

R1190x SERIES

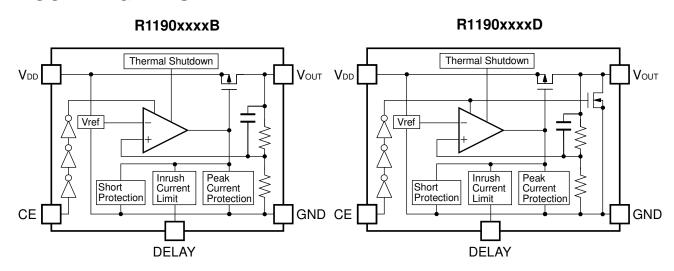
1A VOLTAGE REGULATOR (Operating Voltage up to 16V)

NO.EA-183-161011

OUTLINE

The R1190x series are a low supply current voltage regulator with high output voltage accuracy. The maximum operating voltage is 16V and the output current is 1A. Each of these ICs consists of a voltage reference unit, an error amplifier, a resistor-net for voltage setting, as a short current protection, a peak current protection, a thermal shutdown, an inrush current limit and a chip enable circuit. The wide input voltage range (Max. 16V). Additionally, the output voltage is fixed internally, in the range from 2.0V to 12.0V by the 0.1V steps. The supply current of R1190x series is excellent (Typ. 150μ A) moreover R1190x series has the standby mode (Typ. 0.1μ A) by the chip enable function.

Since the package for these ICs are TO-252-5-P2, SOT-89-5 and HSOP-6J with high power dissipation, high density mounting of the ICs on boards is possible.


FEATURES

Input Voltage Range	3.5V to 16V
Supply Current	
Standby Current	Typ. 0.1μA
Output Voltage Range	2.0V to 12.0V (0.1V steps)
	(For other voltages, please refer to MARK INFORMATIONS.)
Output Voltage Accuracy	±1.5%
Temperature-Drift Coefficient of Output Voltage	Typ. ±100ppm/°C
Dropout Voltage	Typ. 1.1V (lout=1A, Vout=5V)
Output Current	Min. 1A $(3.3V \le V_{OUT} \le 12.0V)$
Line Regulation	Typ. 0.02%/V
Packages	SOT-89-5, HSOP-6J, TO-252-5-P2
Built-in Fold Back Protection Circuit	Typ.300mA (Current at short mode)
Built-in Thermal Shutdown Circuit	
Built-in Inrush Current Limit Circuit	The Delay Pin for setting Inrush Current Limit Time

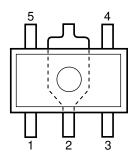
APPLICATIONS

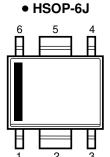
- Power source for digital home appliances.
- · Power source for audio visual equipments.

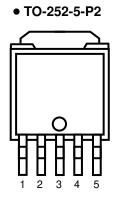
BLOCK DIAGRAMS

SELECTION GUIDE

The output voltage, auto discharge function, package for the ICs can be selected at the user's request.


Product Name	Package	Quantity per Reel	Pb Free	Halogen Free
R1190Hxxx*-T1-FE	SOT-89-5	1,000 pcs	Yes	Yes
R1190Sxxx*-E2-FE	HSOP-6J	1,000 pcs	Yes	Yes
R1190Jxxx*-T1-FE	TO-252-5-P2	3,000 pcs	Yes	Yes


xxx: The output voltage can be designated in the range of 2.0V(020) to 12.0V(120) in 0.1V steps. (For other voltages, please refer to MARK INFORMATIONS.)


- * : The auto discharge function at off state are options as follows.
 - (B) without auto discharge function at off state
 - (D) with auto discharge function at off state

PIN CONFIGURATIONS

• SOT-89-5

PIN DESCRIPTIONS

• SOT-89-5

Pin No.	Symbol	Description	
1	V out	Output Pin	
2	GND	Ground Pin	
3	CE	Chip Enable Pin ("H" Active)	
4	DELAY	Delay Pin (for setting Inrush Current Limit Time)	
5	V _{DD}	Input Pin	

• HSOP-6J

Pin No.	Symbol	Description	
1	Vouт	Output Pin	
2	GND	Ground Pin	
3	CE	Chip Enable Pin ("H" Active)	
4	DELAY	Delay Pin (for setting Inrush Current Limit Time)	
5	GND	Ground Pin	
6	V _{DD}	Input Pin	

• TO-252-5-P2

Pin No.	Symbol	Description	
1	DELAY	Delay Pin (for setting Inrush Current Limit Time)	
2	V_{DD}	Input Pin	
3	GND	Ground Pin	
4	Vout	Output Pin	
5	CE	Chip Enable Pin ("H" Active)	

ABSOLUTE MAXIMUM RATINGS

Symbol	Item	Rating	Unit
V _{IN}	Input Voltage	-0.3 to 18	V
Vce	Input Voltage (CE Pin)	-0.3 to V_{IN} + $0.3 \le 18$	V
Vout	Output Voltage	-0.3 to $V_{\text{IN}}+0.3 \leq 18$	V
	Power Dissipation (SOT-89-5) *	900	
P_D	Power Dissipation (HSOP-6J) *	1700	mW
	Power Dissipation (TO-252-5-P2) *	1900	
Topt	Operating Temperature Range	-40 to 85	°C
Tstg	Storage Temperature Range	-55 to 125	°C

^{*)} For Power Dissipation, please refer to PACKAGE INFORMATION.

