

Revision History

16M (1M x 16 bit) PSEUDO STATIC RAM

48ball FPBGA Package

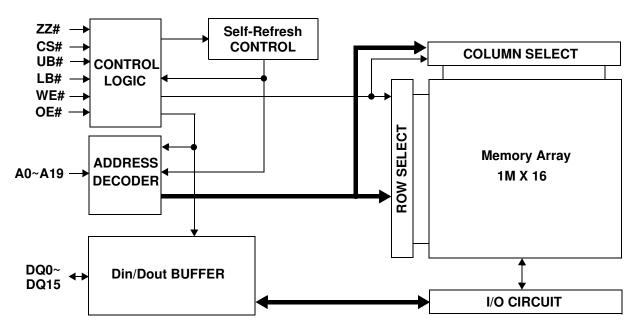
Revision	Details	Date
Rev 1.0	Preliminary datasheet	Aug 2018

Alliance Memory Inc. 511 Taylor Way, San Carlos, CA 94070 TEL: (650) 610-6800 FAX: (650) 620-9211 Alliance Memory Inc. reserves the right to change products or specification without notice

1Mb x16 Pseudo Static RAM Specification

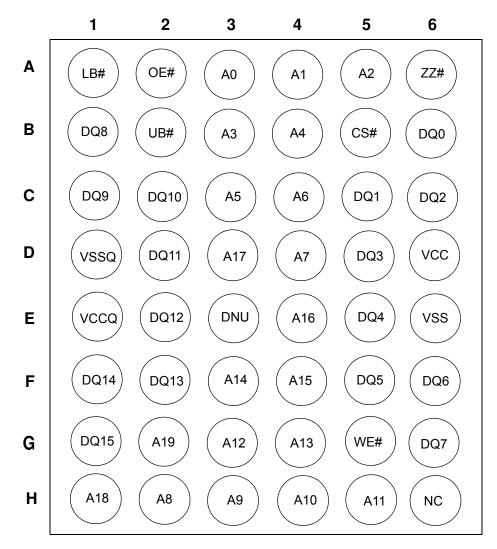
GENERAL DESCRIPTION

The AS1C1M16P-70BIN is 16,777,216 bits of Pseudo SRAM which uses DRAM type memory cells, but this device has refresh-free operation and extreme low power consumption technology. Furthermore the interface is compatible to a low power Asynchronous type SRAM. The AS1C1M16P-70BIN is organized as 1,048,576 Words x 16 bit.


FEATURES

- Organization :1M x16
- Address access speed 70ns
- Power Supply Voltage : 2.6 ~ 3.3V
- Separated I/O power(VccQ) & Core power(Vcc)
- Three state outputs
- Byte read/write control by UB# / LB#
- Auto-TCSR for power saving
- - Package type : 48ball-FPBGA (6.0x7.0)
- - Operating Temperature
- . Industrial : -40 ℃ ~ 85 ℃

PRODUCT FAMILY


				Pow	er Dissipati	on
Part Number	Operating	Power	Speed	Standby	Operating	I _{CC} (Max.)
	Temp.	Supply	(t _{RC})	(I _{SB} , Max.)	I _{CC2} (f = f _{max})	
AS1C1M16P-70BIN	-40°C to 85°C	2.6 ~ 3.3V	70ns	120uA	5mA	25mA

FUNCTION BLOCK DIAGRAM

PIN DESCRIPTION(48-FPBGA-6.00 x 7.00)

TOP VIEW (Ball Down)

Name	Function	Name	Function
CS#	Chip select input	LB#	Lower byte (DQ _{0~7})
OE#	Output enable input	UB#	Upper byte (DQ _{8~15})
WE#	Write enable input	VCC	Power supply
ZZ#	Connected with VCC in this version	VCCQ	I/O power supply
DQ ₀₋₁₅	Data in-out	VSS(Q)	Ground
A ₀₋₁₉	Address inputs	NC	No connection
DNU	Do not use		

ABSOLUTE MAXIMUM RATINGS 1)

Parameter	Symbol	Ratings	Unit
Voltage on Any Pin Relative to Vss	V _{IN} , V _{OUT}	-0.2 to V _{CCQ} +0.3V	V
Voltage on Vcc supply relative to Vss	V _{CC} , V _{CCQ}	-0.2 ²⁾ to V_{CCQ} +0.3V	V
Power Dissipation	PD	1.0	W
Storage Temperature	T _{STG}	-65 to 150	°C
Operating Temperature	T _A	-40 to 85	°C

1. Stresses greater than those listed above "Absolute Maximum Ratings" may cause permanent damage to the device. Functional operation should be restricted to recommended operating condition. Exposure to absolute maximum rating conditions for

extended periods may affect reliability.

