

Matrix LED Driver

Automotive Dynamic Indicator Lamps 8ch Matrix LED Controller

BD18362EFV-M

General Description

BD18362EFV-M is an 8-channel matrix LED controller with an internal FET switch. Switching the FET on and off allows a control of the sequential lighting.

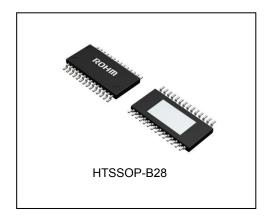
An internal charge pump serves as a power supply for the gate driver. Since sequential lighting pattern is built in, the microcontroller is unnecessary.

Features

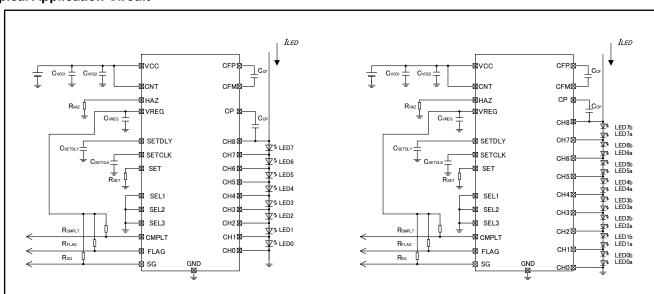
- AEC-Q100 Qualified^(Note 1)
- 8-channel Matrix Switch
- Up to 2LED's per Switch Control
- Built in Sequential Lighting pattern
- Sequential Lighting Phase Time Setting
- Sequential Lighting Start-up Delay Time Setting
- All-light-up (Hazard Mode)
- LED Open Protection
- LED Short Detection
- Thermal shutdown (Note 1) Grade1

Applications

 Automotive Exterior Lamps (Dynamic Indicator)


Key Specifications

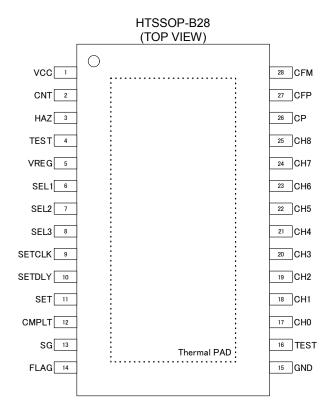
Input Voltage Range:
 Maximum Total LED's Voltage:
 Maximum SW Bypass Current
 5.5V to 60V
 48V(Max)
 1.0A(Max)


■ Internal FET Switch ON Resistance: 230mΩ(Typ)

■ Operating Temperature Range: -40°C to +125°C

Package W(Typ) x D(Typ) x H(Max) HTSSOP-B28 9.70mm x 6.40mm x 1.00mm

Typical Application Circuit

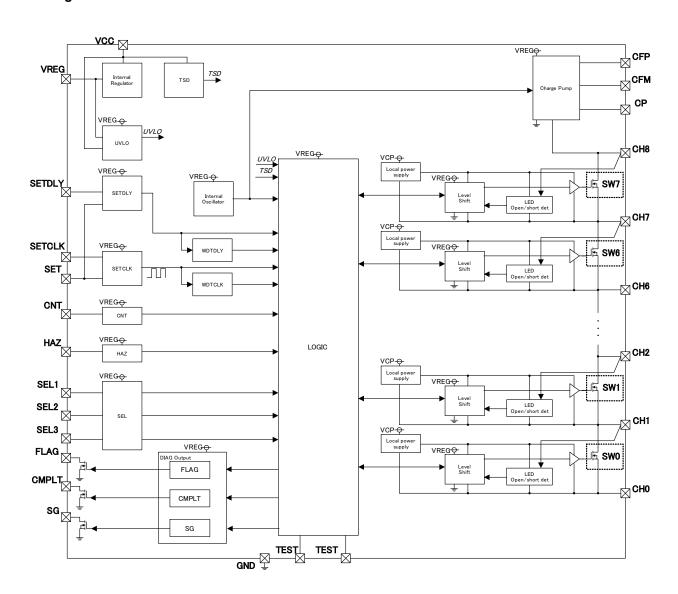


General Precaution

- 1. Before you use our Products, you are requested to carefully read this document and fully understand its contents. ROHM shall not be in any way responsible or liable for failure, malfunction or accident arising from the use of any ROHM's Products against warning, caution or note contained in this document.
- 2. All information contained in this document is current as of the issuing date and subject to change without any prior notice. Before purchasing or using ROHM's Products, please confirm the latest information with a ROHM sales representative.
- 3. The information contained in this document is provided on an "as is" basis and ROHM does not warrant that all information contained in this document is accurate and/or error-free. ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or concerning such information.

Notice – WE Rev.001

Pin Configuration



Pin Description

ביווו הפפ	CHPUOH				
PIN No.	Symbol	Function	PIN No.	Symbol	Function
1	VCC	Input power supply	15	GND	GND
2	CNT	Control input	16	TEST	TEST input (Note 1)
3	HAZ	Hazard mode switching input	17	CH0	LED0 cathode connection
4	TEST	TEST input (Note 1)	18	CH1	LED0 anode & LED1 cathode connection
5	VREG	Internal reference voltage output	19	CH2	LED1 anode & LED2 cathode connection
6	SEL1	Setting of the switch in use 1	20	CH3	LED2 anode & LED3 cathode connection
7	SEL2	Setting of the switch in use 2	21	CH4	LED3 anode & LED4 cathode connection
8	SEL3	Setting of the switch in use 3	22	CH5	LED4 anode & LED5 cathode connection
9	SETCLK	Sequential lighting phase time setting	23	CH6	LED5 anode & LED6 cathode connection
10	SETDLY	Sequential lighting start-up delay time setting	24	CH7	LED6 anode & LED7 cathode connection
11	SET	Sequential lighting phase time/ start-up delay time setting	25	CH8	LED7 anode connection
12	CMPLT	Lighting complete signal output	26	СР	Charge pump output for internal switch
13	SG	Status good output	27	CFP	Connecting capacitor for charge pump +
14	FLAG	Error flag output	28	CFM	Connecting capacitor for charge pump -

(Note 1) Connect to GND

Block Diagram

Description of Blocks

1. Total Function

The BD18362EFV-M is a matrix LED controller able to implement a sequential lighting (Dynamic Indicator) of LEDs without the need for a microcontroller.

An LSI meant for driving LEDs with eight switches connected in a series and is used in conjunction with an LED driver. The switches are connected to the anodes and cathodes of the LED. When the switch is OFF, a current flow through the LED and the LED is light. When the switch is ON, the current is bypassed and the LED is unlighted.

When the CNT pin is given a high input, the switches are turned OFF sequentially from SW0 after the sequential lighting start-up delay time (tdly) and the LEDs are lighting sequentially from LED0.

The t_{DLY} can be set by means of a capacitor connected to the SETDLY pin and a resistor connected to the SET pin. The sequential lighting phase time (t_{PS1}), in which the switch is turned from the ON to the OFF position, can be set by means of a capacitor connected to the SETCLK pin and a resistor connected to the SET pin.

When the CNT pin is given a low input, the LEDs are turned to the all-OFF position. However, the switches are turned ON sequentially from SW7 (LEDs are unlighted sequentially) at a fixed time (t_{PSL}). This avoids sudden output voltage fluctuations.

Additionally, the BD18362EFV-M is built in hazard mode function. When the HAZ pin is given a high input at the lighting condition, the LEDs are turned from the all-OFF to the all-ON position. However, the switches are turned OFF sequentially from SW0 (LEDs are light sequentially) at a fixed time (tpsh). This avoids sudden output voltage fluctuations.

Although there are 8 switches to the BD18362EFV-M, it is also possible to use it with 7 switches or less. The number of used switches can be set by pulling up the SEL1 pin, the SEL2 pin and the SEL3 pin to the VREG pin or by pulling down to GND.

Also, it is possible to use two BD18362EFV-M if more than 9 switches are employed. A sequential lighting of more than 9 switches is possible by connecting the CMPLT pin and the CNT pin so the phase shift of the second BD18362EFV-M will start after the phase shift of the first BD18362EFV-M has been completed.

The BD18362EFV-M is built in a diagnostic function for LED open and LED short on each switch. If the LED open diagnosis detects an open during the period when the LED is light (the switch is OFF), the immediately corresponding switch is turned ON and the current is bypassed. Additionally, the FLAG pin will have a low output in order to report the LED open. In the same way, the LED short diagnosis detects a short during the period when the LED is light (the switch is OFF). The FLAG pin will have a low output in order to report the LED short.

BD18362EFV-M built in an internal watchdog timer.

