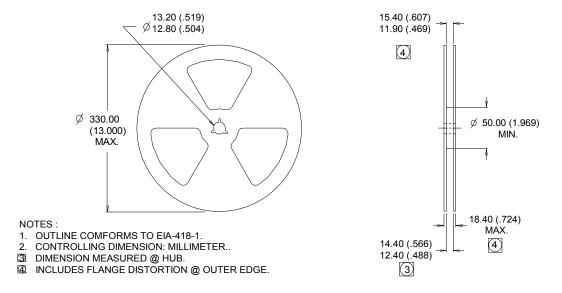

Fig 18a. Switching Time Test Circuit

Fig 18b. Switching Time Waveforms

SOT-223 (TO-261AA) Package Outline (Dimensions are shown in millimeters (inches)


SOT-223(TO-261AA) Part Marking Information

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/



SOT-223(TO-261AA) Tape and Reel (Dimensions are shown in millimeters (inches)

NOTES:

- 1. CONTROLLING DIMENSION: MILLIMETER.
- 2. OUTLINE CONFORMS TO EIA-481 & EIA-541.
- 3. EACH Ø330.00 (13.00) REEL CONTAINS 2,500 DEVICES.

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

Qualification Information

		Automotive				
		(per AEC-Q101)				
		Comments: This part number(s) passed Automotive qualification. Infineon's				
			consumer qualification level is granted by extension of the higher			
		Automotive leve	el.			
Moisture	Moisture Sensitivity Level SOT-223 MSL1					
	Manalaina Mandal	Class M1B (+/- 100V) [†]				
	Machine Model	AEC-Q101-002				
	Harris and Danka Mandal	Class H0 (+/- 250V) [†]				
ESD	Human Body Model	AEC-Q101-001				
	Observed Davis a Madal	Class C5 (+/- 1125V) [†]				
Charged Device Model		AEC-Q101-005				
RoHS Compliant		Yes				
		ı				

[†] Highest passing voltage.

Revision History

Date	Comments			
3/26/2014	 Added "Logic Level Gate Drive" bullet in the features section on page 1 Updated part marking on page 9 Updated data sheet with new IR corporate template 			
10/29/2015	 Updated datasheet with corporate template Corrected ordering table on page 1. 			

Published by Infineon Technologies AG 81726 München, Germany © Infineon Technologies AG 2015 All Rights Reserved.

IMPORTANT NOTICE

The information given in this document shall in <u>no event</u> be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may <u>not</u> be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.