2.4W into an 8Ω speaker.

QTY

4

2

1

3

1

4

1

1

1

1

DESIGNATION

C1-C4

C5, C6

C7

C8, C9, C10

JU1

R1-R4

R5

U1

SUPPLIER

Murata Mfg. Co., Ltd.

Panasonic Corp.

Features

- The MAX9730 evaluation kit (EV kit) is a fully assembled ♦ 5V Single-Supply Operation
 - Fully Differential Output
 - Delivers 2.4W into an 8Ω Speaker
 - Configurable Switching Frequency
 - Evaluates the MAX9730 in a 28-Pin TQFN (4mm x 4mm x 0.8mm) Package
 - MAX9730 IC Available in a 20-Bump UCSP (2mm x 2.5mm) Package
 - Fully Assembled and Tested

Ordering Information

PART			TEMP RANGE	IC PACKAGE
MAX9730EVKIT+			0°C to +70°C*	28 TQFN-EP** (4mm x 4mm x 0.8mm)

+Denotes a lead-free and RoHS-compliant EV kit.

* This limited temperature range is for the EV kit PCB only. The MAX9730 IC temperature range is -40°C to +85°C.

**EP = Exposed paddle.

Quick Start

Recommended Equipment

- 5V, 2A power supply
- Audio source (i.e., CD player, MP3 player, etc.)
- One 8Ω speaker

Procedure

Follow the steps listed below to verify board operation. Caution: Do not turn on the power supply until all connections are completed.

- 1) Install a shunt across pins 1-2 of jumper JU1 (EV kit ON).
- 3) Connect the ground terminal of the power supply to the GND pad and the positive terminal to the VCC pad.
- 4) Connect the positive terminal of the audio source to the IN+ pad.
- 5) Connect the negative terminal of the audio source to the IN- pad. Connect the IN- pad to the GND pad if the audio source is single-ended.
- 6) Connect the ground terminal of the audio source to the GND pad.
- 7) Turn on the audio source.
- 8) Turn on the power supply.

Maxim Integrated Products 1

The MAX9730 EV kit is fully assembled and tested.

- 2) Connect the 8Ω speaker across the OUT- and OUT+ pads.

For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642. or visit Maxim's website at www.maxim-ic.com.

Component List

DESCRIPTION 0.1µF ±10%, 6.3V X5R ceramic

General Description

and tested PCB that uses the MAX9730 Class G power

amplifier to drive a bridge-tied-load (BTL) speaker in

portable audio applications. Designed to operate from a 2.7V to 5.5VDC power supply, the EV kit accepts a

single-ended or differential input signal. The EV kit pro-

vides a fully differential output capable of delivering

capacitors (0402)

capacitors (0402)

capacitor (1206)

capacitors (0603)

x 4mm x 0.8mm)

Shunt

PHONE

770-436-1300

714-373-7366

Note: Indicate that you are using the MAX9730 when

contacting these component suppliers.

3-pin header

Murata GRM155R60J104K

Murata GRM155R60J105K

Murata GRM31CR60J475K

Murata GRM188R60J106M

 $10k\Omega \pm 0.5\%$ precision-thick

Panasonic ERJ3RBD1002V

 $100k\Omega \pm 1\%$ resistor (0603)

PCB: MAX9730 evaluation kit

Component Suppliers

WEBSITE

www.murata.com

www.panasonic.com

MAX9730ETI+ (28-pin TQFN, 4mm

film-chip resistors (0603)

1µF ±10%, 6.3V X5R ceramic

4.7µF ±10%, 6.3V X5R ceramic

10µF ±20%, 6.3V X5R ceramic

MAX9730 Evaluation Kit

Detailed Description

The MAX9730 EV kit features the MAX9730 Class G power amplifier IC, designed to drive a dynamic speaker in BTL configuration. The EV kit operates from a DC power supply that provides 2.7V to 5.5V and 2A of current. The EV kit accepts single-ended or differential audio input and provides a fully differential output. The audio input source is amplified to drive 2.4W into an 8 Ω speaker with a 5V power supply.

