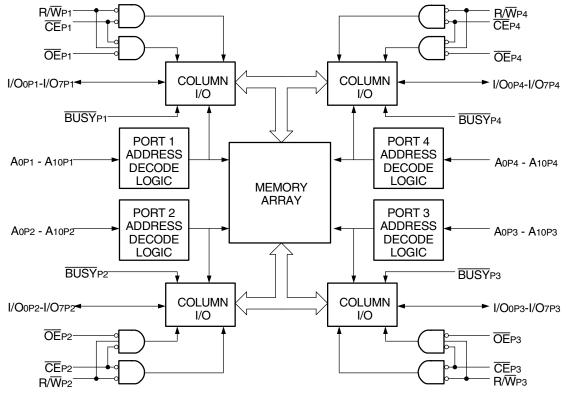
7052S/L

HIGH-SPEED 2K x 8 FourPort™ STATIC RAM

Features

- High-speed access
 - Commercial: 20/25/35ns (max.)
 - Industrial: 25ns (max.)
 - Military: 35ns (max.)
- Low-power operation
 - IDT7052S
 - Active: 750mW (typ.)
 - Standby: 7.5mW (typ.)
 - IDT7052L
 - Active: 750mW (typ.)
 - Standby: 1.5mW (typ.)
- True FourPort memory cells which allow simultaneous access of the same memory locations
- Fully asynchronous operation from each of the four ports: P1, P2, P3, P4
- Versatile control for write-inhibit: separate BUSY input to control write-inhibit for each of the four ports


- Battery backup operation—2V data retention
- ◆ TTL-compatible; single 5V (±10%) power supply
- Available in 120 pin Thin Quad Flatpacks and 108 pin PGA
- Military product compliant to MIL-PRF-38535 QML
- ◆ Industrial temperature range (-40°C to +85°C) is available for selected speeds
- Green parts available, see ordering information

Description

The IDT7052 is a high-speed $2K \times 8$ FourPortTM Static RAM designed to be used in systems where multiple access into a common RAM is required. This FourPort Static RAM offers increased system performance in multiprocessor systems that have a need to communicate in real time and also offers added benefit for high-speed systems in which multiple access is required in the same cycle.

The IDT7052 is also designed to be used in systems where on-chip hardware port arbitration is not needed. This part lends itself to those

Functional Block Diagram

2674 drw 01

JULY 2019

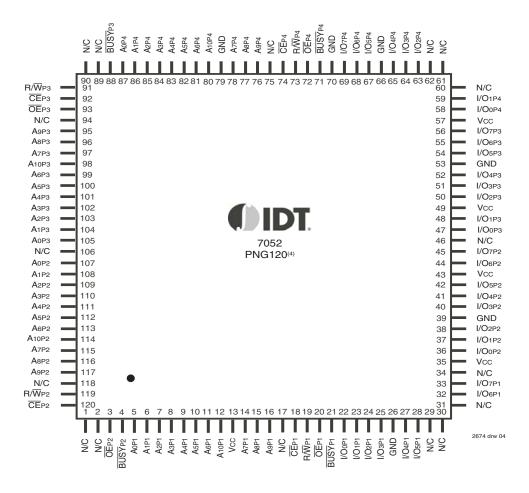
systems which cannot tolerate wait states or are designed to be able to externally arbitrate or withstand contention when all ports simultaneously access the same FourPort RAM location.

The IDT7052 provides four independent ports with separate control, address, and I/O pins that permit independent, asynchronous access for reads or writes to any location in memory. It is the user's responsibility to ensure data integrity when simultaneously accessing the same memory location from all ports. An automatic power down feature, controlled by $\overline{CE},$ permits the on-chip circuitry of each port to enter a very low power standby power mode.

Fabricated using CMOS high-performance technology, this FourPort SRAM typically operates on only 750mW of power. Low-power (L) versions offer battery backup data retention capability, with each port typically consuming 50μ W from a 2V battery.

The IDT7052 is packaged in a ceramic 108-pin Pin Grid Array (PGA) and 120-pin Thin Quad Flatpack (TQFP). Military grade product is manufactured in compliance with the latest revision of MIL-PRF-38535 QML, making it ideally suited to military temperature applications demanding the highest level of performance and reliability.