ABSOLUTE MAXIMUM RATINGS

Electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause the permanent damages and may degrade the life time and safety for both device and system using the device in the field.

The functional operation at or over these absolute maximum ratings is not assured.

RECOMMENDED OPERATING CONDITIONS (ELECTRICAL CHARACTERISTICS)

All of electronic equipment should be designed that the mounted semiconductor devices operate within the recommended operating conditions. The semiconductor devices cannot operate normally over the recommended operating conditions, even if when they are used over such conditions by momentary electronic noise or surge. And the semiconductor devices may receive serious damage when they continue to operate over the recommended operating conditions.

ELECTRICAL CHARACTERISTICS

 $\label{eq:Voltage} V_{\text{IN}}\!\!=\!\!V_{\text{CE}}\!\!=\!\!Set\ V_{\text{OUT}}\!\!+\!2.0V,\ C_{\text{IN}}\!\!=\!\!C_{\text{OUT}}\!\!=\!\!4.7\mu\text{F},\ I_{\text{OUT}}\!\!=\!\!1\text{mA},\ unless\ otherwise\ noted.$

The specification in ____ is checked and guaranteed by design engineering at -40° C \leq Topt \leq 85°C.

• R1190x Topt=25°C

Symbol	Item	Conditions		Min.	Тур.	Max.	Unit	
V out	Output Voltage	Iouт=1mA	Topt=25°C	×0.985		×1.015	V	
VOUI	Output Voltage	IOUT=IIIIA	$-40^{\circ}C \le T_{opt} \le 85^{\circ}C$	×0.973		×1.027	V	
ΔV оит/ ΔI оит	Load Regulation		Refer to the fo	llowing table				
VDIF	Dropout Voltage		Refer to the fo	llowing ta	owing table			
Iss	Supply Current	Іоит=0mA			150	220	μΑ	
İstandby	Standby Current (CE Off State)	V _{IN} =16V V _{CE} =0V			0.1	1.0	μΑ	
ΔV out $/\Delta V$ in	Line Regulation	Vоит+0.5V (louт=1mA	$Min.3.5V) \le V_{IN} \le 16V$		0.02	0.10	%/V	
RR	Ripple Rejection	f=1kHz, lou	=100mA		60		dB	
Vin	Input Voltage			3.5		16	V	
ΔV оит / ΔT opt	Output Voltage Temperature Coefficient	$lout=1mA, \ -40^{\circ}C \leq Topt \leq 85^{\circ}C$			±100		ppm /°C	
Ішм	Output Current	Refer to the following table						
Isc	Short Current Limit	Vout=0V			300		mA	
Vceh	CE Input Voltage "H"			1.6		VIN	٧	
Vcel	CE Input Voltage "L"			0		0.6	٧	
TTSD	Thermal Shutdown Temperature	Junction Temperature			150		Ô	
Trsr	Thermal Shutdown Released Temperature	Junction Temperature			130		°C	
RLOW	Low Output Nch Tr. ON Resistance (of D version)	V _{IN} =5.0V V _{CE} =0V V _{OUT} =0.3V			150		Ω	

All of units are tested and specified under pulse load conditions such that $T_j \approx T_{opt} = 25^{\circ}C$ except for Ripple Rejection, Output Voltage Temperature Coefficient, Thermal Shutdown, Load Regulation at 600mA (2.0V \leq VouT < 2.5V) and at 700mA (2.5V \leq VouT < 3.3V) and at 1000mA (3.3V \leq VouT \leq 12.0V), Dropout Voltage at 600mA (2.0V \leq VouT < 2.5V) and at 700mA (2.5V \leq VouT < 3.3V) and at 1000mA (3.3V \leq VouT \leq 12.0V).

R1190x

The specification in \square is checked and guaranteed by design engineering at $-40^{\circ}\text{C} \le \text{Topt} \le 85^{\circ}\text{C}$.

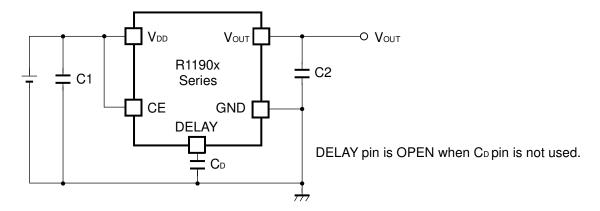
Output Current by Output Voltage

Output Voltage Valle	Output Current I∟⊪ (mA)		
Output Voltage Vουτ	Condition Min.		
2.0V ≤ V _{OUT} < 2.5V		600	
2.5V ≤ V _{OUT} < 3.3V	$V_{\text{IN}} = V_{\text{OUT}} + 2.3V$	700	
3.3V ≤ V _{OUT} ≤ 12.0V		1000	

• Load Regulation by Output Voltage

Topt=25°C

Output Voltage Vоит	Load Regulation ΔVουτ/ΔΙουτ (mV)				
Output voltage voor	Condition	Тур.	Max.		
2.0V ≤ V _{OUT} < 5.0V	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	20	60		
5.0V ≤ Vouт ≤ 12.0V	V _{IN} =V _{OUT} +2.3V, 1mA ≤ I _{OUT} ≤ 200mA	40	100		
$2.0V \le V_{\text{OUT}} < 2.5V$	V_{IN} = V_{OUT} + $2.3V$, $1\text{mA} \le I_{\text{OUT}} \le 600\text{mA}$	80	180		
$2.5V \leq V_{\text{OUT}} < 3.3V$	V_{IN} = V_{OUT} + $2.3V$, $1mA \le I_{\text{OUT}} \le 700mA$	90	200		
$3.3V \le V_{\text{OUT}} < 5.0V$	\\.\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	120	230		
5.0V ≤ Vouт ≤ 12.0V	$V_{IN}=V_{OUT}+2.3V$, $1mA \le I_{OUT} \le 1A$	130	250		


