

N-channel 25 V 3.15 m Ω logic level MOSFET in LFPAK using NextPower technology

Rev. 1 — 2 May 2011

Product data sheet

1. Product profile

1.1 General description

Logic level enhancement mode N-channel MOSFET in LFPAK package. This product is designed and qualified for use in a wide range of industrial, communications and domestic equipment.

1.2 Features and benefits

- High reliability Power SO8 package, qualified to 175°C
- Low parasitic inductance and resistance

1.3 Applications

- DC-to-DC converters
- Lithium-ion battery protection
- Load switching

1.4 Quick reference data

Table 1. Quick reference data

- Optimised for 4.5V Gate drive utilising NextPower Superjunction technology
- Ultra low QG, QGD and QOSS for high system efficiencies at low and high loads
- Power OR-ing
- Server power supplies
- Sync rectifier

Table 1.	Quick referenc	e data				
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{DS}	drain-source voltage	25 °C ≤ T _j ≤ 175 °C	-	-	25	V
I _D	drain current	T _{mb} = 25 °C; V _{GS} = 10 V; see <u>Figure 1</u>	<u>[1]</u> -	-	100	A
P _{tot}	total power dissipation	T _{mb} = 25 °C; see <u>Figure 2</u>	-	-	92	W
Tj	junction temperature		-55	-	175	°C

N-channel 25 V 3.15 m Ω logic level MOSFET in LFPAK using

Table I.	Quick reference					
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Static cha	aracteristics					
R _{DSon}	drain-source on-state resistance	V _{GS} = 4.5 V; I _D = 25 A; T _j = 25 °C; see <u>Figure 12</u>	-	3.45	4.1	mΩ
		$\label{eq:VGS} \begin{array}{l} V_{GS} = 10 \text{ V}; \text{ I}_{D} = 25 \text{ A}; \\ T_{j} = 25 \text{ °C}; \\ \text{see } \underline{\text{Figure } 12} \end{array}$	-	2.65	3.15	mΩ
Dynamic	characteristics					
Q_{GD}	gate-drain charge	V_{GS} = 4.5 V; I _D = 25 A; V _{DS} = 12 V;	-	4.4	-	nC
Q _{G(tot)}	total gate charge	see Figure 14; see Figure 15	-	16	-	nC

Table 1 Quick reference data continued

[1] Continuous current is limited by package.

Pinning information 2.

Table 2.	Pinning	information		
Pin	Symbol	Description	Simplified outline	Graphic symbol
1	S	source	_	_
2	S	source	mb	
3	S	source		
4	G	gate	q;	
mb	D	mounting base; connected to drain	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	mbb076 S
			SOT669 (LFPAK;	

Power-SO8)

Ordering information 3.

Table 3. Ordering	information		
Type number	Package		
	Name	Description	Version
PSMN2R9-25YLC	LFPAK; Power-SO8	plastic single-ended surface-mounted package; 4 leads	SOT669

Marking 4.

Table 4. Marking codes	
Type number	Marking code ^[1]
PSMN2R9-25YLC	2C925L

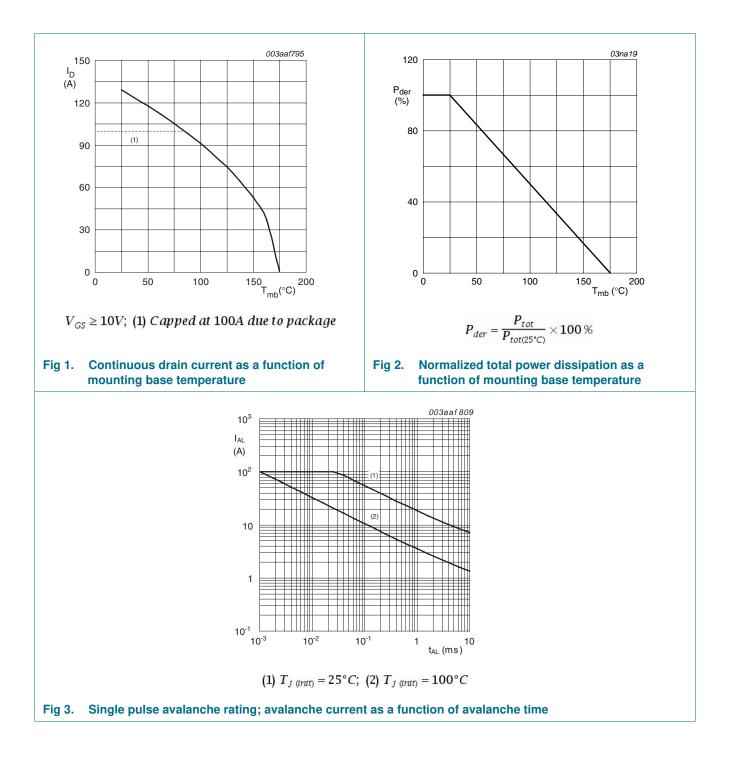
[1] % = placeholder for manufacturing site code.