- Watchdog timer for sequential lighting start-up delay time
- If the capacitor connected to the SETDLY pin has a short, the LED will be unlighted, since the sequential lighting start-up delay time cannot be set. When twotdly has passed, there is a time-out and the FLAG pin will have a low output. Also, the LEDs are automatically all light. As in the hazard mode, the switches are turned OFF sequentially at fixed time.
- •Watchdog timer for sequential lighting phase time

If the capacitor connected to the SETCLK pin has a short, the LED will be unlighted, since the phase shift time t_{PS1} cannot be set. When t_{WDTCLK} has passed, there is a time-out and the FLAG pin will have a low output. Also, the LEDs are automatically all light. As in the hazard mode, the switches are turned OFF sequentially at fixed time.

The BD18362EFV-M is built in charge pump serving as a power supply for the switch gate drive. All switches and gate drive circuits form a floating circuit and operate under the voltage generated by the charge pump circuit.

The BD18362EFV-M has high voltage switches and each of switches can connect with up to 2 LEDs in series. Achieve the 16 LEDs solution by 8-channels with 2LEDs in each of switches.

2. SG [Status Good]

After the VCC is supplied, the switches may happen to be OFF until the internal circuit comes to a stable condition. In this condition, the LED might flicker when the LED current is supplied.

The BD18362EFV-M can report by the SG pin for internal condition as ready to switch in stable. In order to prevent a flickering, it is recommended to provide an LED current after the SG pin switches from a low to Hiz.

If the VČC pin voltage rises above the UVLO release voltage (V_{UVR}) and the SG delay time (t_{dSG}) has passed, the SG pin will switch from a low to Hiz.

During UVLO detection or thermal shutdown detection, the SG pin will switch to a low. If the SG delay time (tdSG) has passed after a UVLO release and thermal shutdown release, the SG pin will switch from a low to Hiz. (refer to Figure 19 (b))

The SG pin is open drain and needed pulled up resistor for monitoring output signal.

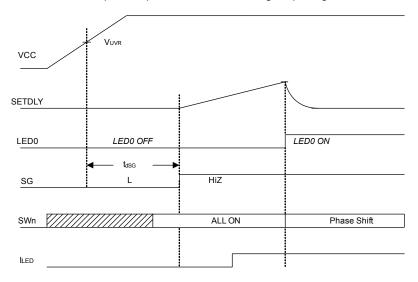


Figure 1. Timing Chart (Status Good Function)

To avoid the LED flicker, it is recommended to connect the SG pin and the current source LED drivers control pin (e.g. enable pin and PWM pin). Pull up the SG pin to the VREG pin (BD18362EFV-M) with resister, connect the SG pin and the current source LED drivers control pin. Design with sufficient consideration of the threshold voltage input, inside impedance, pull up resister value and VREG voltage value.

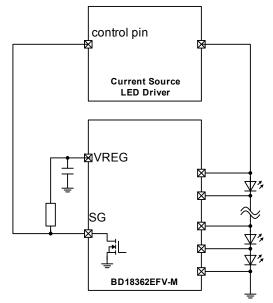
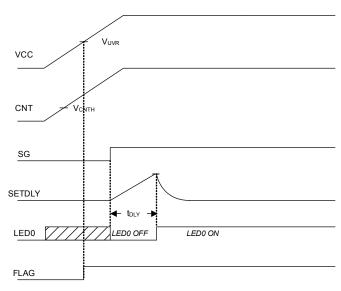


Figure 2. Application of Connecting with the SG Pin to the current source LED Driver

3. SETDLY [Sequential Lighting Start-up Delay Time Setting]

The delay time until the switch is turned OFF must be set in order not to have a planned sequential operation where BD18362EFV-M turns the switches OFF before the current supply to the LED (e.g. LED driver) operates. The setting can be done the capacitor connected to the SETDLY pin (Csetdly) and the resistor connected to the SET pin (Rset). The charging of the capacitor connected to the SETDLY pin starts when the SG pin change from low to Hiz and the CNT pin voltage has risen above the Vcnth voltage. SW0 turn OFF (LED0 turn ON) after the setting time (tdly).


Sequential Lighting Start-up Delay Time

$$t_{DLY} = K_{DLY} \times R_{SET} \times C_{SETDLY}$$
 [s]

When the Sequential lighting start-up delay time is passed, the SETDLY pin is discharged.

A recharge is possible under the following 3 conditions: (1) or (2) or (3)

- (1) UVLO detection → UVLO release → Status good delay time passed → Recharge
- (2) Thermal shutdown detection → Thermal shutdown release → Status good delay time passed → Recharge
- (3) Input V_{CNT} ≤ V_{CNTH}-V_{CNTHYS} → Input V_{CNT}≥V_{CNTH} → Recharge

(a) Start-up

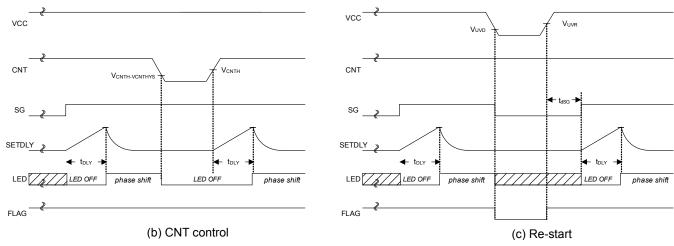


Figure 3. Timing Chart (Seguential Lighting Start-up Delay Time)

4. SETCLK [Sequential Lighting Phase Time Setting]

Through the BD18362EFV-M it is possible to change the sequential lighting phase time. The sequential lighting phase time (tps1) is determined by the clock period (tclk), which is set by the capacitor connected to the SETCLK pin (Csetclk) and the resistor connected to the SET pin (Rset).

Clock Period

$$t_{CLK} = \frac{K_{PS} \times R_{SET} \times C_{SETCLK}}{256}$$
 [s]

Sequential Lighting Phase Time

$$t_{PS1} = K_{PS} \times R_{SET} \times C_{SETCLK}$$
 [s]

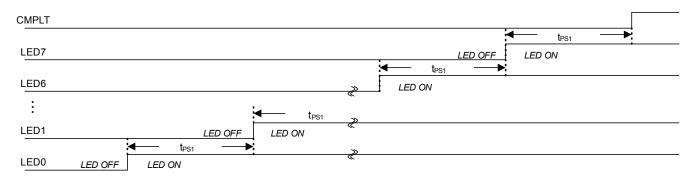


Figure 4. Timing Chart (Sequential Lighting Phase Shift HAZ=L)

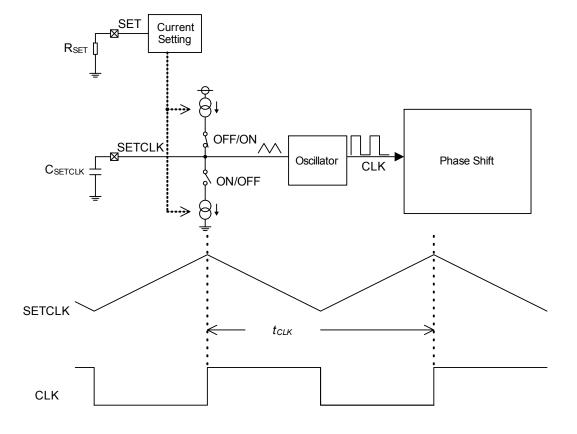


Figure 5. CLK Generation Circuit for Sequential Lighting Phase Shift

5. HAZ [Hazard Mode Switching Input]

The BD18362EFV-M is built in hazard mode function. If the HAZ pin is given a high input (≥V_{HAZH}), the LEDs are turned from the all-OFF to the all-ON position after sequential lighting start-up delay (t_{DLY}) passed. However, the switches are turned OFF sequentially (LEDs are light sequentially) at a fixed time (t_{PSH}), this avoids sudden output voltage fluctuations.

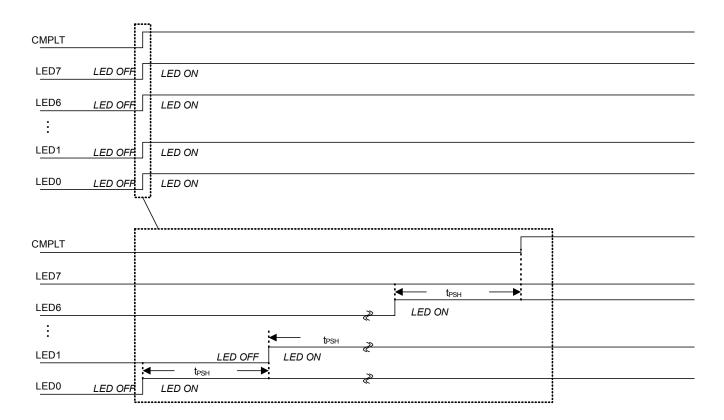


Figure 6. Timing Chart (Hazard mode HAZ=H)

6. SEL [Setting pin for switches in use]

The BD18362EFV-M has 8 switches. Therefore, in cases where only 7 or less switches are used, please short-circuit the board with the pins that are not used. The protective function must be disabled for those switches that are not being used, so that the short detection will not run.