Dropout Voltage by Output Voltage

Topt=25°C

Output Voltage			Dropout Vo	Itage VDIF (V)		
Vout	Condition	Тур.	Max.	Condition	Тур.	Max.
2.0V		/	1.5			
2.1V]		1.4]		
2.2V			1.3	Iouт=600mA	1.6	2.2
2.3V]		1.2]		
2.4V]		1.1]		
2.5V	1		1.0			
2.6V			0.9			
2.7V	louт=200mA		0.8	Iout=700mA	1.5	2.15
$2.8V \le V_{\text{OUT}} < 3.1V$]		0.7]		
$3.1 \text{V} \leq \text{Vout} < 3.3 \text{V}$		0.4	0.7			
$3.3 \text{V} \leq \text{V}_{\text{OUT}} < 4.0 \text{V}$		0.3	0.53		1.6	2.3
$4.0V \le V_{\text{OUT}} < 5.0V$		0.25	0.42	1 1 1 1	1.4	2.1
$5.0 V \leq V_{\text{OUT}} < 9.0 V$		0.19	0.31	- І оит=1 А	1.1	1.85
$9.0V \le V_{\text{OUT}} \le 12.0V$		0.1	0.18		0.8	1.30

All of units are tested and specified under pulse load conditions such that $T_j \approx T_{opt} = 25^{\circ}C$ except for Ripple Rejection, Output Voltage Temperature Coefficient, Thermal Shutdown, Load Regulation at 600mA (2.0V \leq VouT < 2.5V) and at 700mA (2.5V \leq VouT < 3.3V) and at 1000mA (3.3V \leq VouT \leq 12.0V), Dropout Voltage at 600mA (2.0V \leq VouT < 2.5V) and at 700mA (2.5V \leq VouT < 3.3V) and at 1000mA (3.3V \leq VouT \leq 12.0V).

TYPICAL APPLICATION

(External Components)

C1, C2: Ceramic Capacitor 4.7µF Nippon Chemi-con Corporation KTD500B475M43A0T00

TECHNICAL NOTES

When using these ICs, consider the following points:

Phase Compensation

In these ICs, phase compensation is made for securing stable operation even if the load current is varied. For this purpose, use a capacitor Cout with good frequency characteristics and ESR (Equivalent Series Resistance). (Note: If additional ceramic capacitors are connected with parallel to the output pin with an output capacitor for phase compensation, the operation might be unstable. Because of this, test these ICs with as same external components as ones to be used on the PCB.)

PCB Lavout

Make V_{DD} and GND lines sufficient. If their impedance is high, noise pickup or unstable operation may result. Connect a capacitor with a capacitance value as much as $4.7\mu F$ or more between V_{DD} and GND pin, and as close as possible to the pins.

Set external components, especially the output capacitor, as close as possible to the ICs, and make wiring as short as possible. (Refer to the TYPICAL APPLICATION diagram above.)

Thermal Shutdown

There is the built-in thermal-shutdown function in R1190x series. It discontinues operation of the IC when the junction temperature becomes over 150°C (Typ.) and IC re-operates when the junction temperature under 130°C. If the temperature increasing keeps the IC repeats ON and OFF operating. The output becomes the pulse condition.

Chip Enable Circuit

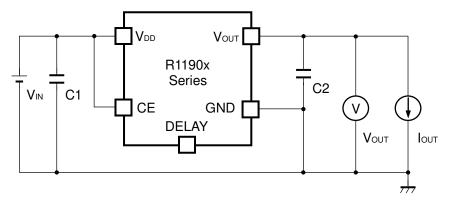
For the output voltage stability, please do not use the intermediate electric potential (the voltage value between V_{CEH} and V_{CEL}) that causes the supply current increasing and the unstable of output voltage.

R1190x

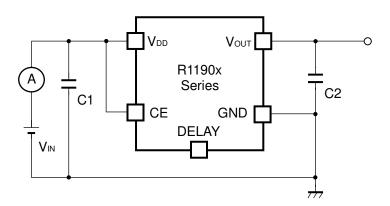
Inrush-Current Limit Function

R1190x Series has the function to limit the inrush-current, it limited approximately 0.3A when the voltage regulator is turn ON. It is also possible to set time of the rush-current limitation by connecting capacitor with DELAY pin. The rush-current time (t_D) and the value of capacitor ($C_D(F)$) is calculatable by the following formula;

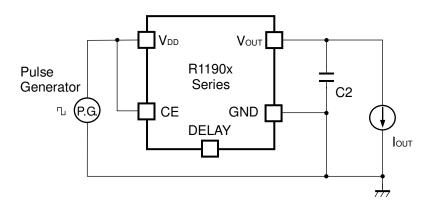
$$t_D = (0.000198 + (3.79 \times 10^7 \times C_D)) \times V_{IN}$$

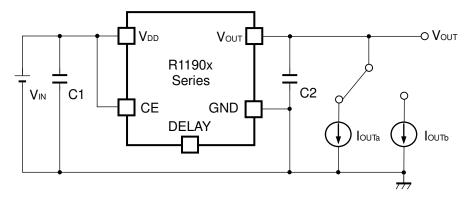

The inrush-current is limited even if the capacitor is not connected with the DELAY pin. In this case, the time is calculated as $C_D=0$ by the formula above.