PSMN2R9-25YLC **Product data sheet**

2 of 15

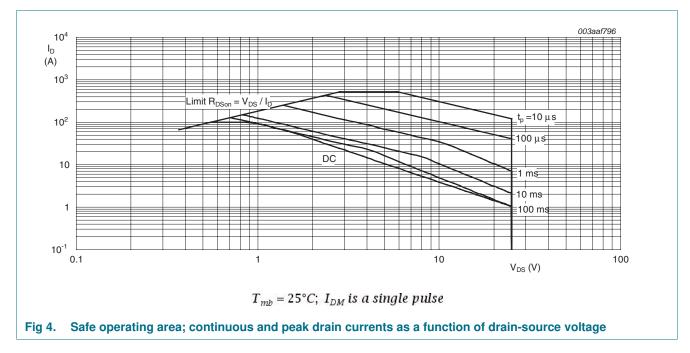
N-channel 25 V 3.15 m Ω logic level MOSFET in LFPAK using

5. Limiting values

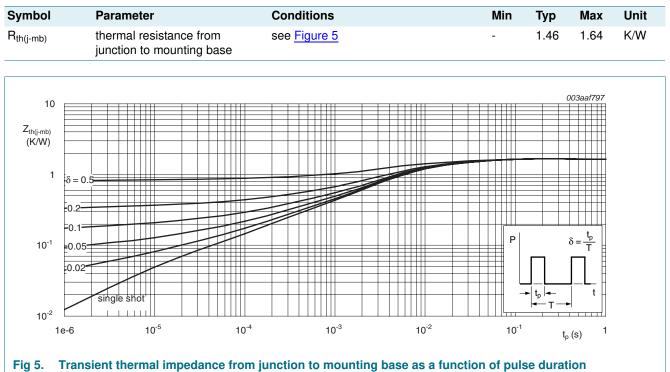

Table 5. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Parameterdrain-source voltagedrain-gate voltagegate-source voltagedrain current	Conditions $25 \text{ °C} \le T_j \le 175 \text{ °C}$ $25 \text{ °C} \le T_j \le 175 \text{ °C}; R_{GS} = 20 \text{ k}\Omega$ $V_{GS} = 10 \text{ V}; T_{mb} = 25 \text{ °C}; \text{ see Figure 1}$	Min - - -20	Max 25 25 20	Unit V V V
drain-gate voltage gate-source voltage	25 °C \leq T _j \leq 175 °C; R _{GS} = 20 kΩ	- - -20	25	V
gate-source voltage		- -20		-
	$V_{ex} = 10 V T_{ex} = 25 $ °C : see Figure 1	-20	20	V
drain current	$V_{ab} = 10 V_{c}T_{ab} = 25 $ °C; see Figure 1			v
	$v_{\rm GS} = 10$ v, $1_{\rm mb} = 20$ O, see <u>rigule 1</u>	<u>[1]</u> _	100	А
	V_{GS} = 10 V; T_{mb} = 100 °C; see <u>Figure 1</u>	-	91	А
peak drain current	pulsed; $t_p \le 10 \ \mu s$; $T_{mb} = 25 \ ^{\circ}C$; see <u>Figure 4</u>	-	517	A
total power dissipation	T _{mb} = 25 °C; see <u>Figure 2</u>	-	92	W
storage temperature		-55	175	°C
junction temperature		-55	175	°C
peak soldering temperature		-	260	°C
electrostatic discharge voltage	MM (JEDEC JESD22-A115)	380	-	V
diode				
source current	T _{mb} = 25 °C	-	83	Α
peak source current	pulsed; $t_p \le 10 \ \mu s$; $T_{mb} = 25 \ ^{\circ}C$	-	517	Α
ggedness				
non-repetitive drain-source avalanche energy	$ \begin{array}{l} V_{GS} = 10 \text{ V}; \ T_{j(init)} = 25 \ ^{\circ}\text{C}; \ I_{D} = 100 \text{ A}; \\ V_{sup} \leq 25 \text{ V}; \ unclamped; \ R_{GS} = 50 \ \Omega; \\ \text{see } \overline{Figure \ 3} \end{array} $	-	47	mJ
	total power dissipation storage temperature junction temperature peak soldering temperature electrostatic discharge voltage diode source current peak source current ggedness non-repetitive drain-source	peak drain currentpulsed; $t_p \le 10 \ \mu\text{s}$; $T_{mb} = 25 \ ^{\circ}\text{C}$; see Figure 4total power dissipation $T_{mb} = 25 \ ^{\circ}\text{C}$; see Figure 2storage temperaturejunction temperaturepeak soldering temperatureelectrostatic discharge voltageMM (JEDEC JESD22-A115)diodesource current $T_{mb} = 25 \ ^{\circ}\text{C}$ peak source currentpulsed; $t_p \le 10 \ \mu\text{s}$; $T_{mb} = 25 \ ^{\circ}\text{C}$ gednessnon-repetitive drain-source avalanche energy $V_{GS} = 10 \ \text{V}$; $T_{j(init)} = 25 \ ^{\circ}\text{C}$; $I_D = 100 \ \text{A}$; $V_{sup} \le 25 \ \text{V}$; unclamped; $R_{GS} = 50 \ \Omega$;	peak drain currentpulsed; $t_p \le 10 \ \mu$ s; $T_{mb} = 25 \ ^{\circ}$ C; see Figure 4-total power dissipation $T_{mb} = 25 \ ^{\circ}$ C; see Figure 2-storage temperature-55junction temperature-55peak soldering temperature-electrostatic discharge voltageMM (JEDEC JESD22-A115)380diode-source current $T_{mb} = 25 \ ^{\circ}$ C-peak source currentpulsed; $t_p \le 10 \ \mu$ s; $T_{mb} = 25 \ ^{\circ}$ C-operative drain-source avalanche energy $V_{GS} = 10 \ V$; $T_{j(init)} = 25 \ ^{\circ}$ C; $I_D = 100 \ A$; $V_{sup} \le 25 \ V$; unclamped; $R_{GS} = 50 \ \Omega$;-	peak drain currentpulsed; $t_p \le 10 \ \mu s; T_{mb} = 25 \ ^{\circ}C;$ -517total power dissipation $T_{mb} = 25 \ ^{\circ}C;$ see Figure 2-92storage temperature-55175junction temperature-55175peak soldering temperature-260electrostatic discharge voltageMM (JEDEC JESD22-A115)380-diode83peak source currentT_{mb} = 25 \ ^{\circ}C-517pulsed; $t_p \le 10 \ \mu s; T_{mb} = 25 \ ^{\circ}C$ -517gedness83non-repetitive drain-source avalanche energy $V_{GS} = 10 \ V; T_{j(init)} = 25 \ ^{\circ}C; \ I_D = 100 \ A; \\ V_{sup} \le 25 \ V; \ unclamped; \ R_{GS} = 50 \ \Omega;$ -47