The switches in use determine if the SEL1pin, the SEL2 pin and the SEL3 pin are setting high input (≥V_{SELH}) or low input (≤V_{SELL}).

Switches in use	Protective Function Invalidity Switches	SEL1	SEL2	SEL3
0, 1, 2, 3, 4, 5, 6, 7	-	low	low	low
0, 1, 2, 3, 4, 5, 6	7	high	low	low
0, 1, 2, 3, 4, 5	6, 7	low	high	low
0, 1, 2, 3, 4	5, 6, 7	high	high	low
0, 1, 2, 3	4, 5, 6, 7	low	low	high
0, 1, 2	3, 4, 5, 6, 7	high	low	high
0, 1	2, 3, 4, 5, 6, 7	low	high	high
0	1, 2, 3, 4, 5, 6, 7	high	high	high

The setting will not be changed even if the SEL pin voltage switches temporarily during the sequential lighting phase shift operation.

The settings are changed at a restart. A restart is possible under the following 3 conditions: (1) or (2) or (3)

- (1) UVLO detection → UVLO release → Status good delay time passed → Set SEL condition
- (2) Thermal shutdown detection → Thermal shutdown release → Status good delay time passed → Set SEL condition
- (3) Input V_{CNT} ≤ V_{CNTH}-V_{CNTHYS} → Input V_{CNT}≥V_{CNTH} → Set SEL condition

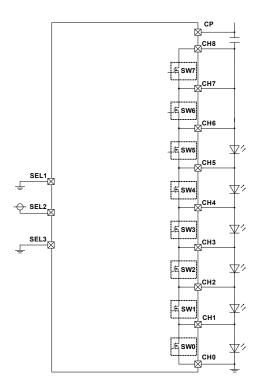


Figure 7. A Circuit for Setting SEL (for using 6 Switches)

7. CMPLT [Lighting Complete Signal Output]

When the sequential lighting is complete, the CMPLT pin changes from a low to Hiz.

The BD18362EFV-M has 8 switches. Therefore, in cases where 9 or more switches are used for sequential lighting, a second BD18362EFV-M comes into use. When the lighting of LED by an IC (A) is complete, the CMPLT pin of an IC (A) will give a Hiz output. By connecting the CMPLT pin of an IC (A) and the CNT pin of an IC (B), the LED lighting of an IC (B) will start after the LED lighting of an IC (A) is complete.

Also, the "lighting complete" timing is changed according to the used switches set by the SEL1 pin, the SEL2 pin and the SEL3 pin.

If the 6 and 7 switches are invalidated, the CMPLT pin will have a Hiz output at the time when the start-up of switch 5 is completed.

The CMPLT pin will change Hiz to low under following conditions. (1) or (2) or (3) (refer to Figure 19 (c))

- (1) UVLO detection → CMPLT=L
- (2) Thermal shutdown detection → CMPLT=L
- (3) Input $V_{CNT} \le V_{CNTH} V_{CNTHYS} \rightarrow CMPLT = L$

The CMPLT pin is open drain and needed pulled up resistor for monitoring output signal.

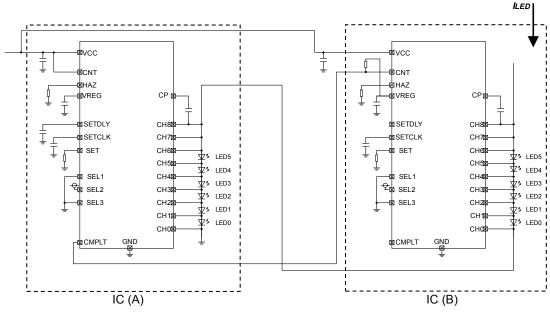


Figure 8. Application Example (for using 12 Switches)

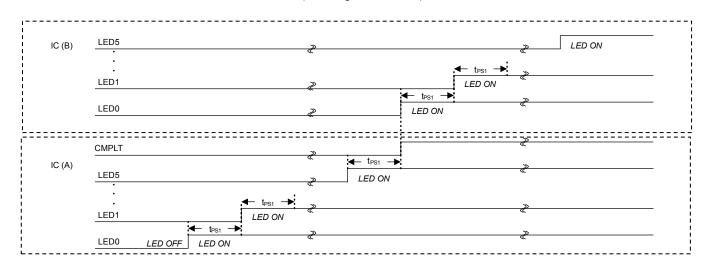


Figure 9. Timing Chart (for using 12 Switches)

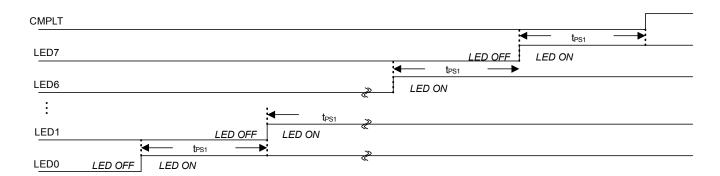


Figure 10. Timing Chart (CMPLT output function SEL1=L, SEL2=L, SEL3=L)

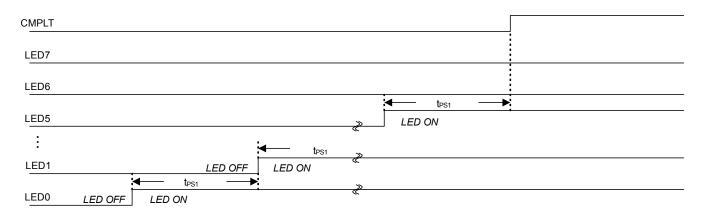


Figure 11. Timing Chart (CMPLT output function SEL1=L, SEL2=H, SEL3=L)

8. CNT [Lighting On/Off Control]

It is possible to control the switches through the CNT pin.

LED ON

If the CNT pin is given a high input (≥V_{CNTH}), the switches will be turned OFF sequentially and the LEDs are light sequentially after the sequential lighting start-up delay time toly.

If the CNT pin is given a low input (≤V_{CNTH}-V_{CNTHYS}), the switches will be turned ON sequentially and the LEDs are unlighted sequentially. Also, the CMPLT pin will have a low output.

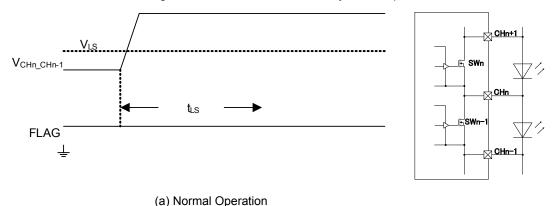
The switches are turned ON sequentially (LEDs are unlighted sequentially) at a fixed time (tpsL), this avoids sudden output voltage fluctuations.

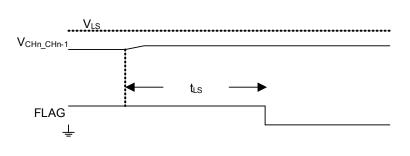
VCNTH CNT V_{CNTH}-V_{CNTHYS} SETDLY **CMPLT** ← t_{PS1} → LED7 LED OFF LED ON **←** t_{PS1} LED6 LED OFF LED ON LED1 LED OFF LED ON ← t_{PS1} → t_{PSL} LED0 LED OFF

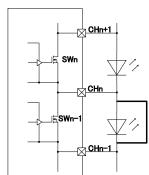
Figure 12. Timing Chart (The CNT Pin Function)

9. LED Short Detection

The BD18362EFV-M is built in LED short detection.


While switch is turned OFF, the voltage between CHn-CHn-1 is monitored. If the voltage between CHn-CHn-1 falls below the LED short detection voltage (V_{LS}), an LED short is detected. The FLAG pin will change to low. When SWn-1 turn OFF, the short detection function will be disable in the time (t_{LS}).


$$t_{LS}=t_{PS1} imes 0.5~(Typ)~$$
 when VHAZ=L(\leq VHAZH-VHAZHYS) $t_{LSH}=t_{PSH} imes 0.5~(Typ)~$ when VHAZ=H(\geq VHAZH)


The FLAG pin will change low to Hiz under following conditions. (1) or (2) or (3) (refer to Figure 19 (a))

- (1) UVLO detection → UVLO release → Status good delay time passed → FLAG=Hiz
- (2) Thermal shutdown detection \rightarrow Thermal shutdown release \rightarrow FLAG=Hiz
- (3) Input V_{CNT} ≤ V_{CNTH}-V_{CNTHYS} → FLAG=Hiz

The LED short detection function is invalid with regard to the unused switches set by the SEL pin.

