< IGBT MODULES > ## **CM35MXA-24S** HIGH POWER SWITCHING USE INSULATED TYPE CIB (Converter+Inverter+Chopper Brake) - Flat base Type - Copper base plate - •Tin plating pin terminals - •RoHS Directive compliant - •Recognized under UL1557, File E323585 #### **APPLICATION** AC Motor Control, Motion/Servo Control, Power supply, etc. # < IGBT MODULES > CM35MXA-24S HIGH POWER SWITCHING USE INSULATED TYPE ## ABSOLUTE MAXIMUM RATINGS (T $_{\rm j}$ =25 $^{\circ}\text{C},$ unless otherwise specified) INVERTER PART IGBT/DIODE | Symbol | Item | Conditions | Rating | Unit | |--------------------------|------------------------------|---------------------------------------|--------|------| | V _{CES} | Collector-emitter voltage | G-E short-circuited | 1200 | V | | V_{GES} | Gate-emitter voltage | C-E short-circuited | ± 20 | V | | Ic | Collector current | DC, T _C =125 °C (Note2, 4) | 35 | ^ | | I _{CRM} | Collector current | Pulse, Repetitive (Note3) | 70 | A | | P _{tot} | Total power dissipation | T _C =25 °C (Note2, 4) | 355 | W | | I _E (Note1) | Craitte v europat | (Note2) | 35 | ^ | | I _{ERM} (Note1) | Emitter current | Pulse, Repetitive (Note3) | 70 | A | | T _{jmax} | Maximum junction temperature | Instantaneous event (overload) | 175 | °C | #### BRAKE PART IGBT/DIODE | Symbol | Item | Conditions | Rating | Unit | |-------------------|---------------------------------|---------------------------------------|--------|------| | V _{CES} | Collector-emitter voltage | G-E short-circuited | 1200 | V | | V_{GES} | Gate-emitter voltage | C-E short-circuited | ± 20 | V | | Ic | - Collector current | DC, T _C =125 °C (Note2, 4) | 35 | ^ | | I _{CRM} | - Collector current | Pulse, Repetitive (Note3) | 70 | A | | P _{tot} | Total power dissipation | T _C =25 °C (Note2, 4) | 355 | W | | V _{RRM} | Repetitive peak reverse voltage | G-E short-circuited | 1200 | V | | I _F | Forward current | (Note2) | 35 | А | | I _{FRM} | - 1 Orward Current | Pulse, Repetitive (Note3) | 70 | | | T _{jmax} | Maximum junction temperature | Instantaneous event (overload) | 175 | °C | #### **CONVERTER PART DIODE** | Symbol | Item | Conditions | Rating | Unit | |-------------------|---------------------------------|---|--------|------------------| | V_{RRM} | Repetitive peak reverse voltage | - | 1600 | V | | Ea | Recommended AC input voltage | RMS | 440 | V | | Io | DC output current | 3-phase full wave rectifying, T _C =125 °C (Note4) | 35 | Α | | I _{FSM} | Surge forward current | The sine half wave 1 cycle peak value,
f=60 Hz, non-repetitive | 350 | Α | | I ² t | Current square time | Value for one cycle of surge current | 510 | A ² s | | T _{jmax} | Maximum junction temperature | Instantaneous event (overload) | 150 | °C | #### MODULE | Symbol | Item | Conditions | Rating | Unit | |-------------------|--------------------------------|---|------------|------| | Visol | Isolation voltage | Terminals to base plate, RMS, f=60 Hz, AC 1 min | 2500 | V | | T _{Cmax} | Maximum case temperature | (Note4) | 125 | °C | | T _{jop} | Operating junction temperature | Continuous operation (under switching) | -40 ~ +150 | °C | | T _{stg} | Storage temperature | - | -40 ~ +125 | O | #### **MECHANICAL CHARACTERISTICS** | Symbol | Item | Conditions | Conditions | | Limits | | | |-----------------------|------------------------|--------------------------------|------------|-------|--------|------|------| | Symbol | item | Conditions | | | Тур. | Max. | Unit | | Ms | Mounting torque | Mounting to heat sink | M 5 screw | 2.5 | 3.0 | 3.5 | N⋅m | | d _s | Creepage distance | Terminal to terminal | | 6.47 | - | - | - mm | | | | Terminal to base plate | | 14.27 | - | - | | | ٩ | Clearance | Terminal to terminal | | 6.47 | - | - | mm | | d _a Cleara | Clearance | Terminal to base plate | | 12.33 | - | - | mm | | m | mass | - | | - | 300 | - | g | | ес | Flatness of base plate | On the centerline X, Y (Note5) | | ±0 | - | +100 | μm | # < IGBT MODULES > CM35MXA-24S HIGH POWER SWITCHING USE INSULATED TYPE ## ELECTRICAL CHARACTERISTICS (T $_{\rm j}$ =25 °C, unless otherwise specified) INVERTER PART IGBT/DIODE | Symbol | Item | Conditions | | | Limits | | Unit | |-----------------------------------|--------------------------------------|---|------------------------|------|--------|------|-------| | Symbol | item | Conditions | | Min. | Тур. | Max. | Offic | | I _{CES} | Collector-emitter cut-off current | V _{CE} =V _{CES} , G-E short-circuited | | - | - | 1.0 | mA | | I _{GES} | Gate-emitter leakage current | V _{GE} =V _{GES} , C-E short-circuited | | - | - | 0.5 | μΑ | | V _{GE(th)} | Gate-emitter threshold voltage | I _C =3.5 mA, V _{CE} =10 V | | 5.4 | 6.0 | 6.6 | V | | | | $I_C=35 A$ (Note6), | T _j =25 °C | - | 1.80 | 2.25 | | | | | V _{GE} =15 V, | T _j =125 °C | - | 2.00 | - | V | | V | Callantan amittan antunation valtana | (Terminal) | T _j =150 °C | - | 2.05 | - | | | V_{CEsat} | Collector-emitter saturation voltage | I _C =35 A (Note6), | T _j =25 °C | - | 1.70 | 2.15 | | | | | V _{GE} =15 V, | T _j =125 °C | - | 1.90 | - | V | | | | (Chip) | T _j =150 °C | - | 1.95 | - | 1 | | Cies | Input capacitance | V _{CE} =10 V, G-E short-circuited | | - | - | 3.5 | | | Coes | Output capacitance | | | - | - | 0.7 | nF | | Cres | Reverse transfer capacitance | | - | - | 0.06 | | | | Q _G | Gate charge | V_{CC} =600 V, I_{C} =35 A, V_{GE} =15 \ | - | 82 | - | nC | | | t _{d(on)} | Turn-on delay time | V 000 V I 05 A V 145 | - | - | 300 | | | | tr | Rise time | V_{CC} =600 V, I_{C} =35 A, V_{GE} =±15 | - | - | 200 | ns | | | t _{d(off)} | Turn-off delay time | | | - | - | | 600 | | t _f | Fall time | R_G =18 Ω, Inductive load | | - | - | 300 | 1 | | | | I _E =35 A (Note6), | T _j =25 °C | - | 1.80 | 2.25 | | | | | G-E short-circuited, | T _i =125 °C | - | 1.80 | - | V | | (Note1) | | (Terminal) | T _i =150 °C | - | 1.80 | - | 1 | | $V_{\text{EC}}^{ (\text{Note1})}$ | Emitter-collector voltage | I _E =35 A (Note6), | T _i =25 °C | - | 1.70 | 2.15 | | | | | G-E short-circuited, | T _i =125 °C | - | 1.70 | - | ٧ | | | | (Chip) | T _i =150 °C | - | 1.70 | - | 1 | | t _{rr} (Note1) | Reverse recovery time | V _{CC} =600 V, I _E =35 A, V _{GE} =±15 | V, | - | - | 300 | ns | | Q _{rr} (Note1) | Reverse recovery charge | $R_G=18 \Omega$, Inductive load | | - | 1.9 | - | μC | | Eon | Turn-on switching energy per pulse | V _{CC} =600 V, I _C =I _E =35 A, | | - | 4.2 | - | ! | | E _{off} | Turn-off switching energy per pulse | $V_{GE}=\pm 15 \text{ V}, R_{G}=18 \Omega, T_{j}=150$ | °C, | - | 3.7 | - | - mJ | | E _{rr} (Note1) | Reverse recovery energy per pulse | Inductive load | | - | 3.5 | - | mJ | | R _{CC'+EE'} | Internal lead resistance | Main terminals-chip, per switch, $T_C=25 ^{\circ}C ^{\text{(Note4)}}$ | | - | - | 5.7 | mΩ | | r _g | Internal gate resistance | Per switch | | - | 0 | - | Ω | #### **BRAKE PART IGBT/DIODE** | Currele el | lte