Customizing the Gain

The MAX9730 EV kit is shipped with a gain of +12dB and is set by resistors R1–R4. Change resistors R1–R4 to reconfigure the gain of the EV kit. Refer to the MAX9730 IC data sheet for more detail.

Charge-Pump Frequency Set Resistor

The charge-pump frequency is set by resistor R5. The charge pump's normal operation frequency is 330kHz. Change R5 to change the charge-pump frequency. Refer to the MAX9730 IC data sheet for more information.

Jumper Selection

Shutdown Mode (SHDN)

Jumper JU1 controls the shutdown pin (SHDN) of the MAX9730 IC. The shutdown pin can also be controlled by an external logic controller connected to the EV kit SHDN pad. Remove the shunt from jumper JU1 before connecting an external controller to the SHDN pad. See Table 1 for shunt positions.

Table 1. JU1 Jumper Selection(Shutdown Mode)

SHUNT POSITION	SHDN PIN CONNECTED TO	EV KIT FUNCTION
1-2*	VDD	EV kit enabled
2-3	GND	Shutdown mode
None	External logic controller	SHDN driven by external logic controller. Shutdown is active-low and is 1.8V logic compliant.

*Default position.

MAX9730 Evaluation Kit

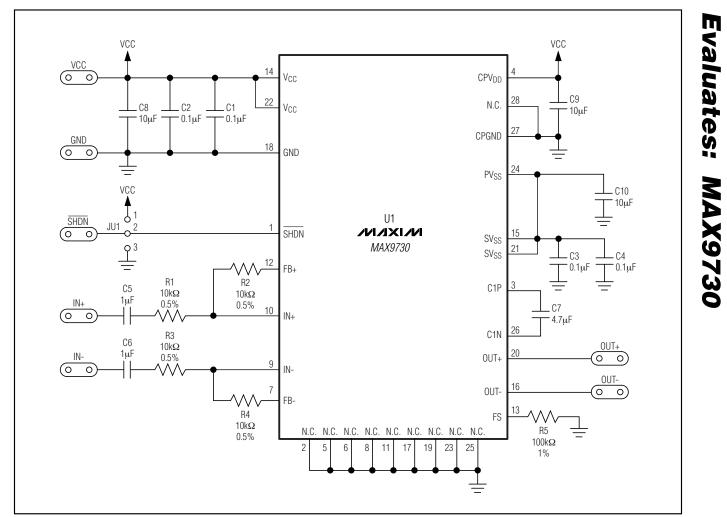


Figure 1. MAX9730 EV Kit Schematic

MAX9730 Evaluation Kit

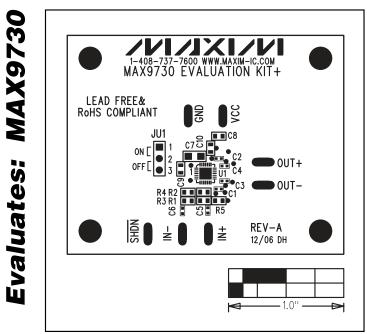


Figure 2. MAX9730 EV Kit Component Placement Guide— Component Side

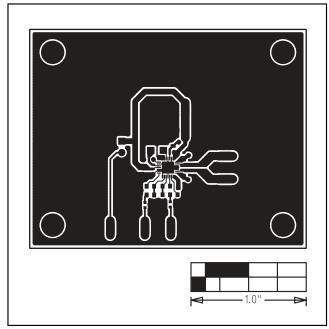


Figure 3. MAX9730 EV Kit PCB Layout—Component Side

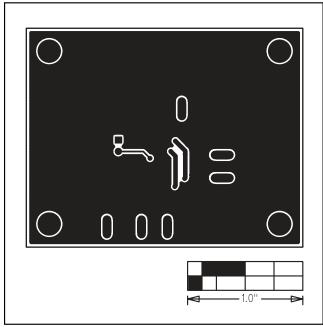


Figure 4. MAX9730 EV Kit PCB Layout—Solder Side

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

______Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

4

is a registered trademark of Maxim Integrated Products, Inc.