CND0333A

Infrared Optical Module (IrDA)

Infrared data link for cellular phones, peripheral devices

Features

- Compliant with IrDA Ver.1.4
- Light emitting function for remote controller
- Corresponding low I/O (interface) voltage: 1.5 V
- Corresponding reflow solder (260°C)
- Ultra-small top view package (1.5 mm \times 8.2 mm \times 1.7 mm)

Туре

• GaAlAs LED + IC + PIN Photodiode

Parameter	Symbol	Rating	Unit
Operating supply voltage	V _{CC}	-0.5 to +3.8	V
LED operating supply voltage	V _{LEDA}	-0.5 to +7.0	V
Input/output supply voltage	V _{IO}	-0.5 to +3.8	V
TX Input voltage	V _{TX}	-0.5 to +3.8	V
Shutdown input voltage	V _{SD}	-0.5 to +3.8	V
LED operating supply current *	I _{LEDA}	300	mA
Operating ambient temperature	T _{opr}	-20 to +70	°C
Storage temperature	T _{stg}	-30 to +85	°C

Absolute Maximum Ratings $T_a = 25^{\circ}C \pm 3^{\circ}C$

Note) *: tw $\leq 90 \ \mu$ s, Duty $\leq 25 \ \%$

Operatong Condition

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Operating supply voltage	V _{CC}		2.5	2.85	3.3	V
LED operating supply voltage	V _{LEDA}		3.0		4.5	V
Input/output supply voltage	V _{IO}		1.5	1.85	V _{CC}	V

Parameter	Symbol	Conditions	Min	Тур	Max	Unit	
Shut down supply current *Fig. 1	I _{CCSD}	$V_{TXD} = 0.5 \text{ V},$ $V_{IO} \ge V_{SD} \ge V_{IO} - 0.5 \text{ V} \text{ (SD = High)}$		0.01	0.2	μΑ	
	I _{CCH}	(FIR mode / RC mode) $E_I = 0 \text{ mW/cm}^2$, $V_{TXD} = 0.5 \text{ V}$, $V_{SD} \le 0.5 \text{ V}$		580	800	μΑ	
High level supply current (Idle) *Fig. 1		(SIR mode) E _I = 0 mW/cm ² , V _{TXD} = 0.5 V, V _{SD} \leq 0.5 V		300	400		
		(FIR mode / RC mode) E _I = 9.0 mW/cm ² , V _{TXD} = 0.5 V, V _{SD} \leq 0.5 V		980 1270			
Low level supply current (Active) *Fig. 1	I _{CCL}	(SIR mode) E _I = 9.0 mW/cm ² , V _{TXD} = 0.5 V, V _{SD} \leq 0.5 V		350	460	- μΑ	
TX High level	T	$(FIR mode / RC mode)$ $V_{IO} \ge V_{TXD} \ge V_{IO} - 0.5 V (TXD = High)$ $E_{I} = 0 mW/cm^{2}, V_{SD} \le 0.5 V$		1 200	1 560	- μА	
supply current (Active) *Fig. 1	I _{CCTXH}	$ (SIR mode) \\ V_{IO} \ge V_{TXD} \ge V_{IO} - 0.5 \text{ V} (TXD = \text{High}) \\ E_I = 0 \text{ mW/cm}^2, V_{SD} \le 0.5 \text{ V} $		600	780		
High level input/output supply current (Idle) * ^{Fig. 1}	I _{IOH}	(FIR mode / RC mode) $E_I = 0 \text{ mW/cm}^2$, $V_{TXD} = 0.5 \text{ V}$, $V_{SD} \le 0.5 \text{ V}$	0	0	5	μΑ	
		(SIR mode) E _I = 0 mW/cm ² , V _{TXD} = 0.5 V, V _{SD} \leq 0.5 V	0	0	5		
Low level input/output supply current (Active) *Fig. 1	I _{IOL}	(FIR mode / RC mode) E _I = 9.0 mW/cm ² , $V_{TXD} = 0.5$ V, $V_{SD} \le 0.5$ V	- 360 470				
		(SIR mode) E ₁ = 9.0 mW/cm ² , V _{TXD} = 0.5 V, V _{SD} \leq 0.5 V		100	130	μΑ	
TX High level	I _{IOTXH}	$ (FIR mode / RC mode) \\ V_{IO} \ge V_{TXD} \ge V_{IO} - 0.5 V (TXD = High) \\ E_I = 0 mW/cm^2, V_{SD} \le 0.5 V $		80	120	— μΑ	
input/output supply current (Active) *Fig. 1		$ (SIR mode) \\ V_{IO} \ge V_{TXD} \ge V_{IO} - 0.5 \text{ V} (TXD = \text{High}) \\ E_I = 0 \text{ mW/cm}^2, V_{SD} \le 0.5 \text{ V} $		40	60		
SD High level input voltage	V _{IHSD}		$V_{IO}\!-\!0.5$		$V_{IO} + 0.3$	V	
SD Low level input voltage	V _{ILSD}		0 - 0.3		0.5	V	
Maximum reception distance *Fig. 1, 4	L _{max}	$\begin{split} V_{SD} &\leq 0.5 \text{ V} \\ \theta_T &= 0^\circ \pm 15^\circ \\ \text{LEDie} &= 3.6 \text{ mW/sr} \text{ (SIR mode)} \\ \text{LEDie} &= 9 \text{ mW/sr} \text{ (FIR mode)} \end{split}$	21.8			cm	
RC maximum reception distance *Fig. 1	L _{maxR}	$V_{LEDA} = 3.0 \text{ V}, V_{SD} \le 0.5 \text{ V}$ $\theta_T = 0^{\circ} \pm 15^{\circ},$ RC Receiver sensitivity *2 = 0.05 µW/cm ²	5.0			m	