Though, if the value of time is insufficient for controlling the inrush-current, please connect the capacitor with DELAY pin. The DELAY pin is used as OPEN when the capacitor is not used. Please use the DELAY pin as OPEN when the capacitor is not used.

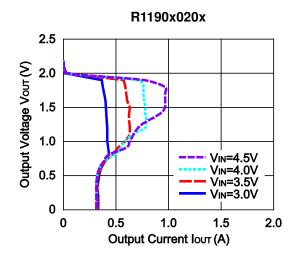

Auto-Discharge Function

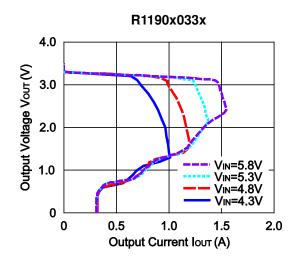
R1190xxxxD series has the auto-discharge function. When "L" signal is put into the Chip-enable pin (CE), the switch between Vout and GND is turned ON and the charge at capacitor is discharge rapidly by the auto-discharge function.

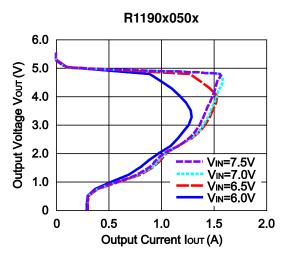

TEST CIRCUITS

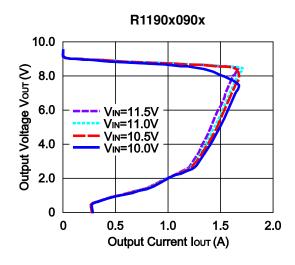

Basic Test Circuit

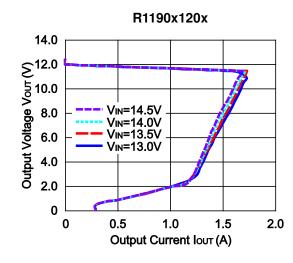
Test Circuit for Supply Current

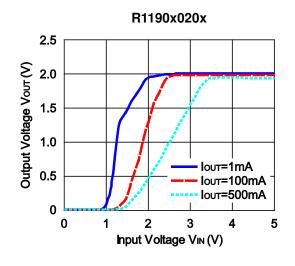

Test Circuit for Ripple Rejection

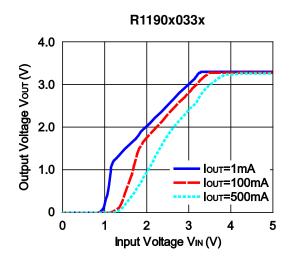


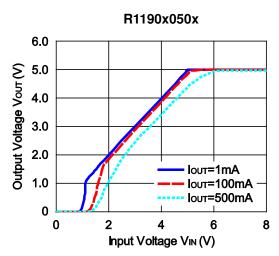

Test Circuit for Load Transient Response

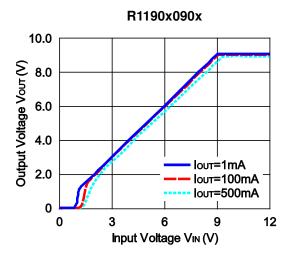

TYPICAL CHARACTERISTIC

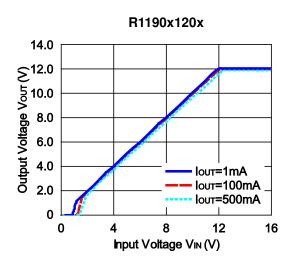

1) Output Voltage vs. Output Current (C1=C2=4.7µF, Topt=25°C)

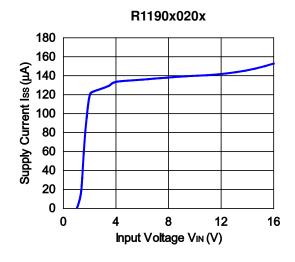


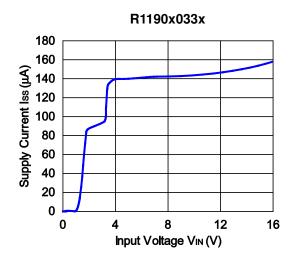


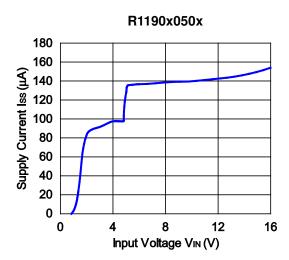


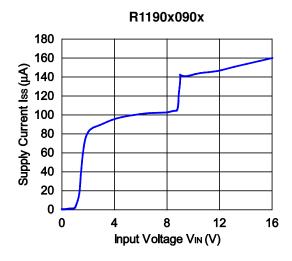


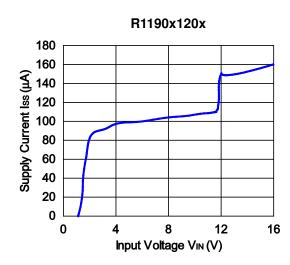

2) Output Voltage vs. Input Voltage (C1=C2=4.7µF, Topt=25°C)

