
Using the BlueSMiRF




Introduction

Are you ready to hit the airwaves and add Bluetooth to your project? With

the BlueSMiRF and Bluetooth Mate line of products, you�re much closer

than you think to replacing those pesky, tangled RX and TX wires with

2.4GHz wireless communication.

Each of these modules has a Bluetooth transceiver on it, meaning they�re

capable of both sending and receiving data. They�re perfect for directly

replacing a wired asynchronous serial interface. Free of wires, your devices

can be up to 100 meters away from each other. On top of those benefits,

these modules are also very easy to use. There�s no messing with

Bluetooth protocols or the stack, just send data over a serial interface, and

it�s piped through to whatever Bluetooth module to which it�s connected.

In this tutorial we�ll cover everything you need to know about these

Bluetooth modules. We�ll begin with an overview of the hardware, and the

differences between each device. Then we�ll get into hardware hookup and

example Arduino code.

Materials and Tools

For starters, you�ll need one of the four Bluetooth modems we�ll be covering

in this tutorial: the Bluetooth Mate Silver, BlueSMiRF Silver, Bluetooth Mate

Gold, or BlueSMiRF Gold. The modules all function in the same way, so

this tutorial is applicable to all four.

Wireless communication won�t do you any good unless you have two

devices that can talk to each other! These Bluetooth modems can talk to

any other Bluetooth device that supports SPP. That (long) list includes

other BlueSMiRFs or Bluetooth Mates, or Bluetooth modules embedded

into your computer, or even your smartphone. If your computer doesn�t

already have a Bluetooth module in it, you can plug a Bluetooth USB

Module into an available USB slot.

Page 1 of 13

We�ll also need something to talk to the Bluetooth modem on the serial end.

This will usually be a microcontroller of some sort. In this tutorial we�ll be

using an Arduino.

Finally, in order to interface to the Bluetooth modem, you�ll need to solder

headers or wires to it. So you�ll need a simple soldering iron and solder.

This topic is covered further in the Hardware Hookup section.

Suggested Reading

First and foremost, check out the Bluetooth technology tutorial if you want

to learn some of the general concepts behind this nifty wireless standard.

It�d also be good if you�re familiar with these concepts:

� Serial Communication

� How to Solder

� What is Arduino?

� Serial Terminal Basics

Hardware Overview

SMiRF? Mate? Silver? Gold? What�s the
Difference?

The �Silver� and �Gold� designations of these modules indicates whether

they use an RN-42 Bluetooth module or an RN-41. The Silvers use the RN-

42, and the Gold uses an RN-41. The difference between those two

modules? Range and transmit power. The RN-41 is a class 1 Bluetooth

module, so it can communicate at up to 100 meters, but it also transmits at

a higher power (meaning shorter battery life). The RN-42 is class 2, which

limits the transmit range to about 10 meters.

The difference between Mate and SMiRF all comes down to the pin-out of

the six-pin header. If you flip each of the boards over, and look at the pin

labels, this is what you�ll see:

The pinout of the Mate matches that of products like the FTDI Basic and the

FTDI Cable. It�s a �standardized� pinout for a serial interface and power

supply combination. This pinout allows the Mate to be plugged directly into

the serial header of Arduino Pro�s and Pro Minis.

A Bluetooth Mate can be plugged directly into the serial header of an

Arduino Pro.

Page 2 of 13

That�s all there is to this whole Mate/SMiRF/Silver/Gold debacle: transmit

range and pinout. Besides that, everything else on these boards is the

exact same � schematic, command interface, size, you name it.

Design Overview

The RN-42 and RN-41 are pin-for-pin compatible, so the schematic for

each of these boards is the same. The only difference exists at the

connector pin-out for the Mate and SMiRF. Click the image below to see a

bigger view of the schematic (or click here to see it in PDF form).

Key to the design are level shifting circuits between the RN-41/42�s serial

pins, and the output header. The maximum operating voltage of the Roving

Networks modules is 3.3V, so these enable a device operating at 5V (like

an Arduino) to safely communicate with the Bluetooth modems. There is

also a linear 3.3V regulator on the board, so a voltage from 3.3V to 6V can

be used to supply power to the module.

The boards also include two LEDs. There�s a red �Stat� LED, and a green

�Connect� LED. These can be used to determine what state the Bluetooth

module is in.

Finally, be aware of where the antenna is � give it some room to breathe.

Don�t place it near any big chunks of metal or enclose it in a Faraday cage,

and you should be just fine.

