

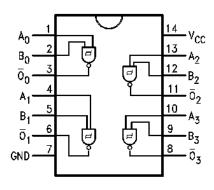
(Vay 2)07

74F132 Quad 2-Input NAND Schmitt Trigger

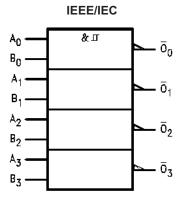
General Description

The F132 contains four 2-input NAND gates which accept standard TTL input signals and provide standard TTL output levels. They are capable of transforming slowly changing input signals into sharply defined, jitterfree output signals. In addition, they have a greater noise margin than conventional NAND gates.

Each circuit contains a 2-input Schmitt Trigger followed by level shifting circuitry and a standard FAST™ output


structure. The Schmitt Trigger uses positive feedback to effectively speed-up slow input transitions, and provide different input threshold voltages for positive and negative-going transitions. This hysteresis between the positive-going and negative-going input threshold (typically 800mV) is determined by resistor ratios and is essentially insensitive to temperature and supply voltage variations.

Ordering Information


Order Number	Package Number	Package Description
74F132SC	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
74F132SJ	M14D	14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering number.

Connection Diagram

Logic Symbol

Unit Loading/Fan Out

Pin Names	Description	U.L. HIGH/LOW	Input I _{IH} /I _{IL} , Output I _{OH} /I _{OL}		
A _n , B _n	Inputs	1.0 / 1.0	20μA / –0.6mA		
\overline{O}_n	Outputs	50 / 33.3	-1mA / 20mA		

Function Table

Inp	uts	Outputs		
Α	В	ō		
L	L	Н		
L	Н	Н		
Н	L	Н		
Н	Н	L		

H = HIGH Voltage Level

L = LOW Voltage Level

FAST® is a registered trademark of Fairchild Semiconductor Corporation.

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Rating
T _{STG}	Storage Temperature	-65°C to +150°C
T _A	Ambient Temperature Under Bias	–55°C to +125°C
T _J	Junction Temperature Under Bias	-55°C to +150°C
V _{CC}	V _{CC} Pin Potential to Ground Pin	-0.5V to +7.0V
V _{IN}	Input Voltage ⁽¹⁾	-0.5V to +7.0V
I _{IN}	Input Current ⁽¹⁾	-30mA to +5.0mA
V _O	Voltage Applied to Output in HIGH State (with V _{CC} = 0V)	
	Standard Output	–0.5V to V _{CC}
	3-STATE Output	-0.5V to 5.5V
	Current Applied to Output in LOW State (Max.)	twice the rated I _{OL} (mA)
	ESD Last Passing Voltage (Min.)	4000V

Note:

1. Either voltage limit or current limit is sufficient to protect inputs.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to absolute maximum ratings.

Symbol	Parameter	Rating
T _A	Free Air Ambient Temperature	0°C to +70°C
V _{CC}	Supply Voltage	+4.5V to +5.5V

DC Electrical Characteristics

Symbol	Parameter		V _{CC}	Conditions	Min.	Тур.	Max.	Units
V _{T+}	Positive-going Thresho	old	5.0		1.5		2.0	V
V _T	Negative-going Threshold		5.0		0.7		1.1	V
ΔV_{T}	Hysteresis (V _T ⁺ – V _T ⁻)		5.0		0.4			V
V _{CD}	Input Clamp Diode Vol	tage	Min.	$I_{IN} = -18mA$			-1.2	V
V _{OH}	Output HIGH Voltage	10% V _{CC}	Min.	I _{OH} = -1mA	2.5			V
		5% V _{CC}	1	I _{OH} = -1mA	2.7			
V _{OL}	Output LOW Voltage	10% V _{CC}	Min.	$I_{OL} = 20 \text{mA}$			0.5	V
I _{IH}	Input HIGH Current		Max.	V _{IN} = 2.7V			5.0	μΑ
I _{BVI}	Input HIGH Current Breakdown Test		Max.	V _{IN} = 7.0V			7.0	μA
I _{CEX}	Output HIGH Leakage Current		Max.	$V_{OUT} = V_{CC}$			50	μA
V _{ID}	Input Leakage Test		0.0	I _{ID} = 1.9μA, All Other Pins Grounded	4.75			V
I _{OD}	Output Leakage Circuit Current		0.0	V _{IOD} = 150mV, All Other Pins Grounded			3.75	μA
I _{IL}	Input LOW Current		Max	V _{IN} = 0.5V			-0.6	mA
Ios	Output Short-Circuit Current		Max	V _{OUT} = 0V	-60		-150	mA
I _{CCH}	Power Supply Current		Max	V _O = HIGH			17.0	mA
I _{CCL}	Power Supply Current		Max	$V_O = LOW$			18.0	mA

AC Electrical Characteristics

		T _A = +25°C, V _{CC} = +5.0V, C _L = 50pF		$T_A = 0$ °C $V_{CC} = C_L = 0$	+5.0V,		
Symbol	Parameter	Min.	Тур.	Max.	Min.	Max.	Units
t _{PLH}	Propagation Delay,	4.0		10.5	3.5	12.0	ns
t _{PHL}	A_n , B_n to \overline{O}_n	5.0		12.5	5.0	13.0	

Physical Dimensions
Dimensions are in millimeters unless otherwise noted.