(b) LED Short Operation

Figure 13. Functionality of LED Short Detection

10. LED Open Protection

The BD18362EFV-M is built in LED open protection.

While switch is turned OFF, the voltage between CHn-CHn-1 is monitored. If the voltage between CHn-CHn-1 is detected to be the LED open protection voltage (V_{LO}) during the monitoring, SWn-1 will be turned ON immediately and this will prevent a destruction of the switch. When the t_{LO} time has passed after SWn-1 turned OFF, the FLAG pin will change to low. The other switches keep lighting phase shift after detecting LED open.

$$t_{LO}=t_{PS1} imes 0.5 \ (Typ)$$
 when VHAZ=L(\leq VHAZH-VHAZHYS) $t_{LOH}=t_{PSH} imes 0.5 \ (Typ)$ when VHAZ=H(\geq VHAZH)

The FLAG pin will change low to Hiz under following conditions. (1) or (2) or (3) (refer to Figure 19)

- (1) UVLO detection → UVLO release → FLAG=Hiz
- (2) Thermal shutdown detection → Thermal shutdown release → FLAG=Hiz
- (3) Input V_{CNT} ≤ V_{CNTH}-V_{CNTHYS} → FLAG=Hiz

The LED open protection function is invalid with regard to the unused switches set by the SEL pin.

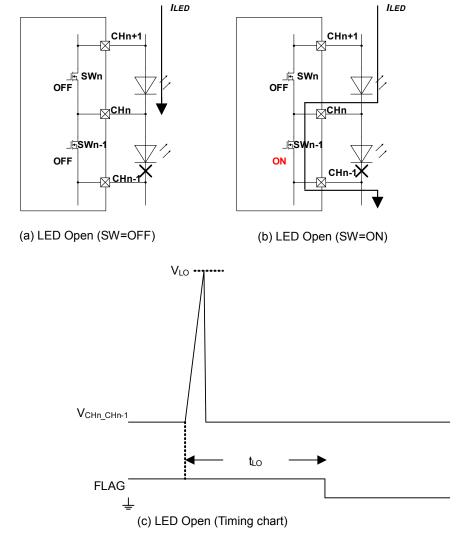
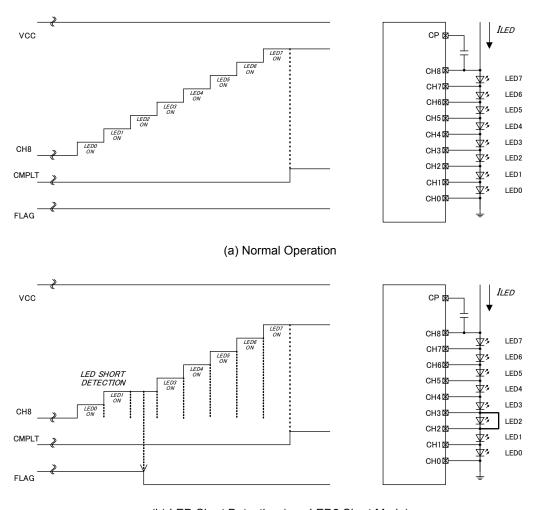
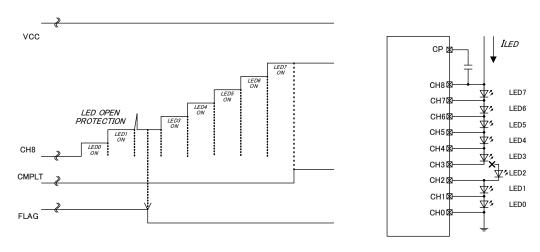




Figure 14. Functionality of LED Open Protection

(b) LED Short Detection (e.g. LED2 Short Mode)

(c) LED Open Protection (e.g. LED2 Open Mode)

Figure 15. Timing Chart (LED Short/LED Open)

11. WDTDLY [Watchdog Timer for SETDLY]

The BD18362EFV-M monitors the t_{DLY} (sequential lighting start-up delay time). Since the t_{DLY} cannot be set if the capacitor connected to the SETDLY pin has a short, the LEDs will come unlighted.

The WDTDLY starts monitoring when the SG pin output has a Hiz and the CNT pin is given a high input ($\geq V_{CNTH}$). If the t_{DLY} is not detected within t_{WDTDLY} , there will be a time-out and the FLAG pin changes to low.

When there is a time-out, the LEDs will all-light automatically. However, the switches are turned OFF sequentially (LEDs are light sequentially) at a fixed time (tpsh).

The FLAG pin will change low to Hiz under following conditions. (1) or (2) or (3) (refer to Figure 19 (a))

- (1) UVLO detection → UVLO release → FLAG=Hiz
- (2) Thermal shutdown detection → Thermal shutdown release → FLAG=Hiz
- (3) Input V_{CNT} ≤ V_{CNTH}-V_{CNTHYS} → FLAG=Hiz

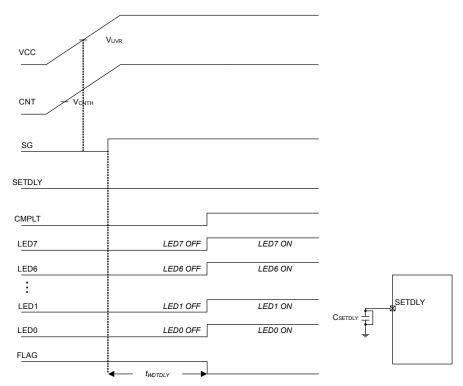


Figure 16. Timing Chart (The SETDLY short to GND)

12. WDTCLK [Watchdog Timer for SETCLK]

The BD18362EFV-M monitors the sequential lighting phase time. Since the t_{CLK} cannot be set if the capacitor connected to the SETCLK pin has a short, the LEDs will come unlighted.

The WDTCLK starts monitoring when the SG pin change from low to Hiz and the CNT pin is given a high input (\geq V_{CNTH}). If the clock period (tclk) is not detected within twdtclk, there will be a time-out and the FLAG pin changes to low. When there is a time-out, the LEDs will all-light automatically. However, the switches are turned OFF sequentially (LEDs are light sequentially) at a fixed time (tpsh).

The FLAG pin will change low to Hiz under following conditions. (1) or (2) or (3) (refer to Figure 19)

- (1) UVLO detection → UVLO release → FLAG = Hiz
- (2) Thermal shutdown detection → Thermal shutdown release → FLAG = Hiz
- (3) Input V_{CNT} ≤ V_{CNTH}-V_{CNTHYS} → FLAG = Hiz

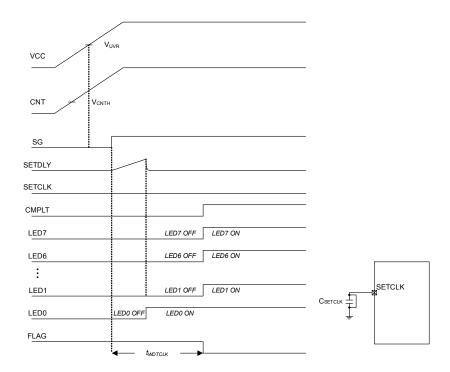
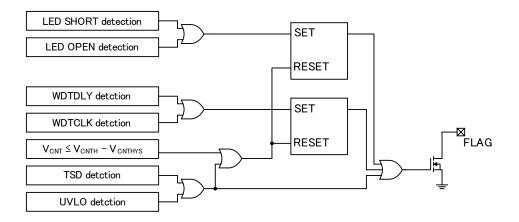
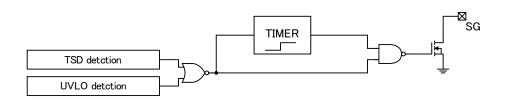
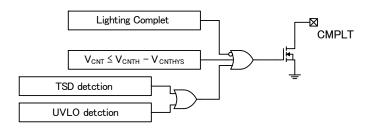



Figure 17. Timing Chart (The SETCLK Short to GND) SETCLK CMPLT LED7 OFF LED7 ON LED7 LED6 LED6 OFF LED6 ON LED1 LED1 OFF LED1 ON LED0 LED0 ON FLAG


Figure 18. Timing Chart (The CLK in Abnormal)

13. Monitor Function


BD18362EFV-M has pins (SG, FLAG and CMPLT) for monitoring condition. These pins are open drain and needed pull up resistor for monitoring condition.

