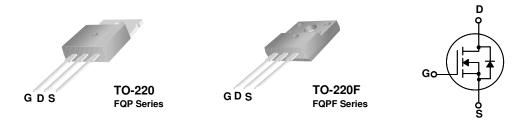


March 2013

FQP13N50 / FQPF13N50

N-Channel QFET MOSFET


500 V, 12.5 A, 430 m Ω

Description

This N-Channel enhancement mode power MOSFET is produced using Fairchild Semiconductor®'s proprietary planar stripe and DMOS technology. This advanced MOSFET technology has been especially tailored to reduce on-state resistance, and to provide superior switching performance and high avalanche energy strength. These devices are suitable for switched mode power supplies, active power factor correction (PFC), and electronic lamp ballasts.

Features

- 12.5 A, 500 V, $R_{DS(on)}$ = 430 m Ω (Max) @ V_{GS} = 10 V, I_D = 6.25 A
- Low Gate Charge (Typ. 45 nC)
- Low Crss (Typ. 25 pF)
- · 100% Avalanche Tested

Absolute Maximum Ratings T_C = 25°C unless otherwise noted

Symbol	Parameter		FQP13N50	FQPF13N50	Unit
V_{DSS}	Drain-Source Voltage		500		٧
I _D	Drain Current - Continuous (T _C = 25°C)		12.5	12.5 *	Α
	- Continuous (T _C = 100°C)		7.9	7.9 *	Α
I _{DM}	Drain Current - Pulsed	(Note 1)	50	50 *	Α
V _{GSS}	Gate-Source Voltage		± 30		V
E _{AS}	Single Pulsed Avalanche Energy	(Note 2)	810		mJ
I _{AR}	Avalanche Current	(Note 1)	12.5		Α
E _{AR}	Repetitive Avalanche Energy (17		mJ
dv/dt	Peak Diode Recovery dv/dt (Note 3)		4.5		V/ns
P_D	Power Dissipation (T _C = 25°C)		170	56	W
	- Derate above 25°C		1.35	0.45	W/°C
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to +150		°C
T _L	Maximum lead temperature for soldering purposes, 1/8" from case for 5 seconds		300		°C

^{*} Drain current limited by maximum junction temperature.

Thermal Characteristics

Symbol	Parameter	FQP13N50	FQPF13N50	Unit
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case	0.74	2.23	°C/W
$R_{\theta CS}$	Thermal Resistance, Case-to-Sink	0.5		°C/W