[1] Continuous current is limited by package.

PSMN2R9-25YLC

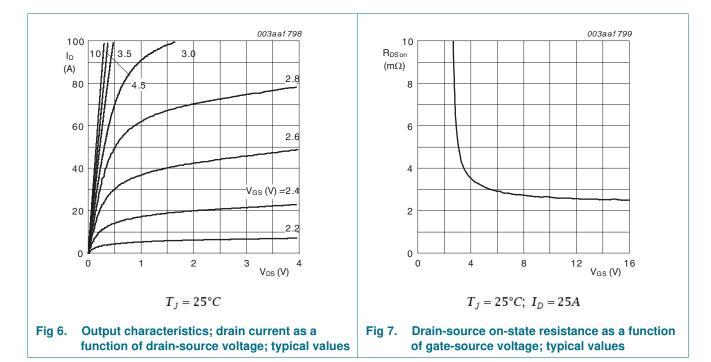

PSMN2R9-25YLC

N-channel 25 V 3.15 m Ω logic level MOSFET in LFPAK using

6. Thermal characteristics

Table 6.Thermal characteristics

N-channel 25 V 3.15 m Ω logic level MOSFET in LFPAK using


7. Characteristics

s -source kdown voltage -source threshold ge leakage current leakage current tance	$\label{eq:conditions} \begin{array}{ c c c c } \hline Conditions \\ \hline I_D = 250 \ \mu A; \ V_{GS} = 0 \ V; \ T_j = 25 \ ^{\circ}C \\ \hline I_D = 250 \ \mu A; \ V_{GS} = 0 \ V; \ T_j = -55 \ ^{\circ}C \\ \hline I_D = 1 \ m A; \ V_{DS} = V_{GS}; \ T_j = 25 \ ^{\circ}C; \\ see \ Figure \ 10; \ see \ Figure \ 11 \\ \hline I_D = 10 \ m A; \ V_{DS} = V_{GS}; \ T_j = 150 \ ^{\circ}C \\ \hline I_D = 1 \ m A; \ V_{DS} = V_{GS}; \ T_j = -55 \ ^{\circ}C \\ \hline V_{DS} = 25 \ V; \ V_{GS} = 0 \ V; \ T_j = 25 \ ^{\circ}C \\ \hline V_{DS} = 25 \ V; \ V_{GS} = 0 \ V; \ T_j = 150 \ ^{\circ}C \\ \hline V_{GS} = 16 \ V; \ V_{DS} = 0 \ V; \ T_j = 25 \ ^{\circ}C \\ \hline V_{GS} = -16 \ V; \ V_{DS} = 0 \ V; \ T_j = 25 \ ^{\circ}C \\ \hline V_{GS} = 4.5 \ V; \ I_D = 25 \ A; \ T_j = 25 \ ^{\circ}C; \\ see \ Figure \ 12 \end{array}$	Min 25 22.5 1.05 0.5 - - - - - - - -	Typ 1.54	Max 1.95 - 2.25 1 100 100	Unit V V V V V μΑ
kdown voltage -source threshold ge I leakage current leakage current -source on-state	$\begin{split} I_D &= 250 \; \mu\text{A}; \; V_{GS} = 0 \; \text{V}; \; T_j = -55 \; ^\circ\text{C} \\ I_D &= 1 \; \text{mA}; \; V_{DS} = V_{GS}; \; T_j = 25 \; ^\circ\text{C}; \\ \text{see Figure 10}; \; \text{see Figure 11} \\ I_D &= 10 \; \text{mA}; \; V_{DS} = V_{GS}; \; T_j = 150 \; ^\circ\text{C} \\ I_D &= 1 \; \text{mA}; \; V_{DS} = V_{GS}; \; T_j = -55 \; ^\circ\text{C} \\ V_{DS} &= 25 \; \text{V}; \; V_{GS} = 0 \; \text{V}; \; T_j = 25 \; ^\circ\text{C} \\ V_{DS} &= 25 \; \text{V}; \; V_{GS} = 0 \; \text{V}; \; T_j = 150 \; ^\circ\text{C} \\ V_{GS} &= 16 \; \text{V}; \; V_{DS} = 0 \; \text{V}; \; T_j = 25 \; ^\circ\text{C} \\ V_{GS} &= -16 \; \text{V}; \; V_{DS} = 0 \; \text{V}; \; T_j = 25 \; ^\circ\text{C} \\ V_{GS} &= 4.5 \; \text{V}; \; I_D = 25 \; \text{A}; \; T_j = 25 \; ^\circ\text{C}; \end{split}$	22.5 1.05 0.5 - - - - -	- 1.54	- 1.95 - 2.25 1 100	V V V V µA
-source threshold ge a leakage current leakage current -source on-state	$\begin{split} I_D &= 250 \; \mu\text{A}; \; V_{GS} = 0 \; \text{V}; \; T_j = -55 \; ^\circ\text{C} \\ I_D &= 1 \; \text{mA}; \; V_{DS} = V_{GS}; \; T_j = 25 \; ^\circ\text{C}; \\ \text{see Figure 10}; \; \text{see Figure 11} \\ I_D &= 10 \; \text{mA}; \; V_{DS} = V_{GS}; \; T_j = 150 \; ^\circ\text{C} \\ I_D &= 1 \; \text{mA}; \; V_{DS} = V_{GS}; \; T_j = -55 \; ^\circ\text{C} \\ V_{DS} &= 25 \; \text{V}; \; V_{GS} = 0 \; \text{V}; \; T_j = 25 \; ^\circ\text{C} \\ V_{DS} &= 25 \; \text{V}; \; V_{GS} = 0 \; \text{V}; \; T_j = 150 \; ^\circ\text{C} \\ V_{GS} &= 16 \; \text{V}; \; V_{DS} = 0 \; \text{V}; \; T_j = 25 \; ^\circ\text{C} \\ V_{GS} &= -16 \; \text{V}; \; V_{DS} = 0 \; \text{V}; \; T_j = 25 \; ^\circ\text{C} \\ V_{GS} &= 4.5 \; \text{V}; \; I_D = 25 \; \text{A}; \; T_j = 25 \; ^\circ\text{C}; \end{split}$	1.05 0.5 - - - - -	1.54	1.95 - 2.25 1 100	V V V µA