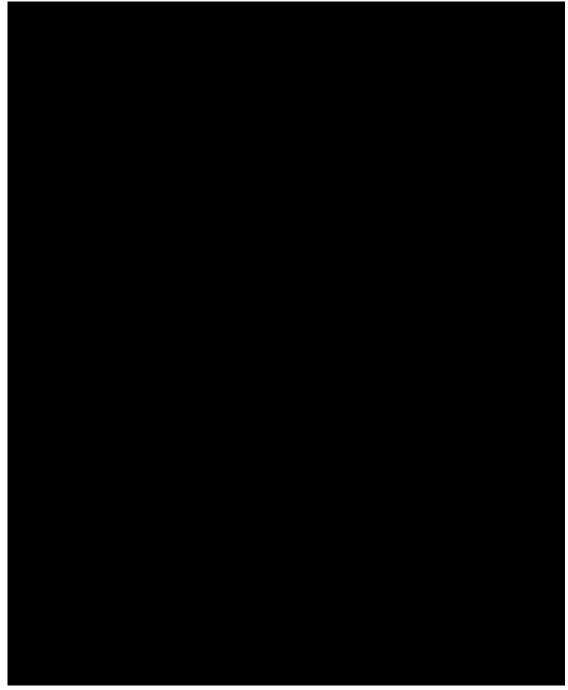


Figure 1. 14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow Package Number M14A

Physical Dimensions (Continued) Dimensions are in millimeters unless otherwise noted.

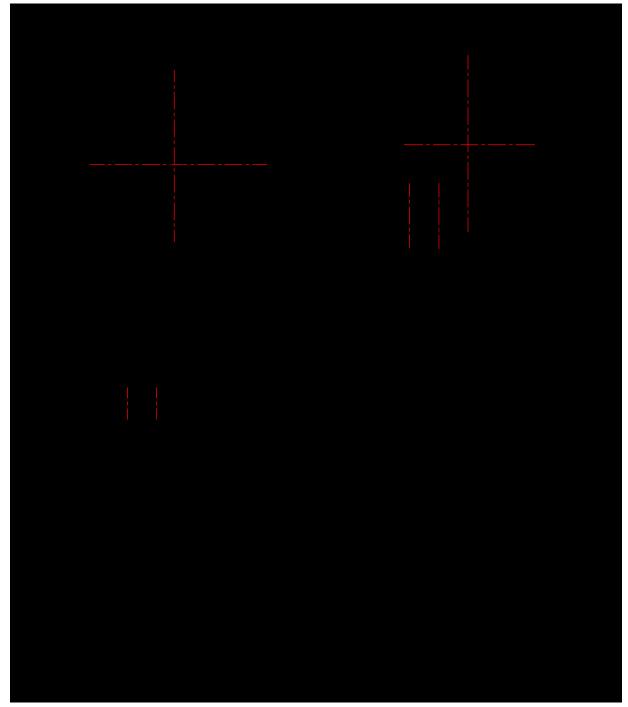
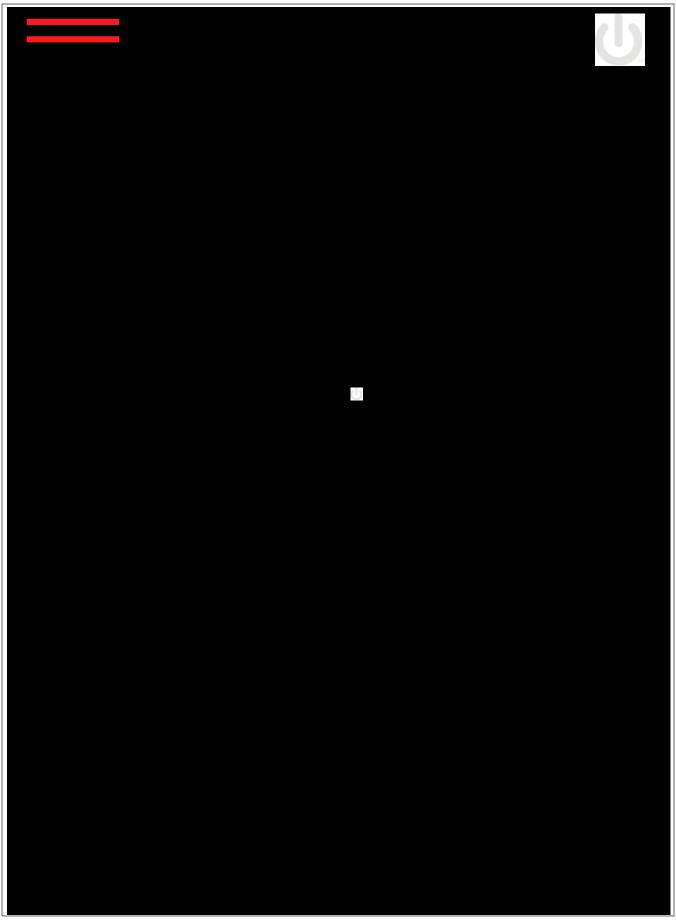



Figure 2. 14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide Package Number M14D