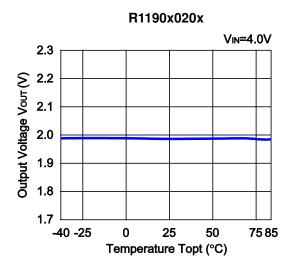


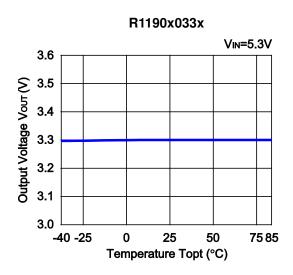


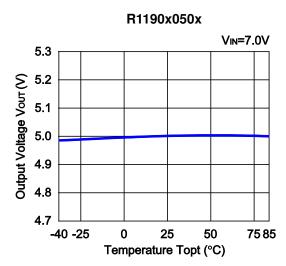


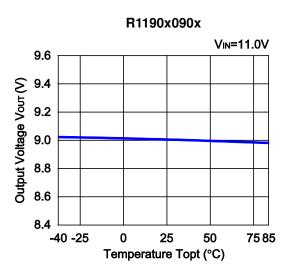


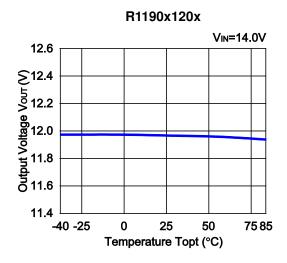

3) Supply Current vs. Input Voltage (C1=C2=4.7 μ F, Topt=25°C)

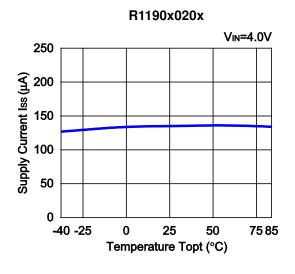


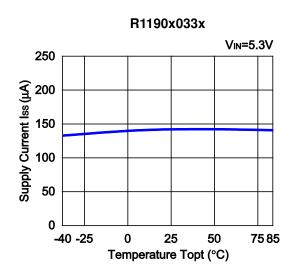


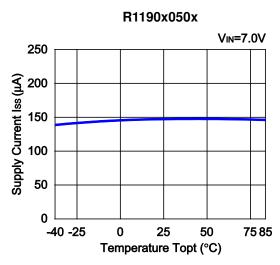


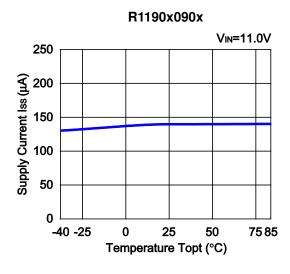


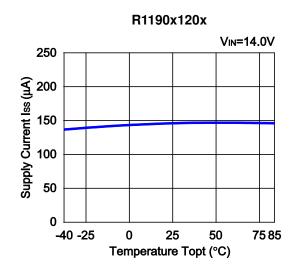

4) Output Voltage vs. Temperature (C1=C2=4.7μF, Ioυτ=1mA)

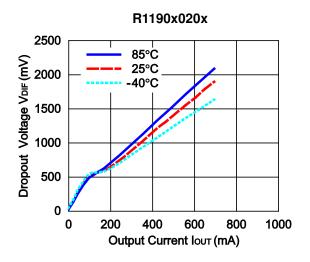


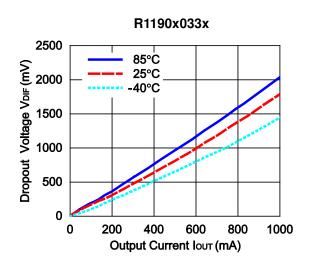


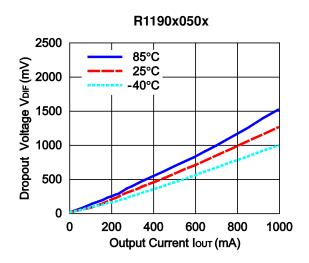


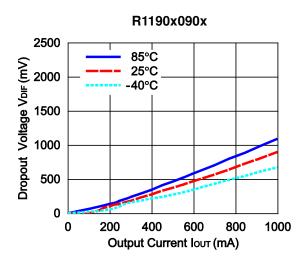


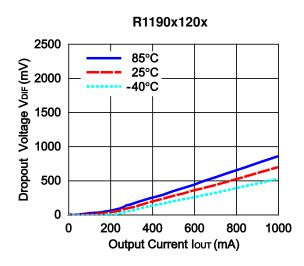

5) Supply Current vs. Temperature (C1=C2=4.7 μ F)

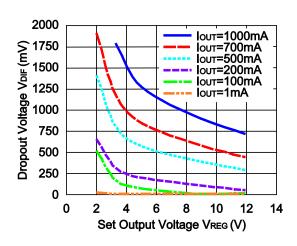


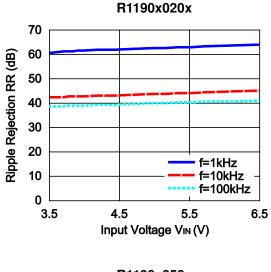


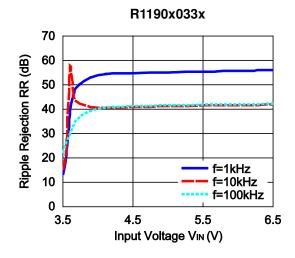


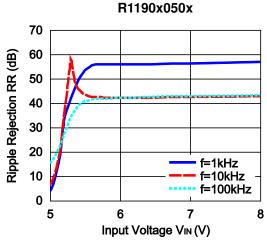



6) Dropout Voltage vs. Output Current (C1=C2=4.7μF)