2. Undershoot at power-off : -1.0V in case of pulse width < 20ns

FUNCTIONAL DESCRIPTION

CS#	OE#	WE#	LB#	UB#	DQ _{0~7}	DQ _{8~15}	Mode	Power
Н	Х	Х	Х	Х	High-Z	High-Z	Deselected	Stand by
L	Н	Н	L	Х	High-Z	High-Z	Output Disabled	Active
L	Н	Н	Х	L	High-Z	High-Z	Output Disabled	Active
L	L	Н	L	Н	Data Out	High-Z	Lower Byte Read	Active
L	L	Н	Н	L	High-Z	Data Out	Upper Byte Read	Active
L	L	Н	L	L	Data Out	Data Out	Word Read	Active
L	Х	L	L	Н	Data In	High-Z	Lower Byte Write	Active
L	Х	L	Н	L	High-Z	Data In	Upper Byte Write	Active
L	Х	L	L	L	Data In	Data In	Word Write	Active

Note:

1. X means don't care. (Must be low or high state)

RECOMMENDED DC OPERATING CONDITIONS¹⁾

Parameter	Symbol	Min	Тур	Max	Unit
Supply voltage	V _{CC}	2.6	3.0	3.3	V
Supply voltage	V _{CCQ}	2.6	3.0	3.3	V
Ground	V_{SS}, V_{SSQ}	0	0	0	V
Input high voltage	V _{IH}	0.8 * V _{CCQ}	-	$V_{CCQ} + 0.2^{2)}$	V
Input low voltage	V _{IL}	-0.2 ³⁾	-	0.2 * V _{CCQ}	V

1. T_A = -30 to 85°C, otherwise specified

2. Overshoot: Vcc +1.0 V in case of pulse width \leq 20ns

3. Undershoot: -1.0 V in case of pulse width ≤ 20 ns

4. Overshoot and undershoot are sampled, not 100% tested.

CAPACITANCE¹⁾ (f =1MHz, T_A =25°C)

Item	Symbol	Test Condition	Min	Мах	Unit
Input capacitance	C _{IN}	V _{IN} =0V	-	8	pF
Input/Output capacitance	C _{IO}	V _{IO} =0V	-	8	pF

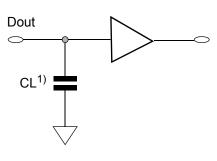
1. Capacitance is sampled, not 100% tested

DC AND OPERATING CHARACTERISTICS

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Input leakage current	I _{LI}	$V_{\text{IN}}\text{=}V_{\text{SS}}$ to V_{CCQ} , $V_{\text{CC}}\text{=}V_{\text{CCmax}}$	-1	-	1	uA
Output leakage current	$\label{eq:III} \textbf{I}_{LO} \qquad \begin{array}{c} CS\#=V_{IH},OE\#=V_{IH}\text{or}WE\#=V_{IL},\\ V_{IO}=V_{SS}\text{to}V_{CCQ},V_{CC}=V_{CCmax} \end{array}$		-1	-	1	uA
Average operating current	I _{CC1}	Cycle time = 1us, I_{IO} =0mA, 100% duty, CS# \leq 0.2V, V _{IN} \leq 0.2V or V _{IN} \geq V _{CCQ} -0.2V	-	-	5	mA
	I _{CC2}	Cycle time = Min, I _{IO} =0mA, 100% duty, CS#=V _{IL} , V _{IN} =V _{IL} or V _{IH}	-	-	25	mA
Output low voltage	V _{OL}	I _{OL} = 0.5mA, V _{CC=} V _{CCmin}	-	-	0.2*V _{CCQ}	V
Output high voltage	V _{OH}	I_{OH} = -0.5mA, $V_{CC}=V_{CCmin}$	0.8*V _{CCQ}	-	-	V
Standby current (CMOS) I _{SB}		CS#≥V _{CCQ} -0.2V, Other inputs = 0 ~ V _{CCQ} (Typ. condition : V _{CC} =3.0V @ 25° C) (Max. condition : V _{CC} =3.3V @ 85° C)	-	-	120	uA

1. Maximum Icc specifications are tested with V_{CC} = $V_{CCmax.}$

AC OPERATING CONDITIONS

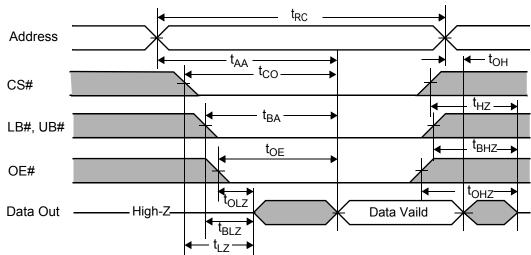

Test Conditions (Test Load and Test Input/Output Reference)