ee | Consultations | | Limits | | | Unit | |--------------------|--------------------------------------|---|------------------------|--------|------|------|-------| | Symbol | Item | Conditions | | Min. | Тур. | Max. | Offic | | I _{CES} | Collector-emitter cut-off current | V _{CE} =V _{CES} , G-E short-circuited | | - | - | 1.0 | mA | | I _{GES} | Gate-emitter leakage current | V _{GE} =V _{GES} , C-E short-circuited | | - | - | 0.5 | μA | | $V_{GE(th)}$ | Gate-emitter threshold voltage | I_{C} =3.5 mA, V_{CE} =10 V | | 5.4 | 6.0 | 6.6 | V | | | Collector-emitter saturation voltage | $I_C=35 A$ (Note6), | T _j =25 °C | - | 1.80 | 2.25 | | | V | | V _{GE} =15 V, | T _j =125 °C | - | 2.00 | - | V | | | | (Terminal) | T _j =150 °C | - | 2.05 | - | | | V _{CEsat} | | $I_C=35 A$ (Note6), | T _j =25 °C | - | 1.70 | 2.15 | | | | | V _{GE} =15 V, | T _j =125 °C | - | 1.90 | - | V | | | | (Chip) | T _j =150 °C | | 1.95 | - | | | Cies | Input capacitance | | | - | - | 3.5 | | | Coes | Output capacitance | V _{CE} =10 V, G-E short-circuited | | - | - | 0.7 | nF | | Cres | Reverse transfer capacitance | | | - | - | 0.06 | | | Q _G | Gate charge | V _{CC} =600 V, I _C =35 A, V _{GE} =15 V | | - | 82 | - | nC | # < IGBT MODULES > CM35MXA-24S HIGH POWER SWITCHING USE INSULATED TYPE ## ELECTRICAL CHARACTERISTICS (cont.; T $_{j}$ =25 °C, unless otherwise specified) BRAKE PART IGBT/DIODE | Cymbal | ltom | Conditions | | | Limits | | Unit | |---------------------|-------------------------------------|---|------------------------|------|--------|------|------| | Symbol | Item | Conditions | | Min. | Тур. | Max. | Unit | | t _{d(on)} | Turn-on delay time | V 600 V L 35 A V L15 V | | - | - | 300 | | | tr | Rise time | V_{CC} =600 V, I_{C} =35 A, V_{GE} =±15 | ν, | - | - | 200 | no | | t _{d(off)} | Turn-off delay time | $R_G=18 \Omega$, Inductive load | | - | - | 600 | ns | | tf | Fall time | H _G =10 Ω, illuuctive load | | - | - | 300 | | | I _{RRM} | Reverse current | V _R =V _{RRM} , G-E short-circuited | | - | - | 1.0 | mA | | | | $I_F=35 A$ (Note6), | T _j =25 °C | - | 1.80 | 2.25 | | | | | G-E short-circuited, | T _j =125 °C | - | 1.80 | - | V | | V_{F} | Forward voltage | (Terminal) | T _j =150 °C | - | 1.80 | - | | | VF | | $I_F=35 A$ (Note6), | T _j =25 °C | - | 1.70 | 2.15 | | | | | G-E short-circuited, | T _j =125 °C | - | 1.70 | - | V | | | | (Chip) | T _j =150 °C | - | 1.70 | - | | | t _{rr} | Reverse recovery time | V_{CC} =600 V, I_F =35 A, V_{GE} =±15 | V, | - | - | 300 | ns | | Q _{rr} | Reverse recovery charge | $R_G=18 \Omega$, Inductive load | | - | 1.9 | - | μC | | Eon | Turn-on switching energy per pulse | V _{CC} =600 V, I _C =I _F =35 A, | | - | 4.2 | - | mJ | | E _{off} | Turn-off switching energy per pulse | $V_{GE}=\pm 15 \text{ V}, R_{G}=18 \Omega, T_{j}=150 \text{ °C},$ | | - | 3.7 | - | 1113 | | Err | Reverse recovery energy per pulse | Inductive load | | - | 3.5 | - | mJ | | r _g | Internal gate resistance | - | | - | 0 | - | Ω | #### **CONVERTER PART DIODE** | Symbol | ltem | Conditions | Limits | | | Unit | |------------------------------|-----------------|---|--------|------|------|-------| | | | | Min. | Тур. | Max. | Offic | | I _{RRM} | Reverse current | V _R =V _{RRM} , T _j =150 °C | - | - | 4.0 | mA | | V _F