Pin Configurations (1,2,3)


81	80	77	74	72	69	68	65	63	60	57	54	
R/W P2	NC	A7 P2	A ₅ P2	Аз Р2	Ao P2	Ao P3	Аз Р3	A ₅ P3	A7 P3	NC	R/W P3	12
84	83	78	76	73	70	67	64	61	59	56	53	
BUSY P2	ŌE P2	A8 P2	A ₁₀ P ₂	A4 P2	A ₁ P ₂	A ₁ P ₃	A4 P3	A ₁₀ P3	A8 P3	OE P3	BUSY P3	11
87	86	82	79	79 75 71 66 62 58					55	51	50	
A2 P1	A1 P1	CE	A9 P2	A ₆ P2	A ₂ P2	A2 P3	A6 P3	A9 P3	CE P3	A1 P4	A2 P4	10
90	88	85							52	49	47	
A5 P1	Аз Р1	Ao P1							Ao P4	A3 P4	A5 P4	09
92	91	89	1						48	46	45	
A ₁₀ P1	A6 P1	A4 P1							A4 P4	A6 P4	A10 P4	80
95	94	93	1						44	43	42	
A8 P1	A7 P1	Vcc		IDT7052G GU108 ⁽⁴⁾					GND	A ₇ P4	A8 P4	07
96	97	98	1		GU	100(4)			39	40	41	
A9 P1	NC	CE P1				Pin PGA View ⁽⁵⁾			CE P4	NC	A9 P4	06
99	100	102	1		·				35	37	38	
R/W P1	OE P1	I/O ₀ P1						GND	OE P4	R/W P4	05	
101	103	106]						31	34	36	
BUSY P1	I/O ₁ P1	GND							GND	I/O7 P4	BUSY P4	04
104	105	1	4	8	12	17	21	25	28	32	33	
I/O ₂ P1	I/O3 P1	I/O ₆ P1	Vcc	GND	Vcc	Vcc	GND	Vcc	I/O ₂ P4	I/O ₅ P4	I/O ₆ P4	03
107	2	5	7	10	13	16	19	22	24	29	30	
I/O4 P1	I/O7 P1	I/O ₀ P2	I/O ₂ P2	I/O4 P2	I/O ₆ P2	I/O ₁ P3	I/O3 P3	I/O ₅ P3	I/O7 P3	I/O3 P4	I/O ₄ P4	02
108	3	6	9	11	14	15	18	20	23	26	27	
I/O5 P1	NC	I/O ₁ P2	I/O3 P2	I/O ₅ P2	I/O7 P2	I/O ₀ P3	I/O ₂ P3	I/O4 P3	I/O6 P3	I/O ₀ P4	I/O ₁ P4	01
Α	В	С	D	Е	F	G	Н	J	K	L	М	
											2674 drw 0	12
ΕX												

NOTES:

- 1. All Vcc pins must be connected to the power supply.
- 2. All GND pins must be connected to the ground supply.
- 3. Package body is approximately 1.21 in x 1.21 in x .16 in.
- 4. This package code is used to reference the package diagram.
- 5. This text does not indicate orientation of the actual part-marking.

Pin Configurations (1,2,3) (con't.)

NOTES:

- 1. All Vcc pins must be connected to the power supply.
- 2. All GND pins must be connected to the ground supply.
- 3. PNG120 package body is approximately 14mm x 14mm x 1.4mm.
- 4. This package code is used to reference the package diagram.

7052S/L High-Speed 2K v 8 FourPort™ Static BAI

Military Industrial and Commercial Temperature Ranges

Pin Configurations (1,2)

Symbol	Pin Name
A0 P1 - A10 P1	Address Lines - Port 1
A0 P2 - A10P2	Address Lines - Port 2
A0 P3 - A10 P3	Address Lines - Port 3
A0 P4 - A10 P4	Address Lines - Port 4
I/O0 P1 - I/O7 P1	Data I/O - Port 1
I/O0 P2 - I/O7 P2	Data I/O - Port 2
I/O0 P3 - I/O7 P3	Data I/O - Port 3
I/O0 P4 - I/O7 P4	Data I/O - Port 4
R/W P1	Read/Write - Port 1
R/W P2	Read/Write - Port 2
R/W P3	Read/Write - Port 3
R/W P4	Read/Write - Port 4
GND	Ground
CE P1	Chip Enable - Port 1
CE P2	Chip Enable - Port 2
CE P3	Chip Enable - Port 3
CE P4	Chip Enable - Port 4
OE P1	Output Enable - Port 1
OE P2	Output Enable - Port 2
OE P3	Output Enable - Port 3
OE P4	Output Enable - Port 4
BUSY P1	Write Disable - Port 1
BUSY P2	Write Disable - Port 2
BUSY P3	Write Disable - Port 3
BUSY P4	Write Disable - Port 4
Vcc	Power