Input Pulse Level : 0.2V to V_{CCQ} -0.2V Input Rise and Fall Time : 5ns Input and Output reference Voltage : $V_{CCQ}/2$ Output Load (See right) : $CL^{1)}$ = 30pF

1. Including scope and Jig capacitance

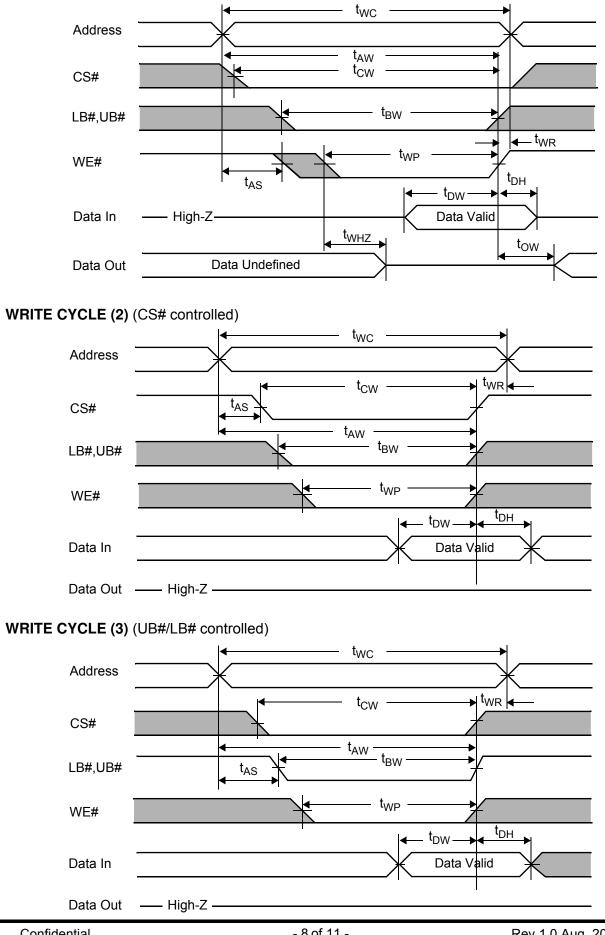
AC CHARACTERISTICS

		Symbol	Sp	beed	Unit
	Parameter List	Symbol	Min	Max	Unit
Deed	Read Cycle Time	t _{RC}	70	10k	ns
	Address access time	t _{AA}	-	70	ns
	Chip enable to data output	t _{CO}	-	70	ns
	Output enable to valid output	t _{OE}	-	25	ns
	UB#, LB# enable to data output	t _{BA}	-	25	ns
	Chip enable to low-Z output	t _{LZ}	10	-	ns
Read	UB#, LB# enable to low-Z output	t _{BLZ}	0	-	ns
	Output enable to low-Z output	t _{OLZ}	0	-	ns
	Chip disable to high-Z output	t _{HZ}	0	20	ns
	UB#, LB# disable to high-Z output	t _{BHZ}	0	20	ns
	Output disable to high-Z output	t _{OHZ}	0	20	ns
	Output hold from Address change	t _{OH}	5	-	ns
	Write Cycle Time	t _{WC}	70	10k	ns
	Chip enable to end of write	t _{CW}	60	-	ns
	Address setup time	t _{AS}	0	-	ns
	Address valid to end of write	t _{AW}	60	-	ns
	UB#, LB# valid to end of write	t _{BW}	60	-	ns
Write	Write pulse width	t _{WP}	50	-	ns
	Write recovery time	t _{WR}	0	-	ns
	Write to output high-Z	t _{WHZ}	0	20	ns
	Data to write time overlap	t _{DW}	20	-	ns
	Data hold from write time	t _{DH}	0	-	ns
	End write to output low-Z	t _{OW}	5	-	ns



TIMING DIAGRAMS

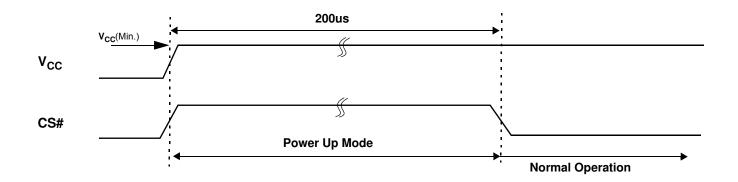
READ CYCLE (2) (WE#=V_{IH})



NOTES (READ CYCLE)

- 1. t_{HZ}, t_{BHZ} and t_{OHZ} are defined as the time at which the outputs achieve the open circuit conditions and are not referenced to output voltage levels.
- 2. Do not Access device with cycle timing shorter than t_{RC} for continuous periods > 10us.