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
Off Cha	aracteristics					
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$	500			V
ΔBV _{DSS} / ΔT _J	Breakdown Voltage Temperature Coefficient	I _D = 250 μA, Referenced to 25°C		0.48		V/°(
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 500 V, V _{GS} = 0 V			1	μА
		V _{DS} = 400 V, T _C = 125°C			10	μА
I _{GSSF}	Gate-Body Leakage Current, Forward	V _{GS} = 30 V, V _{DS} = 0 V			100	nA
I _{GSSR}	Gate-Body Leakage Current, Reverse	$V_{GS} = -30 \text{ V}, V_{DS} = 0 \text{ V}$			-100	nA
On Cha	aracteristics					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	3.0		5.0	V
R _{DS(on)}	Static Drain-Source On-Resistance	$V_{GS} = 10 \text{ V}, I_D = 6.25 \text{ A}$		0.33	0.43	Ω
9FS	Forward Transconductance	V _{DS} = 50 V, I _D = 6.25 A (Note 4)		10		S
C _{oss}	Output Capacitance	f = 1.0 MHz		245	320	_
		†		=		
C _{rss}	Reverse Transfer Capacitance			25	35	pF pF
	Reverse Transfer Capacitance ing Characteristics			=		
Switch	,	V _{DD} = 250 V. I _D = 13.4 A.		=		
Switch	ing Characteristics	$V_{DD} = 250 \text{ V}, I_{D} = 13.4 \text{ A},$ $R_{C} = 25 \Omega$		25	35	pF
Switch	ing Characteristics Turn-On Delay Time	$V_{DD} = 250 \text{ V}, I_{D} = 13.4 \text{ A},$ $R_{G} = 25 \Omega$		25	35 90	pF
Switch t _{d(on)} t _r t _{d(off)}	ing Characteristics Turn-On Delay Time Turn-On Rise Time	55		25 40 140	90 290	pF ns
Switch t _{d(on)} t _r t _{d(off)}	ing Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time	$R_G = 25 \Omega$		25 40 140 100	90 290 210	ns ns
$\begin{array}{c} \textbf{Switch} \\ t_{d(on)} \\ t_r \\ t_{d(off)} \\ t_f \\ Q_g \end{array}$	ing Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time	$R_G = 25 \Omega$ (Note 4, 5)	 	25 40 140 100 85	90 290 210 180	ns ns ns
	ing Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge	$R_{G} = 25 \ \Omega$ (Note 4, 5) $V_{DS} = 400 \ V, \ I_{D} = 13.4 \ A,$	 	40 140 100 85 45	90 290 210 180 60	ns ns ns
Switch t _{d(on)} t _r t _{d(off)} t _f Q _g Q _{gs} Q _{gd}	ing Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge	$R_{G} = 25 \ \Omega$ (Note 4, 5) $V_{DS} = 400 \ V, \ I_{D} = 13.4 \ A,$ $V_{GS} = 10 \ V$ (Note 4, 5)	 	25 40 140 100 85 45 11	90 290 210 180 60	ns ns ns ns
Switch t _{d(on)} t _r t _{d(off)} t _f Q _g Q _{gs} Q _{gd} Drain-S	ing Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge	$R_G = 25~\Omega \label{eq:RG}$ (Note 4, 5) $V_{DS} = 400~V, I_D = 13.4~A, \label{eq:VGS}$ (Note 4, 5) $V_{GS} = 10~V \label{eq:VGS}$ (Note 4, 5)	 	25 40 140 100 85 45 11	90 290 210 180 60	ns ns ns ns
Switch td(on) tr td(off) tf Qg Qgs Qgd Drain-S	ing Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge	$R_{G} = 25 \ \Omega$ (Note 4, 5) $V_{DS} = 400 \ V, I_{D} = 13.4 \ A,$ $V_{GS} = 10 \ V$ (Note 4, 5) $N_{GS} = 10 \ V$ (Note 4, 5) $N_{GS} = 10 \ V$	 	25 40 140 100 85 45 11 22	90 290 210 180 60	ns ns ns ns
Switch td(on) tr td(off) tf Qg Qgs Qgd Drain-S	ing Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge Source Diode Characteristics and Maximum Continuous Drain-Source Diode	$R_{G} = 25 \ \Omega$ $V_{DS} = 400 \ V, I_{D} = 13.4 \ A,$ $V_{GS} = 10 \ V$ $(Note 4, 5)$ $Note 5$ $Note 6$ $Note 6, 7$ $Note 7$ $Note 7$ $Note 7$ $Note 8$ $Note 8$ $Note 9$ $Note$		25 40 140 100 85 45 11 22	90 290 210 180 60 	ns ns ns ns nc nc
Switch td(on) tr td(off) tf Qg Qgs Qgd Drain-S	ing Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge Source Diode Characteristics al Maximum Continuous Drain-Source Diode Maximum Pulsed Drain-Source Diode F	$R_{G} = 25 \ \Omega$ (Note 4, 5) $V_{DS} = 400 \ V, I_{D} = 13.4 \ A,$ $V_{GS} = 10 \ V$ (Note 4, 5) $N_{GS} = 10 \ V$ (Note 4, 5) $N_{GS} = 10 \ V$	 	25 40 140 100 85 45 11 22	90 290 210 180 60 12.5 50	ns ns ns nc nc