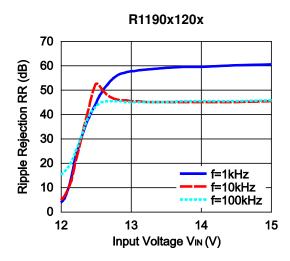


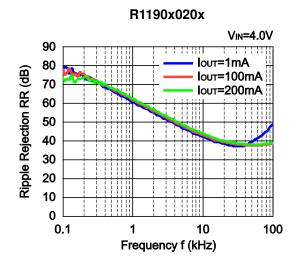


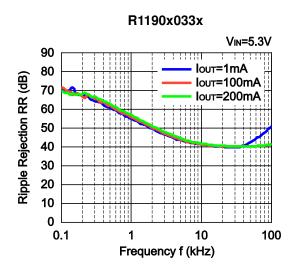

7) Dropout Voltage vs. Set Output Voltage (C1=C2=4.7µF, Topt=25°C)

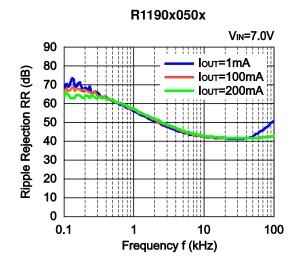


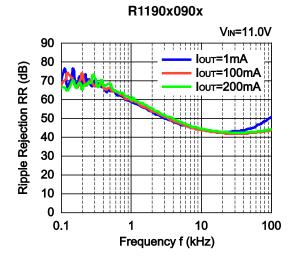
8) Ripple Rejection vs. Input Voltage (C1=none, C2=4.7μF, Iouτ=100mA, Ripple=0.2Vp-p, Topt=25°C)

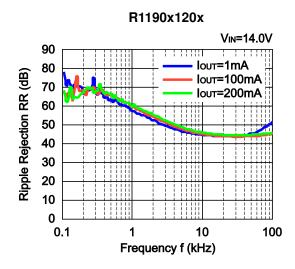


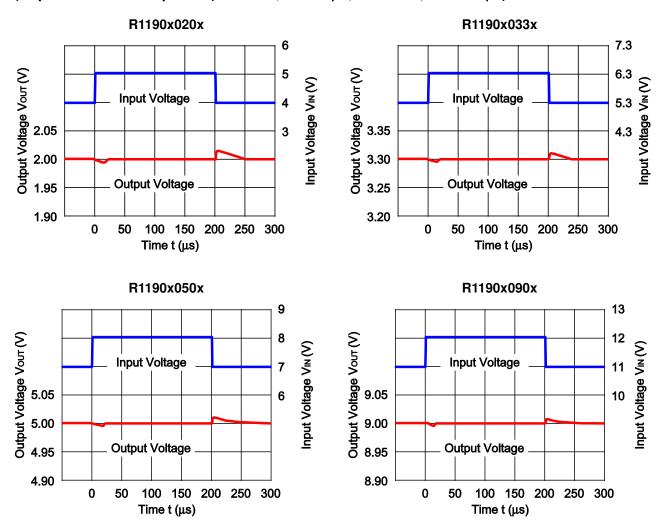


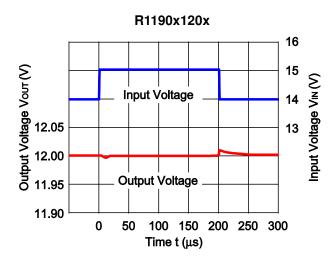


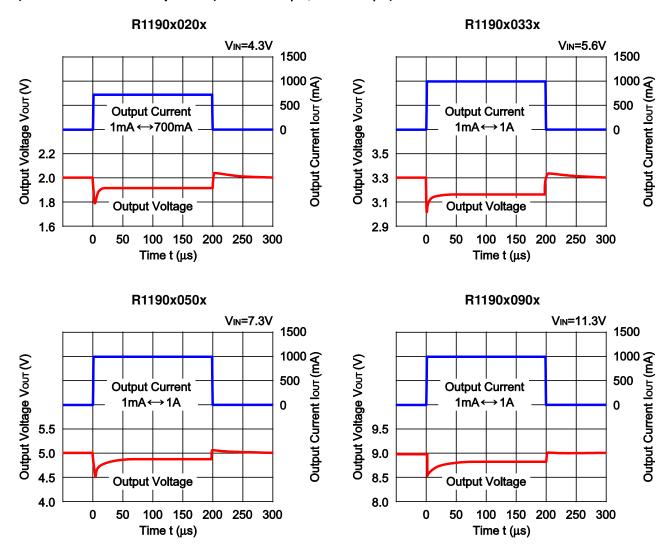

R1190x

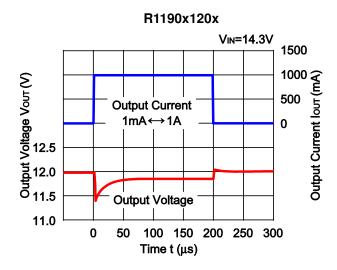



9) Ripple Rejection vs. Frequency (C1=none, C2=4.7μF, Ripple=0.2Vp-p, Topt=25°C)