ge I leakage current leakage current I-source on-state	$\begin{split} I_D &= 1 \text{ mA}; \ V_{DS} = V_{GS}; \ T_j = 25 \ ^{\circ}\text{C}; \\ \text{see Figure 10}; \text{ see Figure 11} \\ \hline I_D &= 10 \ ^{\circ}\text{mA}; \ V_{DS} = V_{GS}; \ T_j = 150 \ ^{\circ}\text{C} \\ \hline I_D &= 1 \ ^{\circ}\text{mA}; \ V_{DS} = V_{GS}; \ T_j = -55 \ ^{\circ}\text{C} \\ \hline V_{DS} &= 25 \ ^{\circ}\text{V}; \ V_{GS} = 0 \ ^{\circ}\text{V}; \ T_j = 25 \ ^{\circ}\text{C} \\ \hline V_{DS} &= 25 \ ^{\circ}\text{V}; \ V_{GS} = 0 \ ^{\circ}\text{V}; \ T_j = 150 \ ^{\circ}\text{C} \\ \hline V_{GS} &= 16 \ ^{\circ}\text{V}; \ V_{DS} = 0 \ ^{\circ}\text{V}; \ T_j = 25 \ ^{\circ}\text{C} \\ \hline V_{GS} &= -16 \ ^{\circ}\text{V}; \ V_{DS} = 0 \ ^{\circ}\text{V}; \ T_j = 25 \ ^{\circ}\text{C} \\ \hline V_{GS} &= 4.5 \ ^{\circ}\text{V}; \ I_D = 25 \ ^{\circ}\text{C}; \end{split}$	0.5 - - - - -		- 2.25 1 100	V V µA
leakage current leakage current	$\begin{split} & I_D = 10 \text{ mA}; \text{V}_{DS} = \text{V}_{GS}; \text{T}_j = 150 ^\circ\text{C} \\ & I_D = 1 \text{ mA}; \text{V}_{DS} = \text{V}_{GS}; \text{T}_j = -55 ^\circ\text{C} \\ & \text{V}_{DS} = 25 \text{V}; \text{V}_{GS} = 0 \text{V}; \text{T}_j = 25 ^\circ\text{C} \\ & \text{V}_{DS} = 25 \text{V}; \text{V}_{GS} = 0 \text{V}; \text{T}_j = 150 ^\circ\text{C} \\ & \text{V}_{GS} = 16 \text{V}; \text{V}_{DS} = 0 \text{V}; \text{T}_j = 25 ^\circ\text{C} \\ & \text{V}_{GS} = -16 \text{V}; \text{V}_{DS} = 0 \text{V}; \text{T}_j = 25 ^\circ\text{C} \\ & \text{V}_{GS} = 4.5 \text{V}; \text{I}_D = 25 \text{A}; \text{T}_j = 25 ^\circ\text{C}; \end{split}$	- - - -	- - - -	2.25 1 100	V µA
leakage current	$\begin{split} I_D &= 1 \text{ mA}; \text{ V}_{DS} = \text{ V}_{GS}; \text{ T}_j = -55 \text{ °C} \\ \\ \text{ V}_{DS} &= 25 \text{ V}; \text{ V}_{GS} = 0 \text{ V}; \text{ T}_j = 25 \text{ °C} \\ \\ \text{ V}_{DS} &= 25 \text{ V}; \text{ V}_{GS} = 0 \text{ V}; \text{ T}_j = 150 \text{ °C} \\ \\ \text{ V}_{GS} &= 16 \text{ V}; \text{ V}_{DS} = 0 \text{ V}; \text{ T}_j = 25 \text{ °C} \\ \\ \text{ V}_{GS} &= -16 \text{ V}; \text{ V}_{DS} = 0 \text{ V}; \text{ T}_j = 25 \text{ °C} \\ \\ \text{ V}_{GS} &= 4.5 \text{ V}; \text{ I}_D = 25 \text{ A}; \text{ T}_j = 25 \text{ °C}; \end{split}$	-	- - -	1 100	μA