Electrical-Optical Characteristics $V_{LEDA} = 3.0 \text{ V}$ to 4.5 V, $V_{CC} = 2.85 \text{ V}$, $V_{IO} = 1.85 \text{ V}$, $T_a = 25^{\circ}\text{C}\pm3^{\circ}\text{C}$

Note) *1: Fully Compliant to IrDA1.4 Low Power Specification from 9.6 kbps to 115.2 kbps, 4 Mbps.

*2: Definition of RC receiver sensitivity

RC receiver sensitivity is adjusted so that RC transfer distance is 4 m at transmitter LED radiant intensity= 8 mW/sr, near ways length = 940 nm and duty = 50% where irrediance is 0.05 wW/am^2 .

peak wave length = 940 nm and duty = 50 %, where irradiance is 0.05 $\mu W/cm^2.$

0.0096

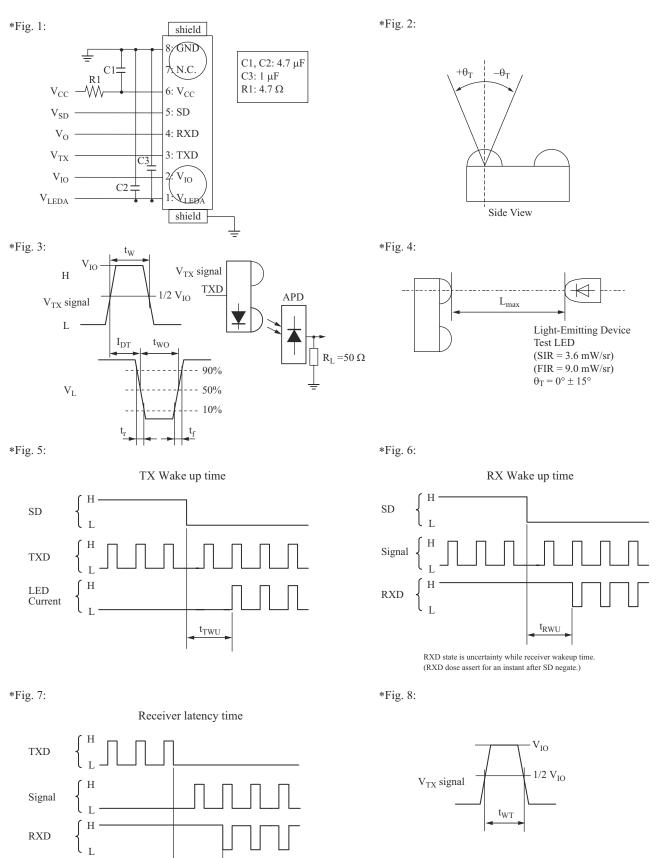
4.0

Mbps

Data Rates *1

Electrical-Optical Characteristics (continued) $V_{LEDA} = 3.0 \text{ V}$ to 4.5 V, $V_{CC} = 2.85 \text{ V}$, $V_{IO} = 1.85 \text{ V}$, $T_a = 1.85 \text{ V}$,	25°C±3°C
---	----------

Parame	eter	Symbol	Conditions	Min	Тур	Max	Unit
Transmitter							
Peak emission wavelength $*Fig. 1$ λ			(FIR mode / RC mode) $V_{LEDA} = 3.2 \text{ V}, V_{SD} \le 0.5 \text{ V}, \text{Duty}1/4$	880	890	900	
		λ_{P}	(SIR mode) $V_{LEDA} = 3.2 \text{ V}, V_{SD} \le 0.5 \text{ V}, \text{Duty3/16}$	875	885	900	nm
LED operating supply current *Fig. 1		-	(FIR Mode/RC Mode) $V_{LEDA} = 4.3 \text{ V}, \text{VSD} \le 0.5 \text{ V}, \text{Duty1/4}$	165	207	248	
			(FIR Mode/RC Mode) $V_{LEDA} = 3.0 \text{ V}, \text{VSD} \le 0.5 \text{ V}, \text{Duty1/4}$	160	200	240	m۸
		I _{leda}	(SIR Mode) $V_{LEDA} = 4.3 \text{ V}, V_{SD} \le 0.5 \text{ V}, \text{Duty3/16}$	70	91	109	mA
			(SIR Mode) V _{LEDA} = 3.0 V, V _{SD} \leq 0.5 V, Duty3/16	69	90	108	