NOTES:

2674 tbl 01

- 1. All Vcc pins must be connected to the power supply.
- 2. All GND pins must be connected to the ground supply

Capacitance⁽¹⁾

(TA = +25°C, f = 1.0MHz) TQFP only

Symbol	Parameter	Conditions ⁽²⁾	Max.	Unit
CIN	Input Capacitance	VIN = 0V	9	pF
Соит	Output Capacitance	Vout = 0V	10	pF

NOTES:

- This parameter is determined by device characterization but is not production tested.
- 3dV references the interpolated capacitance when the input and the output signals switch from 0V to 3V or from 3V to 0V.

Absolute Maximum Ratings(1)

Symbol	Rating	Commercial & Industrial	Military	Unit
VTERM ⁽²⁾	Terminal Voltage with Respect to GND	-0.5 to +7.0	-0.5 to +7.0	>
TBIAS	Temperature Under Bias	-55 to +125	-65 to +135	°C
Tstg	Storage Temperature	-65 to +150	-65 to +150	°C
Іоит	DC Output Current	50	50	mA

NOTES:

2674 tbl 02

- Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability
- 2. VTERM must not exceed Vcc + 10% for more than 25% of the cycle time or 10ns maximum, and is limited to \leq 20mA for the period of VTERM \geq Vcc + 10%.

Maximum Operating

Temperature and Supply Voltage⁽¹⁾

		<u> </u>	o.cago
Grade	Ambient Temperature	GND	Vcc
Military	-55°C to+125°C	0V	5.0V <u>+</u> 10%
Commercial	0°C to +70°C	0V	5.0V <u>+</u> 10%
Industrial	-40°C to +85°C	0V	5.0V <u>+</u> 10%

NOTE:

2674 tbl 04

1. This is the parameter Ta. This is the "instant on" case temperature.

Recommended DC Operating Conditions

001141	onditions.							
Symbol	Parameter	Min.	Тур.	Max.	Unit			
Vcc	Supply Voltage	4.5	5.0	5.5	V			
GND	Ground	0	0	0	٧			
Vн	Input High Voltage	2.2	_	6.0(2)	V			
VIL	Input Low Voltage	-0.5 ⁽¹⁾	_	0.8	V			

NOTES

- 1. $V_{IL} \ge -1.5V$ for pulse width less than 10ns.
- 2. VTERM must not exceed Vcc + 10%.

2674 tbl 05

DC Electrical Characteristics Over the Operating Temperature and Supply Voltage Range $^{(1,5)}$ (Vcc = 5.0V ± 10%)

								2X20 I Only	Com'	2X25 I, Ind Ilitary	Con	2X35 n'l & tary	
Symbol	Parameter	Condition	Versi	on	Typ. ⁽²⁾	Max.	Typ. ⁽²⁾	Max.	Typ. ⁽²⁾	Max.	Unit		
ICC1	Operating Power Supply Current (All Ports Active)	$\overline{CE} = VIL$ Outputs Disabled $f = 0^{(3)}$	COM'L.	S L	150 150	300 250	150 150	300 250	150 150	300 250	mA		
	(All Folis Active)	f = 0 ⁴⁷	MIL. & IND.	S L			150 150	360 300	150 150	360 300			
ICC2	Dynamic Operating Current (All Ports Active)	Current Outputs Disabled	COM'L.	S L	240 210	370 325	225 195	350 305	210 180	335 290	mA		
		$f = f_{MAX}^{(4)}$	MIL. & IND.	S L	-	-	225 195	400 340	210 180	395 330			
IsB	Standby Current (All Ports - TTL Level Inputs)	(All Ports - TTL Level $f = f_{MAX}^{(4)}$	COM'L.	S L	70 60	95 80	45 40	85 70	40 35	75 60	mA		
	inpuis)		MIL. & IND.	S L			45 40	115 85	40 35	110 80			
ISB1	Full Standby Current (All Ports - All CMOS	All Ports CE ≥ Vcc - 0.2V	COM'L.	S L	1.5 0.3	15 1.5	1.5 0.3	15 1.5	1.5 0.3	15 1.5	mA		
	Level Inputs)	$V_{IN} \leq 0.2V, f = 0^{(3)}$	MIL. & IND.	S L			1.5 0.3	30 4.5	1.5 0.3	30 4.5			