leakage current	$ \begin{array}{l} V_{DS} = 25 \; V; V_{GS} = 0 \; V; T_{j} = 25 \; ^{\circ}\text{C} \\ \hline V_{DS} = 25 \; V; V_{GS} = 0 \; V; T_{j} = 150 \; ^{\circ}\text{C} \\ \hline V_{GS} = 16 \; V; V_{DS} = 0 \; V; T_{j} = 25 \; ^{\circ}\text{C} \\ \hline V_{GS} = -16 \; V; V_{DS} = 0 \; V; T_{j} = 25 \; ^{\circ}\text{C} \\ \hline V_{GS} = 4.5 \; V; I_{D} = 25 \; A; T_{j} = 25 \; ^{\circ}\text{C}; \end{array} $	-		100	
n-source on-state	$\begin{split} V_{GS} &= 16 \; V; V_{DS} = 0 \; V; T_j = 25 \; ^{\circ}\text{C} \\ V_{GS} &= -16 \; V; V_{DS} = 0 \; V; T_j = 25 \; ^{\circ}\text{C} \\ V_{GS} &= 4.5 \; V; I_D = 25 \; A; T_j = 25 \; ^{\circ}\text{C}; \end{split}$	-	-		μA
n-source on-state	$V_{GS} = -16 \text{ V}; V_{DS} = 0 \text{ V}; T_j = 25 \text{ °C}$ $V_{GS} = 4.5 \text{ V}; I_D = 25 \text{ A}; T_j = 25 \text{ °C};$	-	-	100	
	$V_{GS} = 4.5 \text{ V}; I_D = 25 \text{ A}; T_j = 25 \text{ °C};$	-		100	nA
	,		-	100	nA
		-	3.45	4.1	mΩ
	$V_{GS} = 4.5 \text{ V}; I_D = 25 \text{ A}; T_j = 150 \text{ °C};$ see Figure 12; see Figure 13	-	-	6.6	mΩ
	$V_{GS} = 10 \text{ V}; \text{ I}_{D} = 25 \text{ A}; \text{ T}_{j} = 25 \text{ °C};$ see Figure 12	-	2.65	3.15	mΩ
	V_{GS} = 10 V; I _D = 25 A; T _j = 150 °C; see Figure 12; see Figure 13	-	-	5.05	mΩ
e resistance	f = 1 MHz	-	2	4	Ω
stics					
gate charge	$I_D = 25 \text{ A}; V_{DS} = 12 \text{ V}; V_{GS} = 10 \text{ V};$ see <u>Figure 14</u> ; see <u>Figure 15</u>	-	33	-	nC
	I_D = 25 A; V_{DS} = 12 V; V_{GS} = 4.5 V; see <u>Figure 14</u> ; see <u>Figure 15</u>	-	16	-	nC
	$I_D = 0 \text{ A}; V_{DS} = 0 \text{ V}; V_{GS} = 10 \text{ V}$	-	29	-	nC
-source charge	$I_D = 25 \text{ A}; V_{DS} = 12 \text{ V}; V_{GS} = 4.5 \text{ V};$	-	5	-	nC
hreshold -source charge	see Figure 14; see Figure 15	-	3.4	-	nC
threshold -source charge		-	1.6	-	nC
-drain charge		-	4.4	-	nC
-source plateau ge	$I_D = 25 \text{ A}; V_{DS} = 12 \text{ V}; \text{ see } \frac{\text{Figure } 14}{\text{Figure } 15}$	-	2.55	-	V
t capacitance	V _{DS} = 12 V; V _{GS} = 0 V; f = 1 MHz;	-	2083	-	pF
ut capacitance	$T_j = 25 \text{ °C}; \text{ see } \frac{\text{Figure } 16}{1000}$	-	501	-	pF
rse transfer citance		-	160	-	pF
on delay time	V_{DS} = 12 V; R_{L} = 0.5 Ω ; V_{GS} = 4.5 V;	-	19.5	-	ns
ime	$R_{G(ext)} = 4.7 \ \Omega$	-	19	-	ns
off delay time		-	32	-	ns
si adiay time		-	13	-	ns
me	All information provided in this document is subject to legal disclaimers		© Nove -	ria B V 2017	All rights re
r: c	se transfer bitance on delay time me off delay time	the sector of t	$V_{DS} = 12 \text{ V}; \text{ R}_{L} = 0.5 \Omega; \text{ V}_{GS} = 4.5 \text{ V};$ $R_{G(ext)} = 4.7 \Omega$ $R_{G(ext)} = 4.7 \Omega$	$\frac{V_{DS} = 12 \text{ V}; \text{ R}_{L} = 0.5 \Omega; \text{ V}_{GS} = 4.5 \text{ V};}{\text{me}} = \frac{V_{DS} = 12 \text{ V}; \text{ R}_{L} = 0.5 \Omega; \text{ V}_{GS} = 4.5 \text{ V};}{\text{R}_{G(ext)} = 4.7 \Omega} = \frac{19.5}{-19}$	$\begin{array}{c} Section for explanation of the section of $