Center radiant intensity *3	$\theta_{\rm T} = 0$ *Fig. 1, 2	Ie	(FIR Mode/RC Mode) $V_{LEDA} = 3.0 \text{ V}, \text{VSD} \le 0.5 \text{ V}, \text{Duty1/4}$	27	55	83	- mW/sr
	o _T = 0		(SIR Mode) $V_{LEDA} = 3.0 \text{ V}, V_{SD} \le 0.5 \text{ V}, \text{Duty3/16}$	13	27	40	
	$\theta_{\rm T} = \pm 15 ^{*{\rm Fig. 1, 2, 10}}$	T.,	(FIR Mode/RC Mode) $V_{LEDA} = 3.0 \text{ V}, V_{SD} \le 0.5 \text{ V}, \text{Duty1/4}$	23	38	57	mW/sr
	$0_{\rm T} - \pm 13$	I _{e15}	(SIR Mode) $V_{LEDA} = 3.0 \text{ V}, V_{SD} \le 0.5 \text{ V}, \text{Duty3/16}$	7	19	28	111 VV / 51
TX high level input vol	tage	V _{IH(TX)}		$V_{IO} - 0.5$		$V_{CC} + 0.3$	V
TX low level input volta	age	V _{IL(TX)}		0 - 0.3		0.5	V
TX pulse width (SIR) *I	Fig. 1, 8	t _{WT(SIR)}	Bit Rate = 115.2 kbps, $V_T = 1/2 \times V_{IO}$		1.6		μs
TX pulse width (FIR) *I	Fig. 1, 8	t _{WT(FIR)}	Bit Rate = 4.0 Mbps, $V_T = 1/2 \times V_{IO}$		125	—	ns
Optical pulse width (FII	R1) *Fig. 1, 3	t _{WO(FIR1)}	$\begin{split} V_{SD} &\leq 0.5 \text{ V, TXD } t_r / t_f \leq 20 \text{ ns,} \\ t_W &= 125 \text{ ns} \pm 1 \text{ ns, (Single pulse)} \end{split}$	115	125	135	ns
Optical pulse width (FII	R2) *Fig. 1, 3	t _{WO(FIR2)}	$\begin{split} V_{SD} &\leq 0.5 \text{ V}, \text{TXD } t_r / t_f \leq 20 \text{ ns}, \\ t_W &= 250 \text{ ns} \pm 1 \text{ ns}, (\text{Double pulse}) \end{split}$	240	250	260	ns
TX half-angle		$\theta_{\rm T}$		±15			o
Rise time *Fig. 1, 3		t _r	$R_L = 50 \Omega$			40	ns
Fall time *Fig. 1, 3		t _f	$R_L = 50 \Omega$			40	ns
TX wake up time *Fig. 5		t _{TWU}		200		1 000	μs
Intensity delay time *Fig	. 1, 3	I _{DT}				200	ns
Maximum pulse width		t _{WLEDmax}	$TXD = Low \rightarrow High$	20	50	100	μs
Overshoot		O _S				25	%