- **Notes:** 1. Repetitive Rating : Pulse width limited by maximum junction temperature 2. L = 9.3mH, $I_{AS} = 12.5A, V_{DD} = 50V, R_G = 25 \,\Omega,$ Starting $T_J = 25^{\circ}C$ 3. $I_{SD} \leq 13.4A,$ di/dt $\leq 200A/\mu s, V_{DD} \leq BV_{DSS},$ Starting $T_J = 25^{\circ}C$ 4. Pulse Test : Pulse width $\leq 300\mu s,$ Duty cycle $\leq 2\%$ 5. Essentially independent of operating temperature

Typical Characteristics

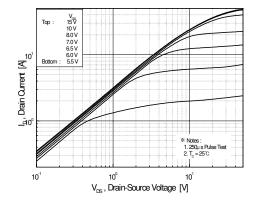


Figure 1. On-Region Characteristics

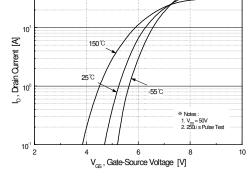


Figure 2. Transfer Characteristics

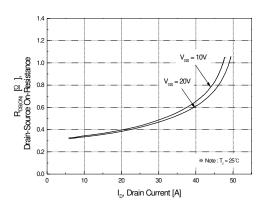


Figure 3. On-Resistance Variation vs. Drain Current and Gate Voltage

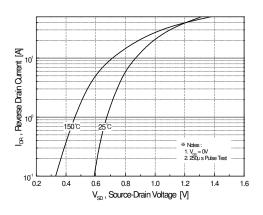


Figure 4. Body Diode Forward Voltage Variation vs. Source Current and Temperature

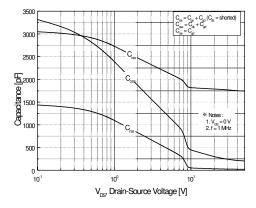


Figure 5. Capacitance Characteristics

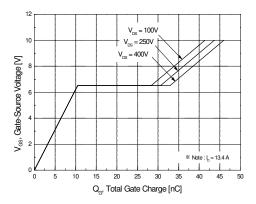


Figure 6. Gate Charge Characteristics

Typical Characteristics (Continued)

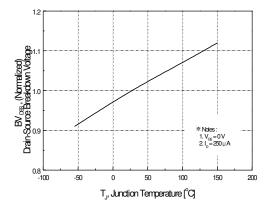


Figure 7. Breakdown Voltage Variation vs. Temperature

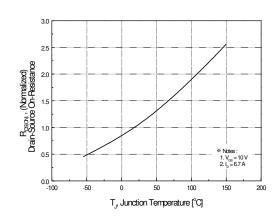


Figure 8. On-Resistance Variation vs. Temperature

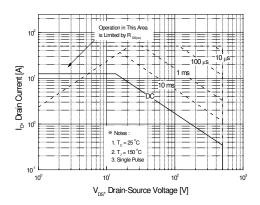


Figure 9-1. Maximum Safe Operating Area for FQP13N50

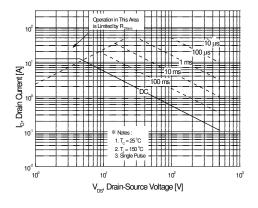


Figure 9-2. Maximum Safe Operating Area for FQPF13N50

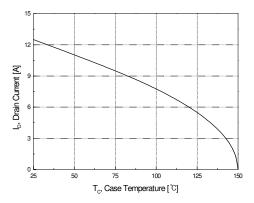


Figure 10. Maximum Drain Current vs. Case Temperature

Typical Characteristics (Continued)