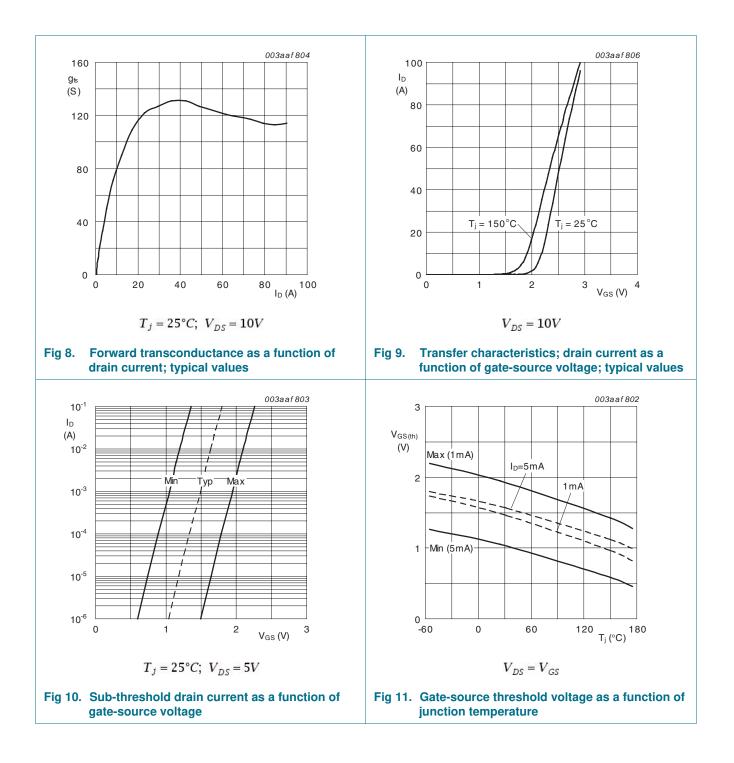
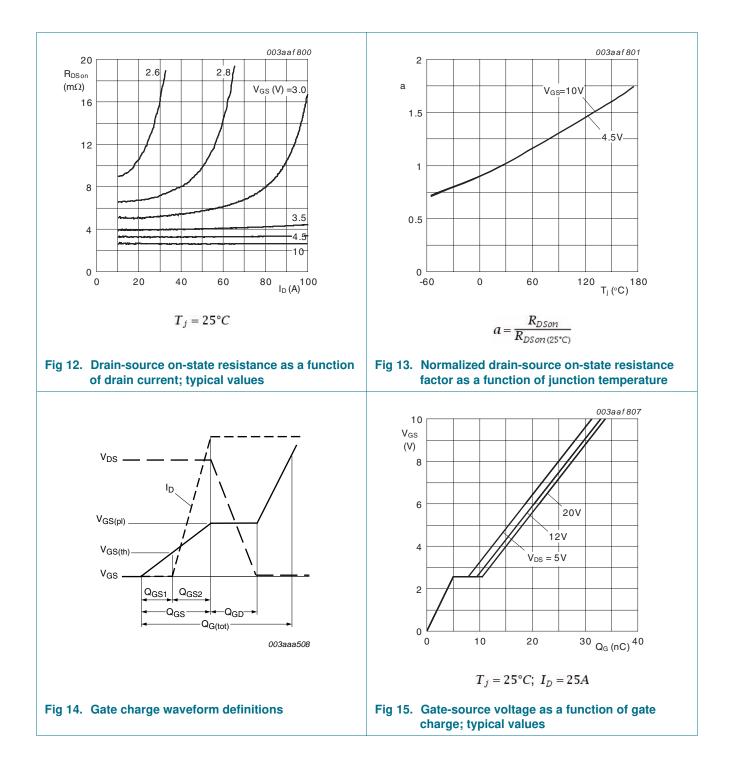