NOTES:

2674 tbl 06

- 1. 'X' in part number indicates power rating (S or L).
- 2. Vcc = 5V, TA = +25°C and are not production tested.
- 3. f = 0 means no address or control lines change.
- 4. At f = fmax, address and control lines (except Output Enable) are cycling at the maximum frequency read cycle of 1/tnc, and using "AC Test Conditions" of input levels of GND to 3V.
- 5. For the case of one port, divide the appropriate current above by four.

DC Electrical Characteristics Over the Operating Temperature and Supply Voltage Range (Vcc = 5.0V ± 10%)

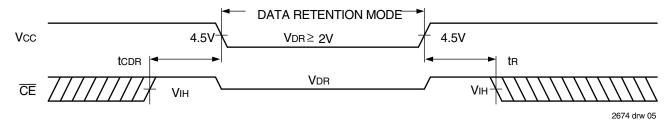
		-	7052S		7052L		
Symbol	Parameter	Test Conditions	Min.	Max.	Min.	Max.	Unit
lLi	Input Leakage Current ⁽¹⁾	Vcc = 5.5V, $Vin = 0V$ to Vcc		10		5	μΑ
lıo	Output Leakage Current	$\overline{CE} = V_{IH}$, Vout = 0V to Vcc		10		5	μΑ
Vol	Output Low Voltage	lol = 4mA	-	0.4	ı	0.4	٧
Vон	Output High Voltage	IOH = -4mA	2.4	_	2.4	_	V

NOTE:

2674 tbl 07

1. At $Vcc \le 2.0V$ input leakages are undefined.

Data Retention Characteristics Over All Temperature Ranges (4) (L Version Only) VLC = 0.2V, VHC = VCC - 0.2V


Symbol	Parameter	Test Condition	Min.	Typ. ⁽¹⁾	Max.	Unit	
VDR	Vcc for Data Retention	Vcc = 2V		2.0	_	-	٧
ICCDR	Data Retention Current	CE ≥ VHC	Com'l.	_	25	600	μА
		VIN > VHC or < VLC	Mil. & Ind.	_	25	1800	
tcdr ⁽³⁾	Chip Deselect to Data Retention Time			0	_	_	ns
tR ⁽³⁾	Operation Recovery Time			trc ⁽²⁾	_	_	ns

2674 tbl 08a

NOTES:

- 1. Vcc = 2V, TA = +25°C
- 2. tRC = Read Cycle Time
- 3. This parameter is guaranteed but not production tested.
- 4. Industrial temperature: For other speeds, packages and powers contact your sales office.

Low Vcc Data Retention Waveform

AC Test Conditions

Input Pulse Levels	GND to 3.0V
Input Rise/Fall Times	5ns Max.
Input Timing Reference Levels	1.5V
Output Reference Levels	1.5V
Output Load	Figures 1 and 2
	2674 tbl 08b

\$893Ω DATAOUT 347Ω − 30pF

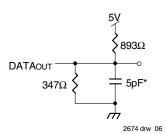


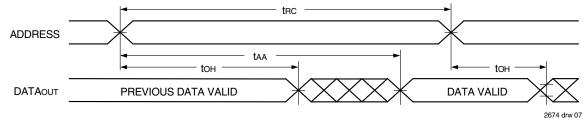
Figure 1. AC Output Test Load

Figure 2. Output Test Load (for tLz, tHz, tWz, tOW) *Including scope and jig

7052S/L High-Speed 2K x 8 FourPort™ Static RAI

Military, Industrial and Commercial Temperature Ranges

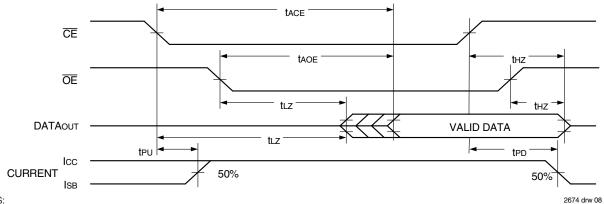
2674 tbl 09


AC Electrical Characteristics Over the Operating Temperature and Supply Voltage (3)