The Pinouts

Each of the four Bluetooth boards breaks out six pins. Four pins are

devoted to the serial interface, and the other two are for power.

Pin

Label

Pin

Function

Input,

Output,

Power?

Description

RTS-O
Request to

send
Output

RTS is used for hardware flow control in some

serial interfaces. This output is not critical for

simple serial communication.

RX-I
Serial

receive
Input

This pin receives serial data from another

device. It should be connected to the TX of

the other device.

Page 3 of 13

TX-O
Serial

transmit
Output

This pin sends serial data to another device. It

should be connected to the RX of the other

device.

VCC
Voltage

supply

Power

In

This voltage supply signal is routed through a

3.3V regulator, then routed to the Bluetooth

module. It should range from 3.3V to 6V.

CTS-I
Clear to

send
Input

CTS is another serial flow control signal. Like

RTS, it's not required for most, simple serial

interfaces.

GND Ground
Power

In

The 0V reference voltage, common to any

other device connected to the Bluetooth

modem.

Powering the Modules

These Bluetooth devices are designed to work seamlessly in both 3.3V and

5V systems. The voltage supplied to the VCC/GND pins can be anywhere

between 3.3V and 6V. Voltages on the input serial and control signals

(RX-I and CTS-I) can be anywhere between 3.3V and 5V. The output

signals (TX-O and RTS-O) will range from 0V for a LOW logic level, and

VCC for a HIGH. That means if you power them at 6V, the TX and RTS

signals will output up to 6V.

The current consumption of a modem depends on what it�s doing at the

time. It can be as low as 0.026mA when the device is asleep, and as high

as 50mA when data is being transmitted. This table from the datasheet

provides some good estimates:

Connecting a device up to the Bluetooth modems is as easy as applying

power and wiring up the serial RX and TX pins. What do we send over that

serial interface, though? That�s where we need to look at the the firmware

and the Bluetooth module�s operation modes.

Hardware Hookup

Assembly

Happily, most of the assembly on these modules is done for you; you don�t

need to learn how to solder SMD components just yet. However, before you

can begin using these Bluetooth modules, you�ll need to solder something

into the six plated-through-holes to form a solid electrical connection.

What you solder into the holes depends mostly on what you�re going to

connect the device to. If you�ve got a Bluetooth Mate, and want to connect it

directly to an Arduino Pro, you may want to throw a right-angle female

header on there. Another good option, which makes the board breadboard-

compatible, is male-headers. A third, ever-reliable option is to solder wires

directly to the holes.

Page 4 of 13

Right-angle male or female headers are good options for assembly. They

make the modules breadboard or jumper-wire compatible.

Connecting Everything Together

We need to connect the Bluetooth modems to devices that can send and

receive serial signals. These are TTL-level serial signals, make sure you

don�t confuse that with RS-232! Voltages should be between 3.3V and 5V.

There are loads of options here, for this tutorial we�ll use an Arduino.

Instead of connecting the Bluetooth modem to the Arduino�s lone hardware

UART, we�ll use SoftwareSerial and connect the modem�s RX and TX pins

to any of the Arduino�s free digital pins. This will help to avoid bus

contention and will make sure the Bluetooth modem doesn�t receive any

spurious data during a sketch upload. Here�s the connections we�ll make for

the example code later in this tutorial:

Note that this is a Bluetooth Mate shown in the Fritzing diagram, the

BlueSMiRF will have a different pinout.

TX-O is connected to D2 of the Arduino, RX-I is connected to D3, GND

goes to GND, and VCC goes to 5V. The CTS-I and RTS-O pins are left

floating. The TX-O and RX-I pins could really be connected to any digital

pin (besides 0 and 1), so if you need 2 and 3 for something else, feel free to

move those around.

Half of the hardware hookup is done. We still need to create a wireless

connection to another Bluetooth device. Before we can delve further into

that, though, we need to understand more about the Bluetooth modem�s

firmware.

Firmware Overview

A serial interface is all it takes to control these Bluetooth modules and send

data through them. They act, essentially, like a data pipeline. Serial data

that goes into the module (from the RX-I pin), is passed out the Bluetooth

connection. Data coming in from the Bluetooth side is passed out the serial

side (out the TX-O pin).

Establishing this data pipeline is a two step process. First, we need to

connect something capable of sending and receiving serial data to the

header of the Bluetooth modem. We achieved this in the Hardware Hookup

Page 5 of 13

phase by connecting an Arduino to the serial header, but any

microcontroller with a UART could work. With the device connected we

need to configure the serial port to work at the same baud rate the the

modem is configured to � they default to 115200 bps (8-N-1).