WRITE CYCLE (1) (WE# controlled)



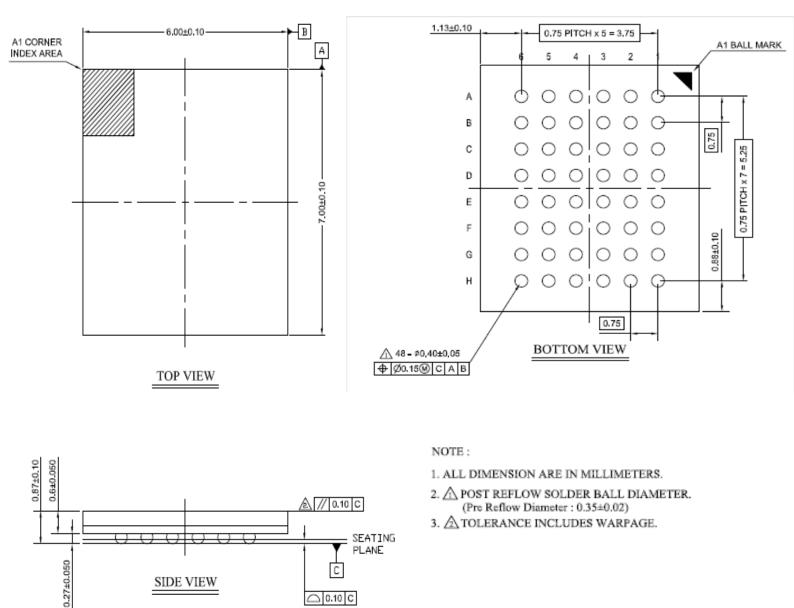
NOTES (WRITE CYCLE)

- 1. A write occurs during the overlap(t_{WP}) of low CS#, low WE# and low UB# or LB#. A write begins at the last transition among low CS# and low WE# with asserting UB# or LB# low for single byte operation or simultaneously asserting UB# and LB# low for word operation. A write ends at the earliest transition among high CS# and high WE#. The t_{WP} is measured from the beginning of write to the end of write.
- 2. t_{CW} is measured from CS# going low to end of write.
- 3. $t_{\mbox{\scriptsize AS}}$ is measured from the address valid to the beginning of write.
- 4. t_{WR} is measured from the end of write to the address change. t_{WR} applied in case a write ends as CS# or WE# going high.
- 5. Do not access device with cycle timing shorter than t_{WC} for continuous periods > 10us.

TIMING WAVEFORM OF POWER UP

NOTE (POWER UP)

1. After Vcc reaches Vcc(Min.), wait 200us with CS# high. Then you get into the normal operation.



AS1C1M16P-70BIN

Unit: millimeters

PACKAGE DIMENSION

48 Ball Fine Pitch BGA (0.75mm ball pitch)

PART NUMBERING SYSTEM

AS1C	1M16P	-70	В	I	N	XX
PSEUDO SRAM	1M16=1Mx16 P=PSEUDO SRAM	70ns	B = FPBGA	l=Industrial (-40° C~+85° C)	Indicates Pb and Halogen Free	Packing Type None:Tray TR:Reel

Alliance Memory, Inc. 511 Taylor Way, San Carlos, CA 94070 Tel: 650-610-6800 Fax: 650-620-9211 www.alliancememory.com

Copyright © Alliance Memory All Rights Reserved

© Copyright 2007 Alliance Memory, Inc. All rights reserved. Our three-point logo, our name and Intelliwatt are trademarks or registered trademarks of Alliance. All other brand and product names may be the trademarks of their respective companies. Alliance reserves the right to make changes to this document and its products at any time without notice. Alliance assumes no responsibility for any errors that may appear in this document. The data contained herein represents Alliance's best data and/or estimates at the time of issuance. Alliance reserves the right to change or correct this data at any time, without notice. If the product described herein is under development, significant changes to these specifications are possible. The information in this product data sheet is intended to be general descriptive information for potential customers and users, and is not intended to operate as, or provide, any guarantee or warrantee to any user or customer. Alliance does not assume any responsibility or liability arising out of the application or use of any product described herein, and disclaims any express or implied warranties related to the sale and/or use of Alliance products including liability or warranties related to fitness for a particular purpose, merchantability, or infringement of any intellectual property rights, except as express agreed to in Alliance's Terms and Conditions of Sale (which are available from Alliance). All sales of Alliance products are made exclusively according to Alliance's Terms and Conditions of Sale. The purchase of products from Alliance does not convey a license under any patent rights, copyrights; mask works rights, trademarks, or any other intellectual property rights of Alliance or third parties. Alliance does not authorize its products for use as critical components in life-supporting systems where a malfunction or failure may reasonably be expected to result in significant injury to the user, and the inclusion of Alliance products in such life-supporting systems implies that the manufacturer assumes all risk of such use and agrees to indemnify Alliance against all claims arising from such use.