		7052X20 Com'l Only		7052X25 Com'l, Ind & Military		7052X35 Com'l & Military		
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Unit
READ CYCLE								
trc	Read Cycle Time	20	_	25		35		ns
taa	Address Access Time		20		25		35	ns
tACE	Chip Enable Access Time		20		25		35	ns
taoe	Output Enable Access Time		10		15		25	ns
tон	Output Hold from Address Change	0		0		0		ns
tLZ	Output Low-Z Time ^(1,2)	5		5		5		ns
tHZ	Output High-Z Time ^(1,2)		12		15		15	ns
tPU	Chip Enable to Power Up Time (2)	0		0		0		ns
tPD	Chip Disable to Power Down Time ⁽²⁾		20		25	_	35	ns

NOTES:

- $1. \ \ Transition \ is \ measured \ 0mV \ from \ Low \ or \ High-Impedance \ voltage \ with \ the \ Output \ Test \ Load \ (Figure \ 2)$
- 2. This parameter is guaranteed by device characterization but is not production tested.
- 3. 'X' in part number indicates power rating (S or L)


Timing Waveform of Read Cycle No. 1, Any Port (1)

NOTE:

1. $R/\overline{W} = V_{IH}$, $\overline{OE} = V_{IL}$ and $\overline{CE} = V_{IL}$

Timing Waveform of Read Cycle No. 2, Any Port (1,2)

NOTES:

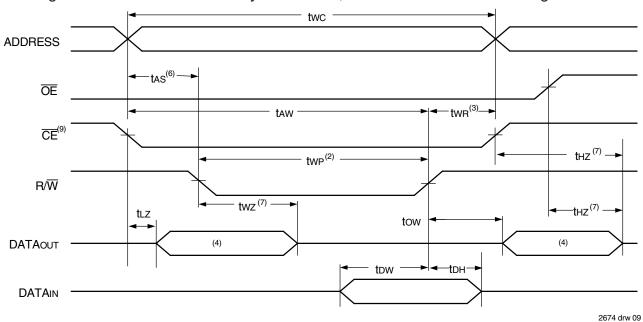
1. $R/\overline{W} = VIH \text{ for Read Cycles.}$

2. Addresses valid prior to or coincident with $\overline{\text{CE}}$ transition LOW.

/US25/L
High-Speed 2K v 8 FourPortTM Static RAI

Military, Industrial and Commercial Temperature Ranges

AC Electrical Characteristics Over the Operating Temperature and Supply Voltage (7)

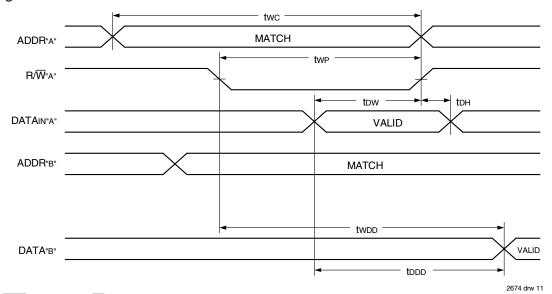

		7052X20 Com'l Only		7052X25 Com'l & Military		7052X35 Com'l & Military		
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Unit
WRITE CYCLE								
twc	Write Cycle Time	20		25		35		ns
tew	Chip Enable to End-of-Write ⁽³⁾	15		20	_	30		ns
taw	Address Valid to End-of-Write	15	_	20	_	30		ns
tas	Address Set-up Time	0		0	_	0		ns
twp	Write Pulse Width ⁽³⁾	15		20		30		ns
twr	Write Recovery Time	0	_	0	_	0		ns
tow	Data Valid to End-of-Write	15		15	_	20		ns
tHZ	Output High-Z Time ^(1,2)		15		15		15	ns
tDH	Data Hold Time	0		0	_	0		ns
twz	Write Enable to Output in High-Z ^(1,2)		12		15		15	ns
tow	Output Active from End-of-Write (1,2)	0		0		0		ns
twdd	Write Pulse to Data Delay ⁽⁴⁾		35		45		55	ns
twdd	Write Data Valid to Read Data Delay (4)		30		35		45	ns
BUSY INPUT	TIMING							
twB	Write to BUSY ⁵⁾	0		0	_	0		ns
twn	Write Hold After BUSY ⁶⁾	15		15		20		ns