(Terminal) | Forward voltage | I _F =35 A (Note6) | - | 1.2 | 1.6 | V | #### **NTC THERMISTOR PART** | Symbol Item | Itom | Conditions | | Unit | | | |----------------------|-------------------------|---|------|------|-------|----| | | Conditions | Min. | Тур. | Max. | Offic | | | R ₂₅ | Zero-power resistance | T _C =25 °C (Note4) | 4.85 | 5.00 | 5.15 | kΩ | | ΔR/R | Deviation of resistance | R ₁₀₀ =493 Ω, T _C =100 °C (Note4) | -7.3 | - | +7.8 | % | | B _(25/50) | B-constant | Approximate by equation (Note7) | - | 3375 | - | K | | P ₂₅ | Power dissipation | T _C =25 °C (Note4) | - | - | 10 | mW | #### THERMAL RESISTANCE CHARACTERISTICS | Symbol | Item | Conditions | Limits | | | Unit | |--------------------------|------------------------------------|---------------------------------------|--------|------|------|-------| | Symbol | iteiii | Conditions | Min. | Тур. | Max. | Offic | | $R_{th(j-c)Q}$ | | Junction to case, per Inverter IGBT | - | - | 0.42 | K/W | | $R_{th(j-c)D}$ | | Junction to case, per Inverter DIODE | - | - | 0.69 | r√ vv | | $R_{th(j-c)Q}$ | Thermal resistance (Note4) | Junction to case, per Brake IGBT | - | - | 0.42 | K/W | | $R_{th(j-c)D}$ | | Junction to case, per Brake DIODE | - | - | 0.69 | 17/44 | | $R_{th(j-c)D}$ | | Junction to case, per Converter DIODE | - | - | 0.45 | K/W | | D. Contact they mal year | Contact thermal resistance (Note4) | Case to heat sink, per 1 module, | | 15 | | K/kW | | $R_{th(c-s)}$ | i Comaci memiai resisiance | Thermal grease applied (Note8) | - | 15 | - | r/KVV | #### < IGBT MODULES > CM35MXA-24S HIGH POWER SWITCHING USE INSULATED TYPE Note1. Represent ratings and characteristics of the anti-parallel, emitter-collector free wheeling diode (DIODE). - 2. Junction temperature (T_j) should not increase beyond T_{jmax} rating. - 3. Pulse width and repetition rate should be such that the device junction temperature (T_i) dose not exceed T_{imax} rating. - 4. Case temperature (T_C) and heat sink temperature (T_s) are defined on the each surface (mounting side) of base plate and heat sink just under the chips. Refer to the figure of chip location. - 5. The base plate (mounting side) flatness measurement points (X, Y) are as follows of the following figure. - Pulse width and repetition rate should be such as to cause negligible temperature rise. Refer to the figure of test circuit. - 7. $B_{(25/50)} = ln(\frac{R_{25}}{R_{50}})/(\frac{1}{T_{25}} \frac{1}{T_{50}})$, R_{25} : resistance at absolute temperature T_{25} [K]; T_{25} =25 [°C]+273.15=298.15 [K] R_{50} : resistance at absolute temperature T_{50} [K]; T_{50} =50 [°C]+273.15=323.15 [K] - 8. Typical value is measured by using thermally conductive grease of λ =0.9 W/(m·K). - 9. Use the following screws when mounting the printed circuit board (PCB) on the stand offs. "φ2.6×10 or φ2.6×12 self tapping screw" The length of the screw depends on the thickness (t1.6~t2.0) of the PCB. #### RECOMMENDED OPERATING CONDITIONS | Symbol | Item | Conditions | Conditions | | Limits | | | |-----------------|-------------------------------------|--|--|------|--------|------|------| | Symbol | item | Conditions | | Min. | Тур. | Max. | Unit | | V _{CC} | (DC) Supply voltage | Applied across P-N/P1-N1 terminals | | - | 600 | 850 | V | | V_{GEon} | Gate (-emitter drive) voltage | Applied across GB-Es/
G*P-*/G*N-Es(*=U, V, W) t | Applied across GB-Es/