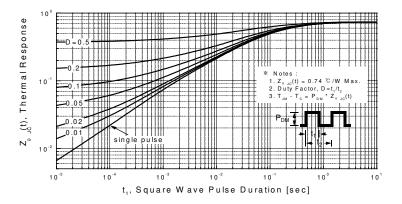


Figure 11-1. Transient Thermal Response Curve for FQP13N50

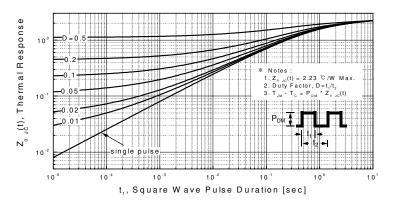
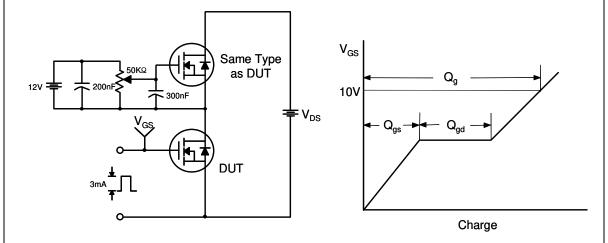
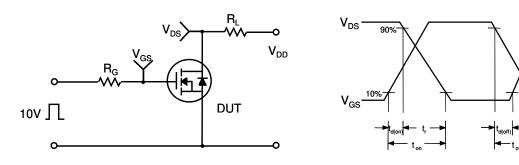
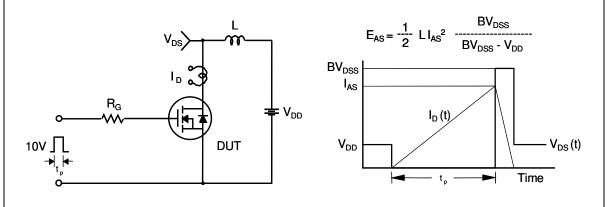
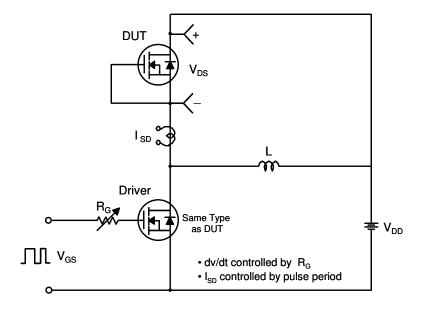
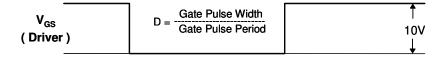
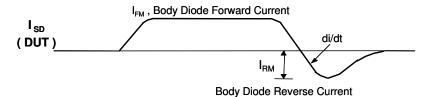




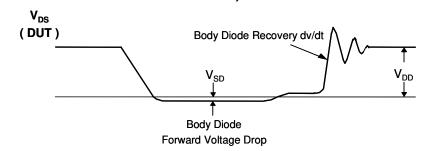
Figure 11. Transient Thermal Response Curve for FQPF13N50