NOTES: 2674 tbl 10

- 1. Transition is measured 0mV from Low or High-impedance voltage with the Output Test Load (Figure 2).
- 2. This parameter is guaranteed by device characterization but is not production tested.
- 3. If OE = V_{IL} during a R/W controlled write cycle, the write pulse width must be the larger of twp or (twz + tbw) to allow the I/O drivers to turn off data to be placed on the bus for the required tbw. If OE = V_{IH} during an R/W controlled write cycle, this requirement does not apply and the write pulse can be as short as the specified twp. Specified for OE = V_{IH} (refer to "Timing Waveform of Write Cycle", Note 8).
- 4. Port-to-port delay through RAM cells from writing port to reading port, refer to "Timing Waveform of Write with Port-to-Port Read".
- 5. To ensure that the write cycle is inhibited on port "A" during contention from Port "B". Port "A" may be any of the four ports and Port "B" is any other port.
- 6. To ensure that a write cycle is completed on port "A" after contention from Port "B". Port "A" may be any of the four ports and Port "B" is any other port.
- 7. 'X' in part number indicates power rating.

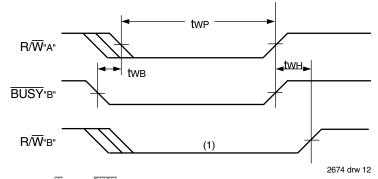
Timing Waveform of Write Cycle No. 1, R/W Controlled Timing (5,8)

Timing Waveform of Write Cycle No. 2, CE Controlled Timing (1,5)



NOTES:

- 1. R/\overline{W} or \overline{CE} = VIH during all address transitions.
- 2. A write occurs during the overlap (tew or twp) of a \overline{CE} = VIL and a R/ \overline{W} = VIL.
- 3. twn is measured from the earlier of \overline{CE} or R/\overline{W} = VIH to the end of write cycle.
- 4. During this period, the I/O pins are in the output state, and input signals must not be applied.
- 5. If the $\overline{CE} = V_{\parallel}L$ transition occurs simultaneously with or after the $P_{U}\overline{W} = V_{\parallel}L$ transition, the outputs remain in the High-impedance state.
- 6. Timing depends on which enable signal is asserted last, $\overline{\text{CE}}$ or R/\overline{W} .
- 7. Transition is measured 0mV from Low or High-impedance voltage with the Output Test Load (Figure 2). This parameter is guaranteed but is not production tested.
- 8. If $\overline{OE} = V_{IL}$ during a R \overline{W} controlled write cycle, the write pulse width must be the larger of twp or (twz + tow) to allow the I/O drivers to turn off data to be placed on the bus for the required tow. If $\overline{OE} = V_{IH}$ during an R \overline{W} controlled write cycle, this requirement does not apply and the write pulse can be as short as the specified twp.


Timing Waveform of Write with Port-to-Port Read(1,2,3)

NOTES:

- 1. Assume \overline{BUSY} input = VIH and \overline{CE} = VIL for the writing port.
- 2. $\overline{OE} = V_{IL}$ for the reading ports.
- 3. All timing is the same for left and right ports. Port "A" may be either of the four ports and Port "B" is any other port.

Timing Waveform of Write with **BUSY** Input

NOTE:

1. \overline{BUSY} is asserted on Port "B" blocking $R\overline{W}_{"B"}$ until $\overline{BUSY}_{"B"}$ goes HIGH.

Functional Description

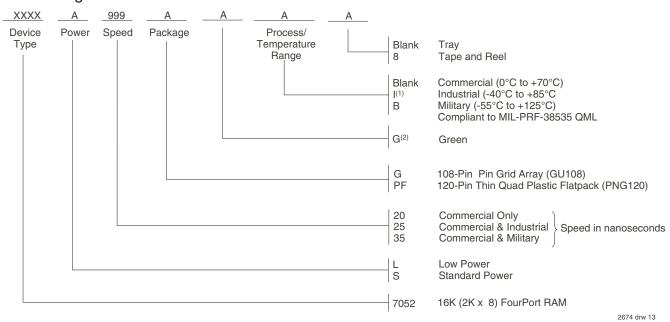
The IDT7052 provides four ports with separate control, address, and I/O pins that permit independent access for reads or writes to any location in memory. These devices have an automatic power down feature controlled by \overline{CE} . The \overline{CE} controls on-chip power down circuitry that permits the respective port to go into standby mode when not selected (\overline{CE} = VIH). When a port is enabled, access to the entire memory array is permitted. Each port has its own Output Enable control (\overline{OE}). In the read mode, the port's \overline{OE} turns on the output drivers when set LOW. READ/WRITE conditions are illustrated in the table below.