(a) The FLAG Pin Equivalence Circuit

(b) The SG Pin Equivalence Circuit

(c) The CMPLT Pin Equivalence Circuit

Figure 19. Monitor Pin Equivalence Circuits

Absolute Maximum Ratings (Ta=25°C)

Parameter	Symbol	Rating	Unit
Power Supply Voltage (VCC)	Vcc	-0.3 to +70	V
CNT, HAZ Voltage	VCNT, VHAZ	-0.3 to +70	V
VREG Voltage	V _{REG}	-0.3 to +7 ≤ V _{CC}	V
SETDLY, SETCLK Voltage	V _{SETDLY} , V _{SETCLK}	-0.3 to V _{REG} +0.3 ≤ +7	V
SEL1, SEL2, SEL3 Voltage	VSEL1, VSEL2, VSEL3	-0.3 to V _{REG} +0.3 ≤ +7	V
CMPLT, SG, FLAG Voltage	VCMPLT, VSG, VFLAG	-0.3 to +7	V
CP Voltage	V _{CP}	-0.3 to +67	V
CP to CH8 Voltage	V _{VCP_CH8}	-0.3 to +7	V
CFP to CFM Voltage	Vcfp_cfm	-0.3 to +7	V
CHn Voltage ^(Note 1)	V _{CHn}	-0.3 to +60	V
CHn to CHn-1 Voltage ^(Note 1)	V _{CHn_CHn-1}	-0.3 to +20	V
Maximum SWn Bypass Current ^(Note 2)	Iswn	1.0	Α
Storage Temperature Range	Tstg	-55 to +150	°C
Maximum Junction Temperature	Tjmax	150	°C

Caution 1: Operating the IC over the absolute maximum ratings may damage the IC. The damage can either be a short circuit between pins or an open circuit between pins and the internal circuitry. Therefore, it is important to consider circuit protection measures, such as adding a fuse, in case the IC is operated over the absolute maximum ratings.

Caution 2: Should by any chance the maximum junction temperature rating be exceeded the rise in temperature of the chip may result in deterioration of the properties of the chip. In case of exceeding this absolute maximum rating, increase the board size and copper area to prevent exceeding the maximum junction temperature rating.

⁽Note 1) CHn: n=0 to 8

⁽Note 2) SWn: n=0 to 7

Thermal Resistance^(Note 1)

Parameter	Symbol	Thermal Res	Unit		
Parameter	Symbol	1s ^(Note 3)	2s2p ^(Note 4)	Offic	
HTSSOP-B28					
Junction to Ambient	θја	107.0	25.1	°C/W	
Junction to Top Characterization Parameter ^(Note 2)	$\Psi_{ m JT}$	6	3	°C/W	

(Note 1) Based on JESD51-2A(Still-Air)

(Note 2) The thermal characterization parameter to report the difference between junction temperature and the temperature at the top center of the outside surface of the component package.

(Note 3) Using a PCB board based on JESD51-3.

Layer Number of Measurement Board	Material	Board Size
Single	FR-4	114.3mm x 76.2mm x 1.57mmt
Тор		
Copper Pattern	Thickness	
Footprints and Traces 70µm		

(Note 4)Using a PCB board based on JESD51-5, 7.

Layer Number of Material		Board Size		Thermal Via ^(Note 5)			
Measurement Board	iviateriai	Doald Size		Pitch	Diameter		
4 Layers	FR-4	114.3mm x 76.2mm	x 1.6mmt	1.20mm	Ф0.30mm		
Тор		2 Internal Laye	ers	Bottom			
Copper Pattern	Thickness	Copper Pattern	Thickness	Copper Pattern	Thickness		
Footprints and Traces	70µm	74.2mm x 74.2mm	35µm	74.2mm x 74.2m	m 70µm		

(Note 5) This thermal via connects with the copper pattern of all layers.

Recommended Operating Conditions

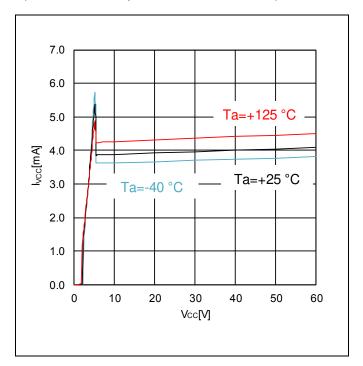
Parameter	Symbol	Min	Тур	Max	Unit
Supply Input Voltage ^(Note 6) (Note 7)	Vcc	5.5	13	60	V
Operating Temperature	Topr	-40	+25	+125	°C
Maximum Total LED Voltage	V _{LED}	-	-	48	V
CHn to CHn-1 LED Input Range	V _{CHn_CHn-1}	1.2	-	9	V
Sequential Lighting Phase Time Setting Range	t _{PS1}	5	-	100	ms
Sequential Lighting Start-up Delay Time Setting Range	toly	-	-	225	ms

(Note 6) Supply input voltage range can be considered based on power dissipation.

(Note 7) At start-up time, please apply a voltage above 6.0V once. The value is the voltage range after the temporary rise to 6.0V.

Recommended Setting Parts Range

Parameter	Symbol	Min	Тур	Max	Unit
Capacitor Connecting to the VREG Pin	Cvreg	1.0	2.2	4.7	μF
Capacitor for Charge Pump	CCP, CCF	0.001	0.047	0.22	μF
Resistor for Sequential Lighting Phase Time/ Sequential Lighting Start-up Delay Time	R _{SET}	6	-	40	kΩ
Capacitor for Sequential Lighting Start-up Delay Time	CSETDLY	-	-	10	μF
Capacitor for Sequential Lighting Phase Time	C _{SETCLK}	0.001	-	0.047	μF


Electrical Characteristics (Unless otherwise specified: V_{CC}=13V Ta=-40°C to +125°C)

Darameter	Cumbal		Limit		Unit	Conditions	
Parameter	Symbol	Min	Тур	Max	Unit	Conditions	
[Total]							
VCC Input Current	lvcc	-	3.8	7.0	mA	$V_{CNT}=0V$, $V_{CH0}=0V$ $R_{SET}=22k\Omega$, $C_{SETCLK}=0.01\mu F$	
UVLO Detection Voltage	V_{UVD}	4.7	5.1	5.5	V	V _{CC} : Sweep down	
UVLO Release Voltage	V_{UVR}	4.95	5.40	5.85	V	V _{CC} : Sweep up	
UVLO Hysteresis Voltage	V _{HYS}	-	0.3	-	V		
[Internal Reference Voltage]							
Regulator Output	V_{REG}	4.5	5.0	5.5	V	C _{VREG} =2.2µF I _{VREG} =0mA to 2mA	
[Charge Pump]							
Charge Pump Output Voltage	V_{CP}	-	-	7	V	V _{CP} -V _{CH8}	
Differential Voltage of Flying Capacitor	V _{CF}	-	-	7	V	V _{CFP} -V _{CFM}	
[SET, SETDLY, SETCLK]							
Coefficient for Sequential Lighting Phase Time	K _{PS}	278	320	368	-	t _{PS1} =K _{PS} x R _{SET} x C _{SETCLK} [S] V _{HAZ} =0V	
Coefficient for Sequential Lighting Start-up Delay Time	K _{DLY}	2.23	2.67	3.20	-	tdly=Kdly x Rset x Csetdly [s]	
Sequential Lighting Phase Time In the Hazard Mode	tрsн	105	140	180	μs	V _{HAZ} =5V	
Turn Off Phase Time In the CNT=L	t _{PSL}	105	140	180	μs	V _{CNT} =5V→0V	
[CMPLT, SG, FLAG]							
CMPLT Output Voltage Low	VCMPLTL	-	-	0.2	V	I _{CMPLT} =1mA	
CMPLT Leak Current	I _{CMPLTLK}	-	-	1	μA	V _{CMPLT} =5.5V	
SG Output Voltage Low	Vsgl	-	-	0.2	V	I _{SG} =1mA	
SG Leak Current	Isglk	-	-	1	μA	V _{SG} =5.5V	
FLAG Output Voltage Low	V _{FLAGL}	-	-	0.2	V	I _{FLAG} =1mA	
FLAG Leak Current	I _{FLAGLK}	-	-	1	μA	V _{FLAG} =5.5V	
SG Delay Time	tdsG	415	590	765	μs		
WDTDLY Time Out	twdtdly	245	350	455	ms		
WDTCLK Time Out	twdtclk	80	115	150	ms		