G*P-*/G*N-Es(*=U, V, W) terminals | | 15.0 | 16.5 | ٧ | | R _G | External gate resistance Per switch | Por awitab | Inverter IGBT | 18 | - | 180 | 0 | | ng | | Brake IGBT | | 18 | - | 180 | 1 12 | #### **CHIP LOCATION (Top view)** Dimension in mm, tolerance: ±1 mm Tr*P/Tr*N/TrBr: IGBT, Di*P/Di*N: DIODE (*=U/V/W), DiBr: BRAKE DIODE, CR*P/CR*N: CONVERTER DIODE (*=R/S/T), Th: NTC thermistor #### **TEST CIRCUIT AND WAVEFORMS** Turn-on / Turn-off switching energy and Reverse recovery energy test waveforms (Integral time instruction drawing) ^{*} In the above test circuit, should use all three main pin terminals (P1/N1/P/N/U/V/W) for connection with the terminals and the current source. **INVERTER PART** ## OUTPUT CHARACTERISTICS (TYPICAL) #### COLLECTOR-EMITTER SATURATION VOLTAGE CHARACTERISTICS (TYPICAL) #### COLLECTOR-EMITTER SATURATION VOLTAGE CHARACTERISTICS (TYPICAL) #### FREE WHEELING DIODE FORWARD CHARACTERISTICS (TYPICAL) #### **INVERTER PART** #### **HALF-BRIDGE SWITCHING CHARACTERISTICS** (TYPICAL) #### **HALF-BRIDGE SWITCHING CHARACTERISTICS** (TYPICAL) V_{CC} =600 V, V_{GE} =±15 V, R_{G} =18 Ω , INDUCTIVE LOAD, PER PULSE #### HALF-BRIDGE **SWITCHING CHARACTERISTICS** (TYPICAL) V_{CC} =600 V, V_{GE} =±15 V, I_{C} =35 A, INDUCTIVE LOAD -: T_i=150 °C, - - - -: T_i=125 °C #### EXTERNAL GATE RESISTANCE $R_{G}(\Omega)$ #### **HALF-BRIDGE SWITCHING CHARACTERISTICS** (TYPICAL) $V_{\text{CC}}{=}600~\text{V},\,V_{\text{GE}}{=}\pm15~\text{V},\,I_{\text{C}}{=}35~\text{A},\,$ INDUCTIVE LOAD, PER PULSE -: T_i=150 °C, - - - - : T_i=125 °C SWITCHING ENERGY (mJ) REVERSE RECOVERY ENERGY (mJ) REVERSE RECOVERY ENERGY (mJ) #### **INVERTER PART** ## CAPACITANCE CHARACTERISTICS (TYPICAL) ## GATE CHARGE CHARACTERISTICS (TYPICAL) ## FREE WHEELING DIODE REVERSE RECOVERY CHARACTERISTICS (TYPICAL) ## TRANSIENT THERMAL IMPEDANCE CHARACTERISTICS (MAXIMUM) Single pulse, $T_C=25$ °C $R_{th(j-c)D}=0.42$ K/W, $R_{th(j-c)D}=0.69$ K/W #### **BRAKE PART** #### COLLECTOR-EMITTER SATURATION VOLTAGE CHARACTERISTICS (TYPICAL) #### HALF-BRIDGE SWITCHING CHARACTERISTICS (TYPICAL) #### CLAMP DIODE FORWARD CHARACTERISTICS (TYPICAL) #### HALF-BRIDGE SWITCHING CHARACTERISTICS (TYPICAL) #### **BRAKE PART** #### HALF-BRIDGE SWITCHING CHARACTERISTICS (TYPICAL) V_{CC} =600 V, V_{GE} =±15 V, R_{G} =18 Ω , INDUCTIVE LOAD, PER PULSE ## CLAMP DIODE REVERSE RECOVERY CHARACTERISTICS (TYPICAL) #### HALF-BRIDGE SWITCHING CHARACTERISTICS (TYPICAL) V_{CC} =600 V, I_{C}/I_{F} =35 A, V_{GE} =±15 V, INDUCTIVE LOAD, PER PULSE EXTERNAL GATE RESISTANCE $R_{G}(\Omega)$ ### TRANSIENT THERMAL IMPEDANCE CHARACTERISTICS (MAXIMUM) Single pulse, T $_{\text{C}}$ =25 °C R $_{\text{th}(j\text{-c})\,\text{Q}}$ =0.42 K/W, R $_{\text{th}(j\text{-c})\,\text{D}}$ =0.69 K/W REVERSE RECOVERY ENERGY (mJ) #### **CONVERTER PART** CONVERTER DIODE FORWARD CHARACTERISTICS (TYPICAL) ## TRANSIENT THERMAL IMPEDANCE CHARACTERISTICS (MAXIMUM) Single pulse, $T_C=25$ °C $R_{th(j-c)D}=0.45$ K/W ### NTC thermistor part TEMPERATURE CHARACTERISTICS (TYPICAL) #### **Important Notice** The information contained in this datasheet shall in no event be regarded as a guarantee of conditions or characteristics. This product has to be used within its specified maximum ratings, and is subject to customer's compliance with any applicable legal requirement, norms and standards. Except as otherwise explicitly approved by Mitsubishi Electric Corporation in a written document signed by authorized representatives of Mitsubishi Electric Corporation, our products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury. In usage of power semiconductor, there is always the possibility that trouble may occur with them by the