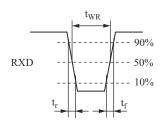

Note) *3: Eye-Safety IEC60825-1 Class1 Eye safe

Electrical-Optical Characteristics (continued) $V_{LEDA} = 3.0 \text{ V to } 4.5 \text{ V}, V_{CC} = 2.85 \text{ V}, V_{IO} = 1.85 \text{ V}, T_a = 25^{\circ}\text{C}\pm3^{\circ}\text{C}$

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Receiver	·	·				
Minimum input irradiance *Fig. 1	E _{I min1}	(SIR mode) Bit Rate = 115.2 kbps, $V_{SD} \le 0.5 V$, $\theta_T = 0^\circ \pm 15^\circ$			7.6	μW/cm ²
Winning in the interface of the second	E _{I min2}	(FIR Mode) Bit Rate = 4.0 Mbps, $V_{SD} \le 0.5$ V, $\theta_T = 0^\circ \pm 15^\circ$	_		19.0	μw/chi-
Maximum input irradiance *Fig. 1	E _{I mix}	$V_{SD}{\leq}0.5$ V, $\theta_T{=}0^\circ{\pm}15^\circ$	500			mW/cm ²
RX high level output voltage *Fig. 1	V _{OH(RX)}	Non signal condition $E_I = 0$ $I_{OH} = -200 \ \mu\text{A}, V_{SD} \le 0.5 \ \text{V}$	V _{IO} -0.3		V _{IO}	v
RX low level output voltage *Fig. 1	V _{OL(RX)}	$I_{OL} = 1.8 \text{ mA}, V_{SD} \le 0.5 \text{ V}$	0		0.5	V
RX half angle	θ_{R}		±15			0
Output pulse width (SIR) *Fig. 1, 9	t _{WR(SIR)}	$V_{SD} \le 0.5 \text{ V}, C_L = 15 \text{ pF},$ 9.6 kbps to 115.2 kbps	1.0		4.0	μs
Output pulse width (FIR1) *Fig. 1,9	t _{WR(FIR1)}	$\begin{split} V_{SD} &\leq 0.5 \text{ V}, C_L = 15 \text{ pF}, \\ 4 \text{ Mbps, } t_W &= 125 \text{ ns} \\ (\text{Single pulse}) \end{split}$	85		165	ns
Output pulse width (FIR2) *Fig. 1,9	t _{WR(FIR2)}	$\begin{split} V_{SD} &\leq 0.5 \text{ V}, C_L = 15 \text{ pF}, \\ 4 \text{ Mbps, } t_W &= 250 \text{ ns} \\ (\text{Double pulse}) \end{split}$	195		290	ns
RX wake up time *Fig. 1, 6	t _{Rwu}	$V_{SD} \le 0.5 \text{ V}, E_I = 19.0 \ \mu\text{W/cm}^2$		100	200	μs
Receiver latency time *Fig. 1, 7	t _L	$V_{SD} \le 0.5 \text{ V}, E_I = 19.0 \ \mu\text{W/cm}^2$	_	100	200	μs
Rise time *Fig. 1,9	t _r	$V_{SD} \le 0.5 \text{ V}, C_L = 15 \text{ pF}$	_	10		ns
Fall time *Fig. 1, 9	t _f	$V_{SD} \le 0.5 \text{ V}, C_L = 15 \text{ pF}$	_	10		ns