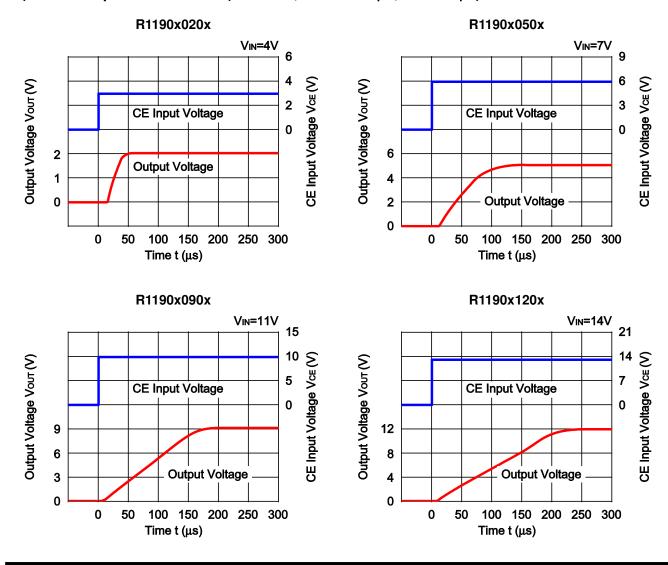




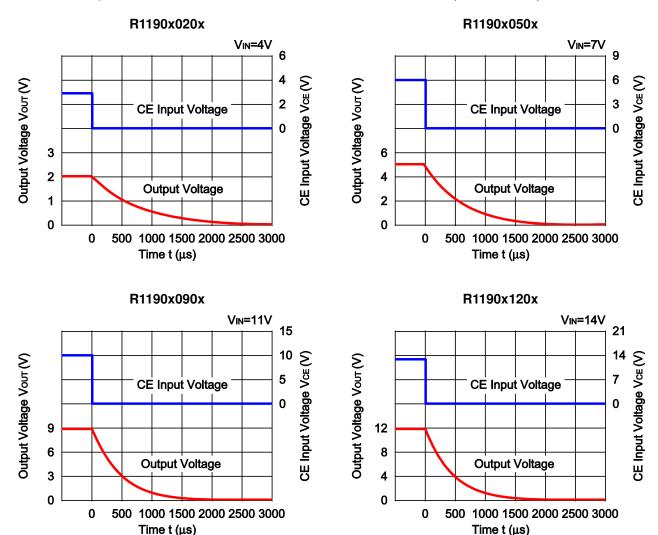

10) Input Transient Response (C1=none, C2=4.7μF, Ιουτ=1mA, tr=tf=0.5μs)

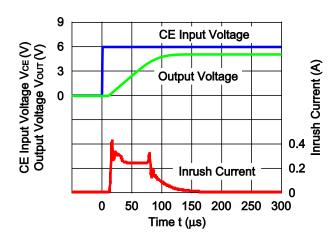


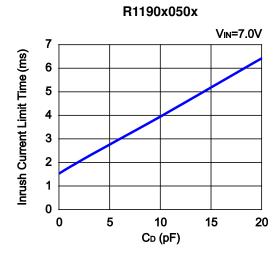
R1190x

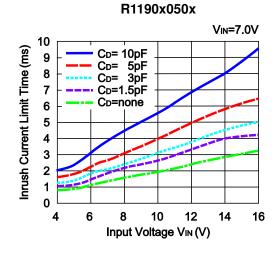


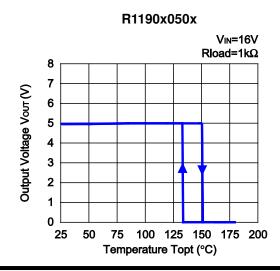
11) Load Transient Response (C1=C2=4.7μF, tr=tf=0.5μs)




12) Turn On Speed with CE Pin (Ioυτ=1mA, C1=C2=4.7μF, tr=tf=0.5μs)


13) Turn Off Speed with CE Pin (D Version) (Ιουτ=1mA, C1=C2=4.7μF, tr=tf=0.5μs)


14) Inrush Current at Turn On (V_{IN}=7.0V, C1=C2=4.7μF, C_D=none, tr=tf=0.5μs)


15) Inrush Current Limit vs. C_D Capacitance (C1=C2=4.7µF)

16) Inrush Current Limit Delay Time vs. Input Voltage (C1=C2=4.7μF)

17) Thermal Shutdown vs. Temperature (C1=C2=4.7 μ F)

ESR vs. Output Current

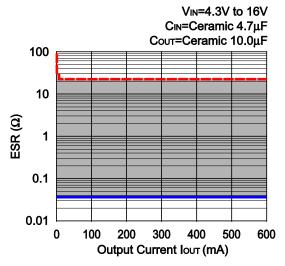
When using these ICs, consider the following points:

The relations between Iout (Output Current) and ESR of an output capacitor are shown below.

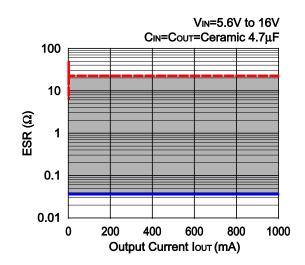
The conditions when the white noise level is under $40\mu Vrms$ (Avg.) are marked as the hatched area in the graph.