reliability lifetime such as Power Cycle, Thermal Cycle or others, or when used under special circumstances (e.g. condensation, high humidity, dusty, salty, highlands, environment with lots of organic matter / corrosive gas / explosive gas, or situations which terminals of semiconductor products receive strong mechanical stress). Therefore, please pay sufficient attention to such circumstances. Further, depending on the technical requirements, our semiconductor products may contain environmental regulation substances, etc. If there is necessity of detailed confirmation, please contact our nearest sales branch or distributor. The contents or data contained in this datasheet are exclusively intended for technically trained staff. Customer's technical departments should take responsibility to evaluate the suitability of Mitsubishi Electric Corporation product for the intended application and the completeness of the product data with respect to such application. In the customer's research and development, please evaluate it not only with a single semiconductor product but also in the entire system, and judge whether it's applicable. As required, pay close attention to the safety design by installing appropriate fuse or circuit breaker between a power supply and semiconductor products to prevent secondary damage. Please also pay attention to the application note and the related technical information. #### Keep safety first in your circuit designs! Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap. #### Notes regarding these materials - •These materials are intended as a reference to assist our customers in the selection of the Mitsubishi Electric Semiconductor product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Mitsubishi Electric Corporation or a third party. - •Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials. - •All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Mitsubishi Electric Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi Electric Semiconductor product distributor for the latest product information before purchasing a product listed herein. The information described here may contain technical inaccuracies or typographical errors. Mitsubishi Electric Corporation assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors. Please also pay attention to information published by Mitsubishi Electric Corporation by various means, including the Mitsubishi Electric Semiconductor home page (http://www.MitsubishiElectric.com/semiconductors/). - •When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Mitsubishi Electric Corporation assumes no responsibility for any damage, liability or other loss resulting from the information contained herein. - •Mitsubishi Electric Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Electric Semiconductor product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use. - •The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or reproduce in whole or in part these materials. - •If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination. - Any diversion or re-export contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited. - •Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Electric Semiconductor product distributor for further details on these materials or the products contained therein. Generally the listed company name and the brand name are the trademarks or registered trademarks of the respective companies.