Truth Table I – Read/Write Control⁽³⁾

Any Port ⁽¹⁾)		
R∕ W	ΖĒ	ŌĒ	D0-7	Function	
Х	Η	Х	Z	Port Deselected: Power-Down	
х	Н	Х	Z	CEP1=CEP2=CEP3=CEP4=VIH Power Down Mode ISB or ISB1	
L	L	Х	DATAIN	Data on port written into memory (2)	
Н	L	L	DATAOUT	Data in memory output on port	
Х	Х	Н	Z	Outputs Disabled	

NOTES:

- 1. "H" = V_{IH} , "L" = V_{IL} , "X" = Don't Care, "Z "= High Impedance
- 2. If $\overline{BUSY} = VIL$, write is blocked.
- For valid write operation, no more than one port can write to the same address location at the same time.


2674 tbl 11

Λ

Military Industrial and Commercial Temperature Ranges

Ordering Information

NOTES:

- 1. Industrial temperature range is available. For specific speeds, packages and powers contact your sales office.
- 2. Green parts available. For specific speeds, packages and powers contact your local sales office.

Orderable Part Information

Speed (ns)	Orderable Part ID	Pkg. Code	Pkg. Type	Temp. Grade
20	7052L20G	GU108	PGA	O
	7052L20PFG	PNG120	TQFP	С
	7052L20PFG8	PNG120	TQFP	С
25	7052L25G	GU108	PGA	С
	7052L25PFGI	PNG120	TQFP	-
	7052L25PFGl8	PNG120	TQFP	ı
35	7052L35G	GU108	PGA	С
	7052L35GB	GU108	PGA	М

Speed (ns)	Orderable Part ID	Pkg. Code	Pkg. Type	Temp. Grade
20	7052S20G	GU108	PGA	С
25	7052S25G	GU108	PGA	С
35	7052S35G	GU108	PGA	С
	7052S35GB	GU108	PGA	М

High-Speed 2K v 8 FourPort™ Static RAN

Military Industrial and Commercial Temperature Ranges

Datasheet Document History

01/18/99: Initiated datasheet document history

Converted to new format

Cosmetic typographical corrections

Added additional notes to pin configurations

06/04/99: Changed drawing format

Page1 Corrected DSC number

11/10/99: Replaced IDT logo

11/18/99: Page 10 Fixed typo in caption for BUSY Input waveform 05/23/00: Page 4 Increased storage temperature parameter

Clarified TA parameter

Page 5DC Electrical parameters-changed wording from "open" to "disabled"

Changed ±200mV to 0mV in notes

10/22/01: Pages 2 & 3 Added date revision for pin configurations

Page 5, 7 & 8 Added Industrial temp to column heading for 25ns speed to DC & AC Electrical Characteristics

Page 11 Added Industrial temp offering to 25ns ordering information Page 4, 5, 7 & 8 Removed Industrial temp footnote from all tables

Page 1 & 11 Replace ™ logo with ® logo

07/24/06: Page 1 Added green availability to features

Page 11 Added green indicator to ordering information

01/19/09: Page 11 Removed "IDT" from orderable part number 02/05/15: Page 2 Removed IDT in reference to fabrication

Page 2,3 & 11 The package codes G108-1 & PN120-1 changed to G108 & PN120 respectively to match standard package codes

Page 11 Added Tape and Reel to Ordering Information

Page 1&3 Removed 132-pin PQF offering from the Features & the pin configuration

Page 11 Removed the 132-pin PQF package from the Ordering Information

07/08/16: Page 3 Changed diagram for the PN120 pin configuration by rotating package pin labels and pin

numbers 90 degrees counter clockwise to reflect pin 1 orientation and added pin 1 dot at pin 1

Added the IDT logo to the PN120 pin configurations and changed the text to be in alignment with new diagram marking specs and removed the date revision indicator from

all pin configurations

Updated footnote references for PN120 pin configuration by removing footnote 4 & 5

06/07/18: Product Discontinuation Notice - PDN# SP-17-02

Last time buy expires June 15, 2018

07/11/19: Page 2 & 3 Updated package codes G108 to GU108 and PN180 to PNG180

Page 11 Added Orderable Part Information tables

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use o any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:

www.renesas.com/contact/