Secondly, on the Bluetooth end of things, we need to establish a wireless

connection between the modem and another Bluetooth device. The only

stipulation here is the other Bluetooth device must support SPP (which

most do). This connection involves a pairing process similar to connecting

any other Bluetooth devices together. More on that later. Let�s talk a bit

more about the serial interface.

Data and Command Modes

Controlling the Bluetooth module and sending data through it are two very

separate operations, but they�re both done via the serial interface. To

differentiate between these two forms of data, the Bluetooth modules

implement two different communication modes.

Command mode is used to configure the Bluetooth module.

Characteristics like the device name, baud rate, PIN code, and data rate

can be adjusted in command mode. This is also where action commands

are sent to the module, which can tell it to connect to a device or scan for

other modules.

In data mode, the Bluetooth module acts as a transparent data gateway.

Any data received over the Bluetooth connection is routed out the module�s

TX pin. And data sent to the module�s RX pin is piped out over the

Bluetooth connection.

To enter command mode from data mode, the host controller needs to

send a string of three $ symbols ($$$).

Configuration Timer

The configuration timer is the one obstacle to watch out for when entering

command mode. The config timer begins counting as soon as the Bluetooth

modem is turned on, and once it�s done counting, you�ll be unable to enter

config mode unless you cycle power. By default the config timer is set to 60

seconds, however this can be adjusted, or even turned off (that�s the

ticket!).

Deciphering the LEDs

There are two LEDs on the Bluetooth modems: a red one labeled �Stat�,

and a green one labeled �Connect�. These help to indicate the status of the

module. Never forget the importance of blinkies! The green LED will

illuminate when a wireless connection is formed. The �Stat� LED can

indicate that the module is in one of three states, depending on how fast it

blinks:

Mode
Stat Blink

Rate
Notes

Configuration
10 per

second
Module is in config mode.

Startup/Config Timer
2 per

second

Module is not in config mode, but the

configuration timer is still counting.

Discoverable/Inquiring/Idle
1 per

second

Not in config mode, and the config

timer has run out.

Page 6 of 13

If you�re having trouble getting the module to enter configuration mode,

make sure the timer hasn�t run out by checking for a very slow blink rate.

Commanding the Bluetooth Modems

Control of the Bluetooth modems is achieved through a series of AT

commands, all of which are documented in the Advanced User�s Guide. If

you want to get the most out of these modules, make sure you read through

that. The commands are split into five categories: set, get, change, action,

and GPIO commands. Chapter 2 of the User�s Guide covers each of the

commands in detail. Appendix B is a quick reference guide � an excellent

resource.

In the Example Code section we�ll go over a few of the more commonly

used commands � naming the device, searching for available modules, and

connecting to them.

Example Code: Using Command Mode

With a little ingenuity, we can use the Arduino as a medium between us and

the Bluetooth Mate/BlueSMiRF to send and receive commands. Here�s a

small sketch which relays data between the Arduino Serial Monitor and a

Bluetooth modem.

Page 7 of 13

/*
 Example Bluetooth Serial Passthrough Sketch
 by: Jim Lindblom
 SparkFun Electronics
 date: February 26, 2013
 license: Public domain

 This example sketch converts an RN­42 bluetooth module to
 communicate at 9600 bps (from 115200), and passes any serial
 data between Serial Monitor and bluetooth module.
 */
#include <SoftwareSerial.h>

int bluetoothTx = 2; // TX­O pin of bluetooth mate, Arduino D
2

int bluetoothRx = 3; // RX­I pin of bluetooth mate, Arduino D
3

SoftwareSerial bluetooth(bluetoothTx, bluetoothRx);

void setup()

{
 Serial.begin(9600); // Begin the serial monitor at 9600bps

 bluetooth.begin(115200); // The Bluetooth Mate defaults to
115200bps

 bluetooth.print("$"); // Print three times individually
 bluetooth.print("$");
 bluetooth.print("$"); // Enter command mode
delay(100); // Short delay, wait for the Mate to send back

CMD

 bluetooth.println("U,9600,N"); // Temporarily Change the ba
udrate to 9600, no parity

// 115200 can be too fast at times for NewSoftSerial to rela
y the data reliably
 bluetooth.begin(9600); // Start bluetooth serial at 9600
}

void loop()

{
if(bluetooth.available()) // If the bluetooth sent any char

acters

 {
// Send any characters the bluetooth prints to the serial

monitor

 Serial.print((char)bluetooth.read());
 }

if(Serial.available()) // If stuff was typed in the serial
monitor

 {
// Send any characters the Serial monitor prints to the bl

uetooth

 bluetooth.print((char)Serial.read());
 }

// and loop forever and ever!
}

This sketch makes use of the SoftwareSerial library, which should be

included with most of the recent versions of Arduino.