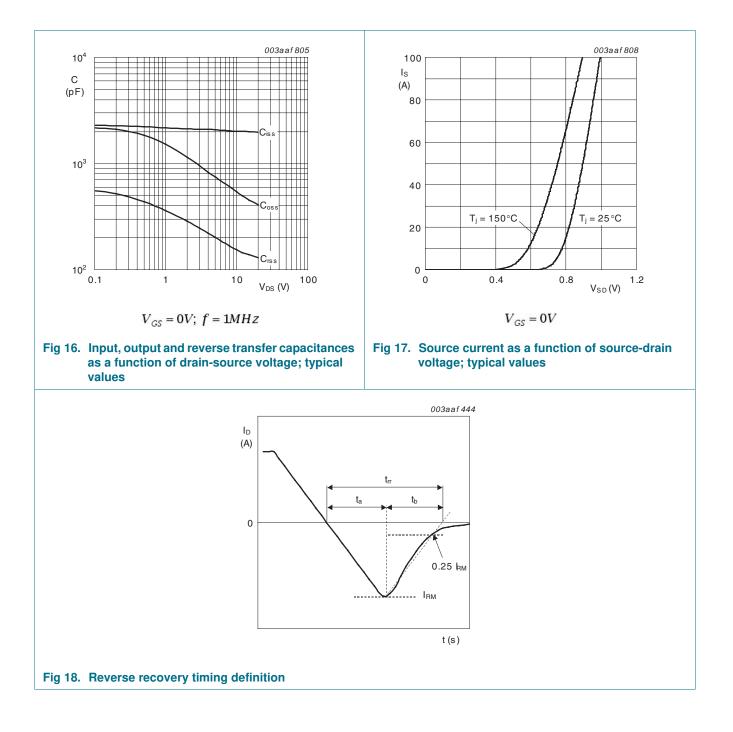
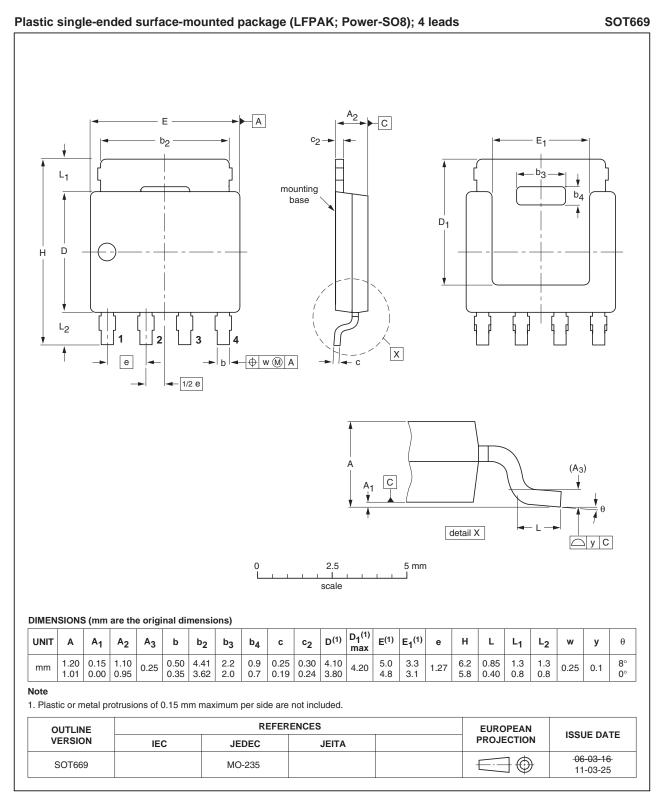