Electrical-Optical Characteristics (continued)

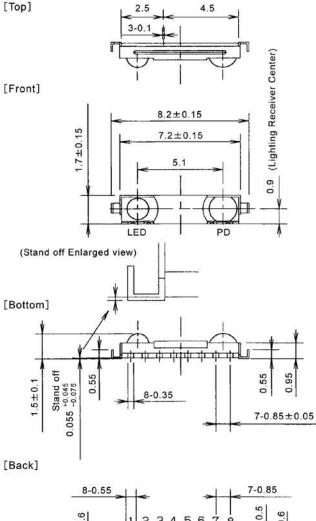
Note) Measurement circuit

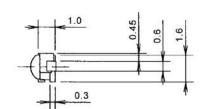


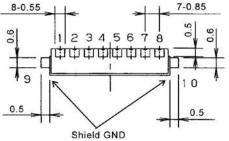
t_L

Electrical-Optical Characteristics (continued)

Note) Measurement circuit (continued)


*Fig. 9:




Panasonic

Package (Unit: mm)

[Top]

• Pin name

1. V _{LEDA}	6. V _{CC}
2. V _{IO}	7. N.C.
3. TXD	8. GND
4. RXD	9. Shield GND
5. SD	10. Shield GND

Request for your special attention and precautions in using the technical information and semiconductors described in this book

- (1) If any of the products or technical information described in this book is to be exported or provided to non-residents, the laws and regulations of the exporting country, especially, those with regard to security export control, must be observed.
- (2) The technical information described in this book is intended only to show the main characteristics and application circuit examples of the products. No license is granted in and to any intellectual property right or other right owned by Panasonic Corporation or any other company. Therefore, no responsibility is assumed by our company as to the infringement upon any such right owned by any other company which may arise as a result of the use of technical information described in this book.
- (3) The products described in this book are intended to be used for general applications (such as office equipment, communications equipment, measuring instruments and household appliances), or for specific applications as expressly stated in this book. Consult our sales staff in advance for information on the following applications:

• Special applications (such as for airplanes, aerospace, automotive equipment, traffic signaling equipment, combustion equipment, life support systems and safety devices) in which exceptional quality and reliability are required, or if the failure or malfunction of the products may directly jeopardize life or harm the human body.

It is to be understood that our company shall not be held responsible for any damage incurred as a result of or in connection with your using the products described in this book for any special application, unless our company agrees to your using the products in this book for any special application.

- (4) The products and product specifications described in this book are subject to change without notice for modification and/or improvement. At the final stage of your design, purchasing, or use of the products, therefore, ask for the most up-to-date Product Standards in advance to make sure that the latest specifications satisfy your requirements.
- (5) When designing your equipment, comply with the range of absolute maximum rating and the guaranteed operating conditions (operating power supply voltage and operating environment etc.). Especially, please be careful not to exceed the range of absolute maximum rating on the transient state, such as power-on, power-off and mode-switching. Otherwise, we will not be liable for any defect which may arise later in your equipment.

Even when the products are used within the guaranteed values, take into the consideration of incidence of break down and failure mode, possible to occur to semiconductor products. Measures on the systems such as redundant design, arresting the spread of fire or preventing glitch are recommended in order to prevent physical injury, fire, social damages, for example, by using the products.

(6) Comply with the instructions for use in order to prevent breakdown and characteristics change due to external factors (ESD, EOS, thermal stress and mechanical stress) at the time of handling, mounting or at customer's process. When using products for which damp-proof packing is required, satisfy the conditions, such as shelf life and the elapsed time since first opening the packages.

(7) This book may be not reprinted or reproduced whether wholly or partially, without the prior written permission of our company.

20100202