At the beginning of the sketch, the Arduino enters the command mode

string and temporarily changes the Bluetooth modem�s baud rate to 9600

bps (using the U,9600,N command). Remember this is temporary, so when

power is cycled, the modem will default back to 115200 bps.

Page 8 of 13

The loop of the sketch simply checks to see if either the Bluetooth modem

or the Serial Monitor have sent any data to the Arduino. If so, it�ll relay the

data sent from one device to the other.

Using the Passthrough Sketch

With the code uploaded, and everything hooked up accordingly, open up

the Serial Monitor. Make sure the baud rate is set to 9600. Throughout this

process you�ll have to fudge around with the dropdown menu to the left of

the baud rate selection. It should initially be set to �No line ending�.

First, let�s enter command mode by typing $$$, and click �Send�. You

should see the Bluetooth modem respond with CMD , and you�ll notice the

red Stat LED blinking much faster, this all indicates that the device is in

command mode.

Once you�re in command mode, you�ll need to change the line ending

dropdown to �Newline�. The basis of all this is that the RN-42 module

expects a newline character after every command except for the command

mode string. Annoying, but we�ll deal.

Using GET Commands

The GET commands are a good place to start using command mode,

they�ll display settings, status, or other information that might be helpful. Try

sending the �Display Basic Settings� command by typing �D�, and

pressing �Send�. This will trigger a response from the Bluetooth modem that

details, among other things, the baud rate settings, the name, and the

address (BTA) of the device. The address is something you should take

note of, it can either be identified from this command, or by taking a gander

at the module�s label, next to the �MAC NO�. Each Bluetooth moule has a

unique address which can�t be changed. Try sending the other get

commands, and see what information you can retrieve from the modem.

Using SET Commands

After sending the �D� command, you may have noticed your Bluetooth

modem has it�s own name, in addition to the address. Unlike the address,

this name can be changed to whatever you�d like. By default it�ll be RN42-

XXXX, where XXXX is the last four digits of the address. Let�s give a SET

command a whirl. The SN,<name> command is used to set the name,

where <name> is any collection of up to 20 characters. Think up a unique

name, and assign it to your device. After sending the SN command, the

modem should respond with an �AOK�. Now if you send the D command,

you should see your new name listed next to the �BTName� setting.

Page 9 of 13

Be careful with the SET commands, only change something if you�re sure it

won�t negatively affect the modem, or your ability to communicate with it. If

you change something you don�t think you should have, send the SF, 1
command to reset everything back to its factory default value. Another

handy command, if you�re lazy like me, is ST,0 , which turns the config

timer off. Remember that any setting you modify will be saved to the

Bluetooth modem�s memory, and will be retained upon loss of power.

ACTION Commands

Finally, it�s time for some action. Among other things the Bluetooth

modem�s ACTION commands can be used to find other Bluetooth devices,

connect to them, and disconnect from them.

Begin by sending the inquiry scan command � I,<value> � to search for

other Bluetooth modules in range. The <value> parameter defines the

number of seconds the modem will take to look for other modules. It�ll

default to 10 if not defined. If you just type �I� and click send, the device

should respond with a �Inquiry, COD=0�, and then after ten seconds it�ll

respond with any Bluetooth modules it found. It will print their information as

�BT address, BT name, COD� (COD is class of device).

If the modem finds any modules, you can try sending the connect

command � C,<address> � to connect to one of them. The modem in the

example above found two devices in range, by sending the

C,000666421B01 command, we can attempt to connect to one of them.

After sending the connect command, the device will respond with

�TRYING�, which will be followed by either �CONNECT failed� (the meaning

of which should be pretty apparent) or the connection will be successful!

After a successful connection we immediately enter data mode, and the

modem becomes a pipeline. Any characters sent from one Bluetooth device

will be sent to the other, and vice-versa. To disconnect, you�ll need to re-

enter command mode (don�t forget to set to �No new line�), and send the

�K,� command (with Newline selected, bleh).