N-channel 25 V 3.15 mΩ logic level MOSFET in LFPAK using

Table 7.	Characteristics continued					
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Q _{oss}	output charge	V_{GS} = 0 V; V_{DS} = 12 V; f = 1 MHz; T _j = 25 °C	-	18.5	-	nC
Source-d	rain diode					
V_{SD}	source-drain voltage	I _S = 25 A; V _{GS} = 0 V; T _j = 25 °C; see <u>Figure 17</u>	-	0.8	1.1	V
t _{rr}	reverse recovery time	$I_{S} = 25 \text{ A}; dI_{S}/dt = -100 \text{ A}/\mu s; V_{GS} = 0 \text{ V};$	-	32	-	ns
Q _r	recovered charge	$V_{DS} = 12 V$	-	23	-	nC
t _a	reverse recovery rise time	V_{GS} = 0 V; I _S = 25 A; dI _S /dt = -100 A/µs; V _{DS} = 12 V; see Figure 18	-	18	-	ns
t _b	reverse recovery fall time		-	14	-	ns


.


PSMN2R9-25YLC

PSMN2R9-25YLC


PSMN2R9-25YLC

PSMN2R9-25YLC

N-channel 25 V 3.15 mΩ logic level MOSFET in LFPAK using

8. Package outline

Fig 19. Package outline SOT669 (LFPAK; Power-SO8)

PSMN2R9-25YLC Product data sheet

N-channel 25 V 3.15 m Ω logic level MOSFET in LFPAK using

9. Revision history

Table 8. Revision h	istory			
Document ID	Release date	Data sheet status	Change notice	Supersedes
PSMN2R9-25YLC v.1	20110502	Product data sheet	-	-

10. Legal information

10.1 Data sheet status

Document status [1] [2]	Product status [3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL <u>http://www.nexperia</u>.com.

10.2 Definitions

Preview — The document is a preview version only. The document is still subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and

customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

10.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of Nexperia.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — Nexperia products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of a Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia accepts no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product suble and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

N-channel 25 V 3.15 m Ω logic level MOSFET in LFPAK using

Terms and conditions of commercial sale - Nexperia

products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific Nexperia product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. Nexperia accepts no liability for inclusion and/or use of

non-automotive qualified products in automotive equipment or applications.

11. Contact information

For more information, please visit: http://www.nexperia.com

For sales office addresses, please send an email to: salesaddresses@nexperia.com

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without Nexperia's warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond Nexperia's specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies Nexperia for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond Nexperia's standard warranty and Nexperia's product specifications.

10.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

N-channel 25 V 3.15 m Ω logic level MOSFET in LFPAK using

12. Contents

1	Product profile1
1.1	General description1
1.2	Features and benefits1
1.3	Applications1
1.4	Quick reference data1
2	Pinning information2
3	Ordering information2
4	Marking2
5	Limiting values
6	Thermal characteristics5
7	Characteristics6
8	Package outline11
9	Revision history12
10	Legal information13
10.1	Data sheet status13
10.2	Definitions
10.3	Disclaimers
10.4	Trademarks14
11	Contact information14