Electrical Characteristics – continued (Unless otherwise specified: V_{CC}=13V Ta=-40°C to +125°C)

Parameter	Symbol			Unit	Conditions	
Farameter	Symbol	Min	Тур	Max	Offic	Conditions
[CNT, HAZ]						
CNT Pin Input Current 1	I _{CNT1}	-10	-2.5	-	μA	V _{CNT} =0V
CNT Pin Input Current 2	I _{CNT2}	-	0	5	μA	V _{CNT} =60V
CNT Threshold Voltage	V _{CNTH}	0.9	1.0	1.1	V	Sweep up
CNT Threshold Hysteresis Voltage	Vcnthys	-	100	-	mV	
HAZ Pin Input Current 1	I _{HAZ1}	-10	-2.5	-	μA	V _{HAZ} =0V
HAZ Pin Input Current 2	I _{HAZ2}	-	0	5	μA	V _{HAZ} =60V
Hazard Mode Threshold Voltage	V _{HAZH}	0.9	1.0	1.1	V	Sweep up
Hazard Mode Threshold Hysteresis Voltage	V _{HAZHYS}	-	100	-	mV	
[SEL1, SEL2, SEL3]						
SEL1, SEL2, SEL3 High Level Input Voltage	V _{SELH}	3.6	-	V _{REG}	V	
SEL1, SEL2, SEL3 Low Level Input Voltage	VSELL	0	-	1.1	V	
SEL1, SEL2, SEL3 Pin Input Current	Isel	10	20	30	μA	V _{SEL1} =5V, V _{SEL2} =5V, V _{SEL3} =5V
[CH]						
CHn to CHn-1 Switch ON Resistance	Rsw	-	230	460	mΩ	I _{SW} =300mA
CH8 to CH0 Switch Total ON Resistance	Rsw70	-	0.95	2.2	Ω	All Switches On Isw70=300mA
LED Open Detection Voltage	V _{LO}	9.0	-	15	V	V _{CHn_CHn-1} : Sweep up
LED Short Detection Voltage	V _{LS}	-	-	1.2	٧	V _{CHn_CHn-1} : Sweep up

Typical Performance Curves (Reference Data)

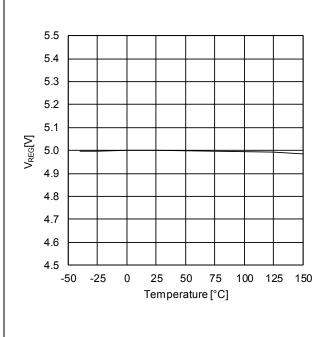


Figure 20. I_{VCC} vs V_{CC}

Figure 21. V_{REG} vs Temperature

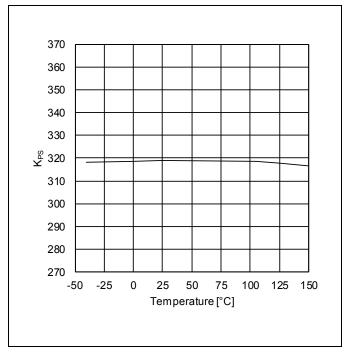


Figure 22. K_{PS} vs Temperature (C_{SETCLK} =0.0047 μ F, R_{SET} =10 $k\Omega$)

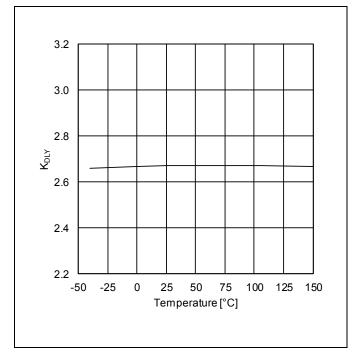
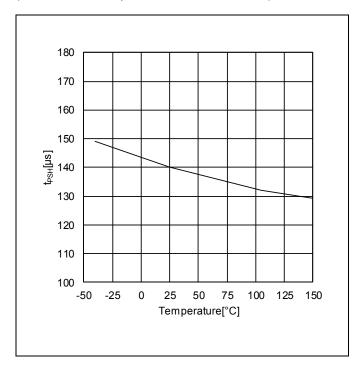
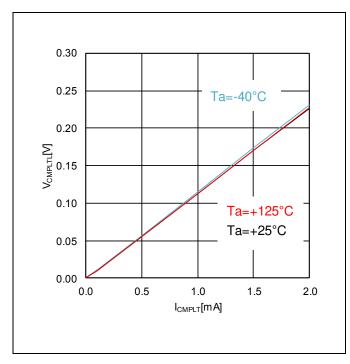



Figure 23. K_{DLY} vs Temperature (CsetDLY=0.01 μ F, Rset=10 $k\Omega$)


Typical Performance Curves (Reference Data) - continued

180 170 160 150 140 130 120 110 100 -50 -25 0 25 50 75 100 125 150 Temperature[°C]

Figure 24. t_{PSH} vs Temperature

Figure 25. t_{PSL} vs Temperature

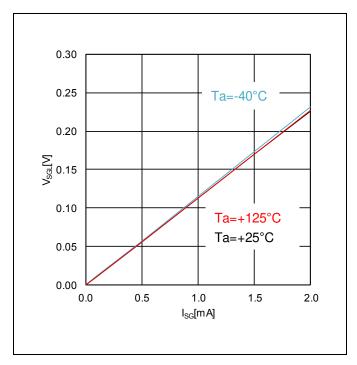


Figure 27. V_{SGL} vs I_{SG}

Typical Performance Curves (Reference Data) - continued

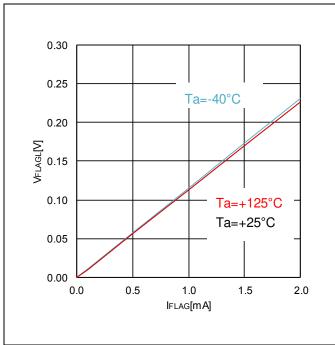


Figure 28. V_{FLAGL} vs I_{FLAG}

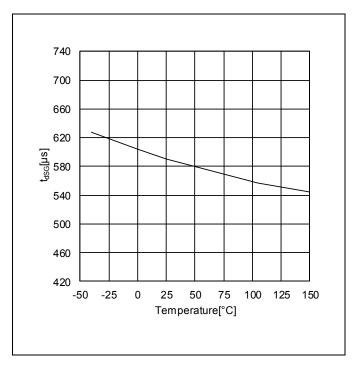


Figure 29. tdSG vs Temperature

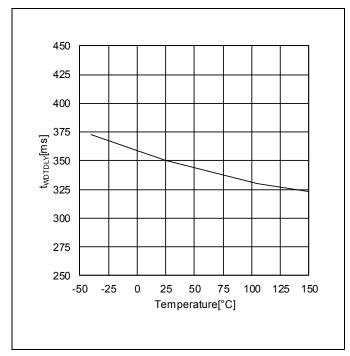


Figure 30. twotdly vs Temperature

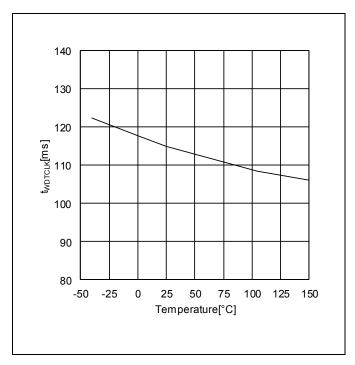


Figure 31. twdtclk vs Temperature

Typical Performance Curves (Reference Data) - continued

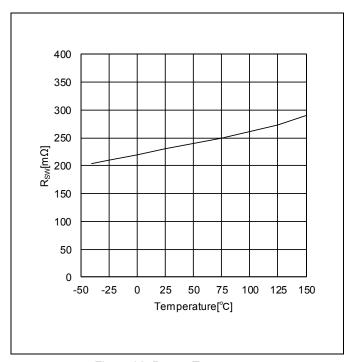


Figure 32. R_{SW} vs Temperature (I_{SW}=300mA)

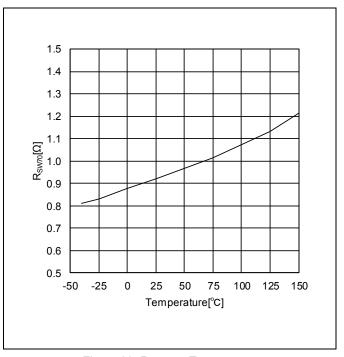


Figure 33. R_{SW70} vs Temperature (I_{SW70}=300mA)