There are a lot of other commands to explore! Thumb through the User�s

Manual and familiarize yourself with all of the power at your Bluetooth

modems�s fingertips!

Connecting From Another Device

In the example code section we attempted to connect to a device from the

Bluetooth modem, but what if you wanted to initiate the connection from

another Bluetooth device? This process varies by operating system and

device, but most of the steps involved are pretty similar.

Page 10 of 13

If your device (computer, phone, etc.) doesn�t already have an Bluetooth

modem, you�ll need to connect an external module to it. The Bluetooth USB

Module works for any computer with an available USB slot.

Connecting to the Modem in Windows

Go to the Control Panel and navigate to the Devices and Printers

window. In the top-left section of that window, there should be an Add a

device button. Click that.

When the Add a device window opens your computer�s Bluetooth module

should automatically search for any in-range, available Bluetooth devices.

Those it finds should show up in the window (give the window a few

seconds to search).

If you see your device in this window, double-click it to initiate a connection.

You�ll then be presented with the Select a pairing option window. Since

the modems don�t have an attached keypad, select the Enter the device�s

pairing code option.

On the next window, enter 1234 as the PIN code. This is the default PIN

value for every RN-42 and RN-41.

Page 11 of 13

Windows will take a few moments to install drivers for your device. Once it�s

done, it�ll pop up a notification to let you know that your device is ready to

use!

But how do you actually use it? You�ll need to open up a terminal emulator

(check out our Serial Terminal Basics tutorial for help!). When Windows

installed drivers for your new Bluetooth device, it created a new COM port

for it. Opening up your device manager, and looking in the �Ports (COM &

LPT)� tree, you�ll find a new port named �Standard Serial over Bluetooth link

(COM##)� (there may be two of them).

To open up a connection between the Bluetooth devices, open up a

terminal to that COM port at 9600 bps (8-N-1). (If you see two ports, try the

lower number first). When the terminal opens up, your Bluetooth modem�s

green connect LED should light up. Connection successful!

If you have the sketch from the last example (the serial passthrough) still

loaded up on your Arduino, you can open up a second terminal window to

communicate between devices.

If you�re within the config timer window (cycle power on the modem if you�re

not), you can even remotely enter command mode by sending the �$$$�

string. Now you can remotely alter the settings of your Bluetooth modem.

Nifty!

If your using a Mac, Linux, or even a smartphone, pairing and connecting

should involve a similar process. If authentication is required, you�ll want to

use the PIN-code option, and enter the default PIN of �1234�. Open up a

serial terminal emulator � Terminal or CoolTerm on Mac OSX, a variety of

apps are available for smartphones � to initiate the connection and start

passing data.

Resources and Going Further

Page 12 of 13

Hopefully this tutorial has prepared you for an exciting foray into the world

of wireless communication. Now that you have a good idea of how to

command these Bluetooth modems, and connect them to other devices, the

rest is up to you. How are you going to make use of your pleasant lack of

wire? Go hit the airwaves!

Resources

� RN-42 and RN-41 Command Reference and User�s Guide

� RN-42 Datasheet � For �Silver� versions.

� RN-41 Datasheet � For �Gold� versions.

� Bluetooth Mate Schematic

� BlueSMiRF Schematic

Going Further

If you�re interested in checking out other Bluetooth-related tutorials, check

these links out:

� RN-52 Hookup Guide � The RN-52 is a Bluetooth v3.0 module,

which (on top of SPP) supports the Bluetooth audio profile A2DP.

Using this module you could make a wireless boom box, or a

Bluetooth-enabled MP3 player!

� MetaWatch Teardown and Hookup � The MetaWatch is a

smartwatch with an embedded Bluetooth module. In this tutorial we

use a Bluetooth Mate to communicate between the watch and an

Arduino.

Here are some other tutorials which features wireless communication:

� IR Communication - If you�re only really looking to transmit wireless

data short distances, infrared may be a good (cheap!) option.

� ATmega128RFA1 Dev Board Hookup Guide � The

ATmega128RFA1 sports an RF module which operates on the same

frequency as Bluetooth (2.4 GHz). If you want to dig down into the

nitty, gritty area of RF communication, check out this board.

� Electric Imp Hookup Guide � The Electric Imp makes connecting to

WiFi incredibly easy. Follow along with this tutorial, and you�ll have

an embedded module able to interact with web pages!

Page 13 of 13

9/29/2015https://learn.sparkfun.com/tutorials/using-the-bluesmirf?_ga=1.5397235.1939456957.1425...