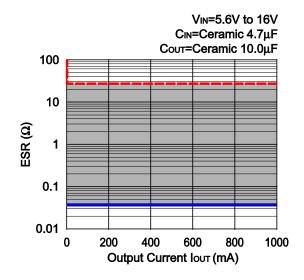
Measurement conditions

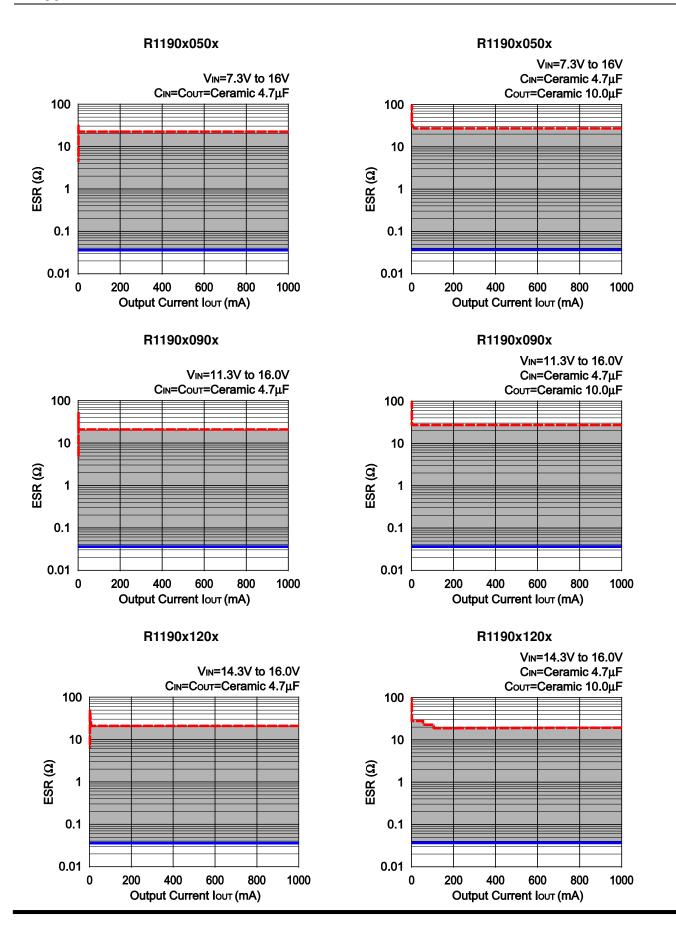
Frequency Band : 10Hz to 1MHzTemperature : -40°C to 85°C


Hatched Area : Noise level is under 40μVrms (Avg.)
 C_{IN} : 4.7μF (KTD500B475M43A0T00)
 C_{OUT} : 4.7μF (KTD500B475M43A0T00)
 : 10.0μF (FK22Y5V1H106Z)

R1190x020x


V_{IN}=4.3V to 16V C_{IN}=Cout=Ceramic 4.7μF 100 10 10 0.1 0.01 0.100 200 300 400 500 600 Output Current lout (mA)


R1190x033x


R1190x020x

R1190x033x

- The products and the product specifications described in this document are subject to change or discontinuation of production without notice for reasons such as improvement. Therefore, before deciding to use the products, please refer to our sales representatives for the latest information thereon.
- 2. The materials in this document may not be copied or otherwise reproduced in whole or in part without prior written consent of our company.
- 3. Please be sure to take any necessary formalities under relevant laws or regulations before exporting or otherwise taking out of your country the products or the technical information described herein.
- 4. The technical information described in this document shows typical characteristics of and example application circuits for the products. The release of such information is not to be construed as a warranty of or a grant of license under our company's or any third party's intellectual property rights or any other rights.
- 5. The products listed in this document are intended and designed for use as general electronic components in standard applications (office equipment, telecommunication equipment, measuring instruments, consumer electronic products, amusement equipment etc.). Those customers intending to use a product in an application requiring extreme quality and reliability, for example, in a highly specific application where the failure or misoperation of the product could result in human injury or death (aircraft, spacevehicle, nuclear reactor control system, traffic control system, automotive and transportation equipment, combustion equipment, safety devices, life support system etc.) should first contact us.
- 6. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products are likely to fail with certain probability. In order to prevent any injury to persons or damages to property resulting from such failure, customers should be careful enough to incorporate safety measures in their design, such as redundancy feature, fire containment feature and fail-safe feature. We do not assume any liability or responsibility for any loss or damage arising from misuse or inappropriate use of the products.
- 7. Anti-radiation design is not implemented in the products described in this document.
- 8. The X-ray exposure can influence functions and characteristics of the products. Confirm the product functions and characteristics in the evaluation stage.
- 9. WLCSP products should be used in light shielded environments. The light exposure can influence functions and characteristics of the products under operation or storage.
- 10. There can be variation in the marking when different AOI (Automated Optical Inspection) equipment is used. In the case of recognizing the marking characteristic with AOI, please contact our sales or our distributor before attempting to use AOI.
- 11. Please contact our sales representatives should you have any questions or comments concerning the products or the technical information.

Nisshinbo Micro Devices Inc.

Official website

https://www.nisshinbo-microdevices.co.jp/en/

Purchase information

https://www.nisshinbo-microdevices.co.jp/en/buy/