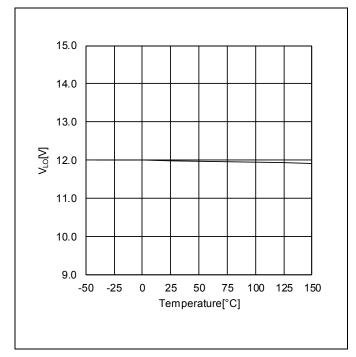


Figure 34. V_{LO} vs Temperature

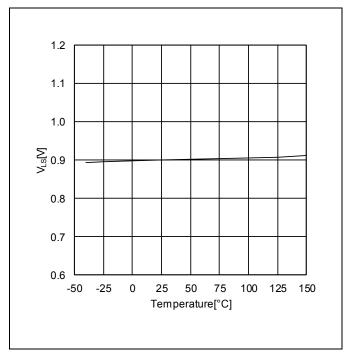


Figure 35. V_{LS} vs Temperature

Timing Chart

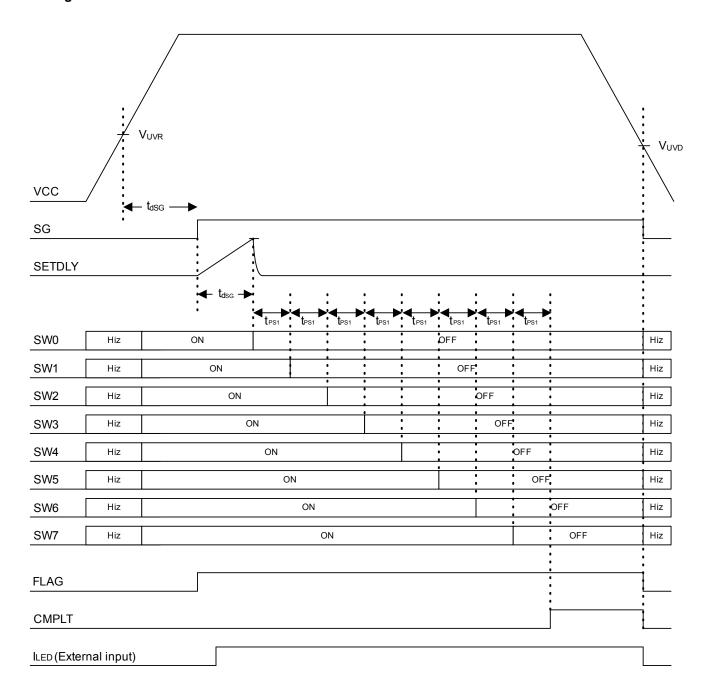
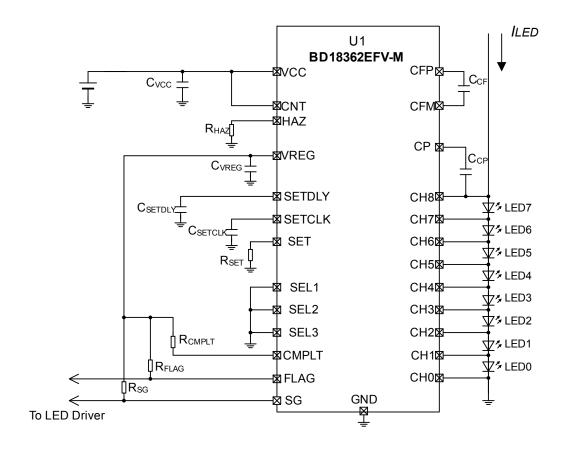
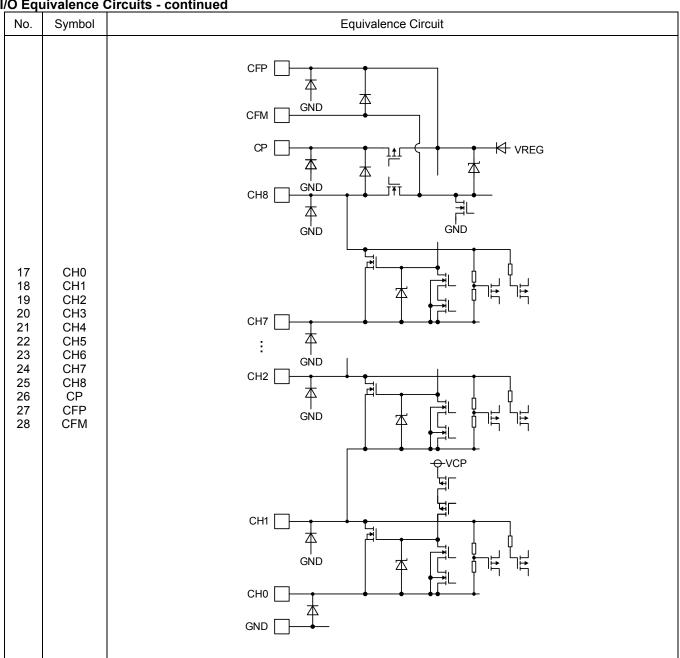



Figure 36. Typical Timing Chart

Recommended Application Circuit

Recommended Parts List

(8 switches, t_{PS1}=15ms, t_{DLY}=1.25ms)


8 SWITCHES, TPS1=15	oms, t _{DLY} =1.25ms)				T
Parts	Symbol	Parts Name	Value	Unit	Product Maker
IC	U1	BD18362EFV-M	ı	ı	ROHM
	R _{HAZ}	MCR03EZPJ103	10	kΩ	ROHM
	R _{SET}	MCR03EZPD1002	10	kΩ	ROHM
Resistor	R _{CMPLT}	MCR03EZPJ223	22	kΩ	ROHM
	R _{FLAG}	MCR03EZPJ223	22	kΩ	ROHM
	Rsg	MCR03EZPJ223	22	kΩ	ROHM
	Cvcc	GCM31CC72A225KE01L	2.2	μF	murata
	Cvreg	GCM21BR71C225KA49	2.2	μF	murata
Capacitor	CSETDLY	GCM188R11H473JA40	0.047	μF	murata
Сарасног	CSETCLK	GCM2162C1H472JA01	0.0047	μF	murata
	Ccf	GCM188R11H473JA40	0.047	μF	murata
	Сср	GCM188R11H473JA40	0.047	μF	murata

[•]C_{VCC}: Choose rated voltage according to input voltage range.

[•]In case of BD18362EFV-M and the LEDs are connected with long wires, it might be triggered the malfunction of LED open protection and LET short detection by ringing in the voltage which is produced by switching on and off of SW between IC channels. Moreover, if the ringing level becomes higher than the case of above, it might damage the IC. Confirm the ringing level with enough evaluation and respond to it by placing RC snubber circuit between CH_n and CH_{n-1}.

I/O Eq	O Equivalence Circuits						
No.	Symbol	Equivalence Circuit	No.	Symbol	Equivalence Circuit		
2	CNT	VREG CNT MAD (Typ)	9	SETCLK	VREG SETCLK GND		
3	HAZ	VREG HAZ HAZ 2MΩ (Typ)	10	SETDLY	VREG SETDLY GND		
5	VREG	VCC VREG 350kΩ (Typ) GND 50kΩ (Typ)	11	SET	VREG SET SET GND		
6 7 8	SEL1 SEL2 SEL3	VREG SEL 1 SEL 2 SEL 3 GND A 250kΩ (Typ)	12 13 14	CMPLT SG FLAG	CMPLT SG FLAG GND		

I/O Equivalence Circuits - continued

Operational Notes

1. Reverse Connection of Power Supply

Connecting the power supply in reverse polarity can damage the IC. Take precautions against reverse polarity when connecting the power supply, such as mounting an external diode between the power supply and the IC's power supply pins.

2. Power Supply Lines

Design the PCB layout pattern to provide low impedance supply lines. Furthermore, connect a capacitor to ground at all power supply pins. Consider the effect of temperature and aging on the capacitance value when using electrolytic capacitors.

3. Ground Voltage

Ensure that no pins are at a voltage below that of the ground pin at any time, even during transient condition.

4. Ground Wiring Pattern

When using both small-signal and large-current ground traces, the two ground traces should be routed separately but connected to a single ground at the reference point of the application board to avoid fluctuations in the small-signal ground caused by large currents. Also ensure that the ground traces of external components do not cause variations on the ground voltage. The ground lines must be as short and thick as possible to reduce line impedance.

5. Recommended Operating Conditions

The function and operation of the IC are guaranteed within the range specified by the recommended operating conditions. The characteristic values are guaranteed only under the conditions of each item specified by the electrical characteristics.