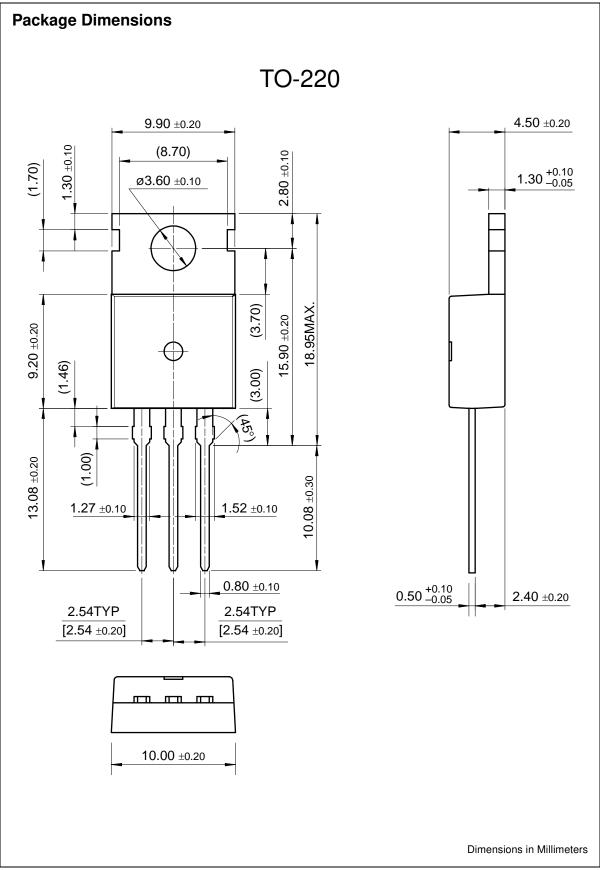

Gate Charge Test Circuit & Waveform

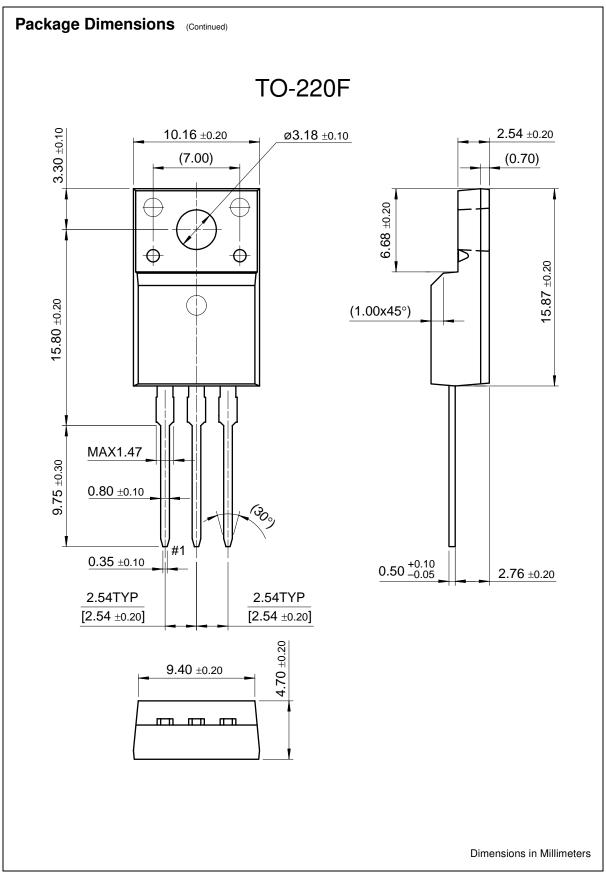

Resistive Switching Test Circuit & Waveforms




Unclamped Inductive Switching Test Circuit & Waveforms




Peak Diode Recovery dv/dt Test Circuit & Waveforms



TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

FPS™ AccuPower™ F-PFS™ AX-CAP® FRFET® BitSiC™ Global Power ResourceSM

Build it Now™ Green Bridge™ Green FPS™ CorePLUS™ CorePOWER™ Green FPS™ e-Series™ Gmax™

 $CROSSVOLT^{TM}$ GTO™ CTI ™ IntelliMAX™ Current Transfer Logic™ ISOPLANAR™ DFUXPFFD[®]

Marking Small Speakers Sound Louder Dual Cool™ EcoSPARK® and Better™ MegaBuck™ EfficentMax™

MICROCOUPLER™ ESBC™ MicroFET™ MicroPak™

MicroPak2™ Fairchild® MillerDrive™ Fairchild Semiconductor® MotionMax™ FACT Quiet Series™ FACT® mWSaver™ $\mathsf{FAST}^{\tiny{\circledR}}$ OptoHiT™ OPTOLOGIC® FastvCore™ OPTOPLANAR® FETBench™

PowerTrench® PowerXS™

Programmable Active Droop™

OFET QS™ Quiet Series™ RapidConfigure™

ng our world, 1mW/W/kW at a time™ SignalWise™

SmartMax™ SMART START™

Solutions for Your Success™

SPM[®] STEALTH™ SuperFET® SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS®

SyncFET™

TinyPower™ TinyPWM™ TinyWire™ TranSiC[®] TriFault Detect™ TRUECURRENT®* SerDes™ UHC® Ultra FRFET™ UniFET™

Sync-Lock™

TinyBoost™

TinyBuck™

TinyCalc™

TinyLogic[®]

TINYOPTO™

SYSTEM ®*

VCX™ VisualMax™ VoltagePlus™ XS™

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN WHICH COVERS THESE PRODUCTS

LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE
EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS **Definition of Terms**

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Rev. 164