6. Inrush Current

When power is first supplied to the IC, it is possible that the internal logic may be unstable and inrush current may flow instantaneously due to the internal powering sequence and delays, especially if the IC has more than one power supply. Therefore, give special consideration to power coupling capacitance, power wiring, width of ground wiring, and routing of connections.

7. Operation Under Strong Electromagnetic Field

Operating the IC in the presence of a strong electromagnetic field may cause the IC to malfunction.

8. Testing on Application Boards

When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may subject the IC to stress. Always discharge capacitors completely after each process or step. The IC's power supply should always be turned off completely before connecting or removing it from the test setup during the inspection process. To prevent damage from static discharge, ground the IC during assembly and use similar precautions during transport and storage.

9. Inter-pin Short and Mounting Errors

Ensure that the direction and position are correct when mounting the IC on the PCB. Incorrect mounting may result in damaging the IC. Avoid nearby pins being shorted to each other especially to ground, power supply and output pin. Inter-pin shorts could be due to many reasons such as metal particles, water droplets (in very humid environment) and unintentional solder bridge deposited in between pins during assembly to name a few.

10. Unused Input Pins

Input pins of an IC are often connected to the gate of a MOS transistor. The gate has extremely high impedance and extremely low capacitance. If left unconnected, the electric field from the outside can easily charge it. The small charge acquired in this way is enough to produce a significant effect on the conduction through the transistor and cause unexpected operation of the IC. So unless otherwise specified, unused input pins should be connected to the power supply or ground line.

Operational Notes - continued

11. Regarding the Input Pin of the IC

This monolithic IC contains P+ isolation and P substrate layers between adjacent elements in order to keep them isolated. P-N junctions are formed at the intersection of the P layers with the N layers of other elements, creating a parasitic diode or transistor. For example (refer to figure below):

When GND > Pin A and GND > Pin B, the P-N junction operates as a parasitic diode. When GND > Pin B, the P-N junction operates as a parasitic transistor.

Parasitic diodes inevitably occur in the structure of the IC. The operation of parasitic diodes can result in mutual interference among circuits, operational faults, or physical damage. Therefore, conditions that cause these diodes to operate, such as applying a voltage lower than the GND voltage to an input pin (and thus to the P substrate) should be avoided.

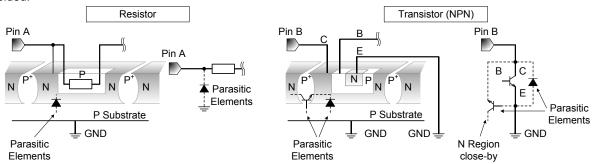
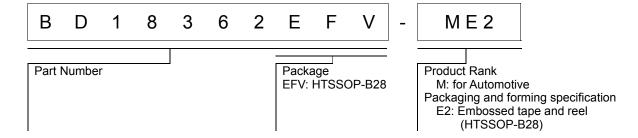


Figure 37. Example of monolithic IC structure

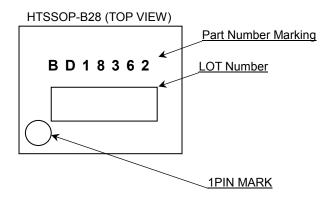
12. Ceramic Capacitor

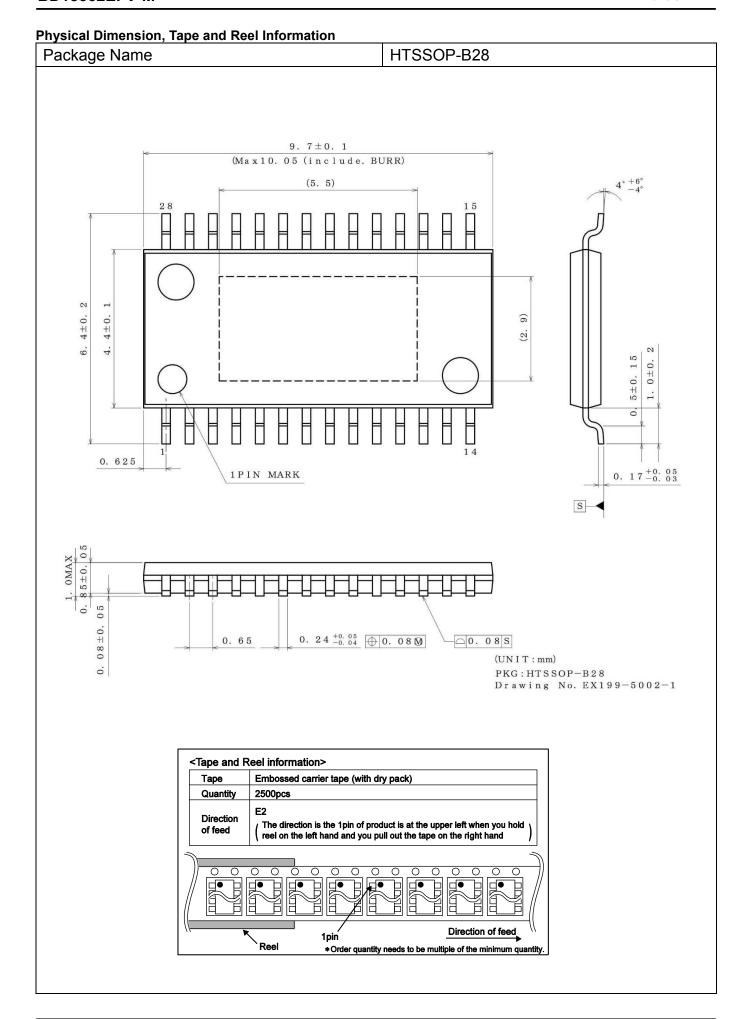
When using a ceramic capacitor, determine a capacitance value considering the change of capacitance with temperature and the decrease in nominal capacitance due to DC bias and others.

13. Area of Safe Operation (ASO)


Operate the IC such that the output voltage, output current, and the maximum junction temperature rating are all within the Area of Safe Operation (ASO).

14. Thermal Shutdown Circuit(TSD)


This IC has a built-in thermal shutdown circuit that prevents heat damage to the IC. Normal operation should always be within the IC's maximum junction temperature rating. If however the rating is exceeded for a continued period, the junction temperature (Tj) will rise which will activate the TSD circuit that will turn OFF all output pins. When the Tj falls below the TSD threshold, the circuits are automatically restored to normal operation.


Note that the TSD circuit operates in a situation that exceeds the absolute maximum ratings and therefore, under no circumstances, should the TSD circuit be used in a set design or for any purpose other than protecting the IC from heat damage.

Ordering Information

Marking Diagrams

Revision History

rision riistory					
Date	Rev.	Changes			
13.Jun.2017	001	New Release			
28.Oct.2020	002	Page 21 Electrical Characteristics SET Pin Output Voltage Delete Page 33 Marking Diagrams D18362 → BD18362			

Notice

Precaution on using ROHM Products

1. If you intend to use our Products in devices requiring extremely high reliability (such as medical equipment (Note 1), aircraft/spacecraft, nuclear power controllers, etc.) and whose malfunction or failure may cause loss of human life, bodily injury or serious damage to property ("Specific Applications"), please consult with the ROHM sales representative in advance. Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of any ROHM's Products for Specific Applications.

(Note1) Medical Equipment Classification of the Specific Applications

JÁPAN	USA	EU	CHINA
CLASSII	CLASSII	CLASS II b	CLASSIII
CLASSIV		CLASSⅢ	

- 2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which a failure or malfunction of our Products may cause. The following are examples of safety measures:
 - [a] Installation of protection circuits or other protective devices to improve system safety
 - [b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure
- 3. Our Products are not designed under any special or extraordinary environments or conditions, as exemplified below. Accordingly, ROHM shall not be in any way responsible or liable for any damages, expenses or losses arising from the use of any ROHM's Products under any special or extraordinary environments or conditions. If you intend to use our Products under any special or extraordinary environments or conditions (as exemplified below), your independent verification and confirmation of product performance, reliability, etc, prior to use, must be necessary:
 - [a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents
 - [b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust
 - [c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl₂, H₂S, NH₃, SO₂, and NO₂
 - [d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves
 - [e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items
 - [f] Sealing or coating our Products with resin or other coating materials
 - [g] Use of our Products without cleaning residue of flux (Exclude cases where no-clean type fluxes is used. However, recommend sufficiently about the residue.); or Washing our Products by using water or water-soluble cleaning agents for cleaning residue after soldering
 - [h] Use of the Products in places subject to dew condensation
- 4. The Products are not subject to radiation-proof design.
- 5. Please verify and confirm characteristics of the final or mounted products in using the Products.
- 6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse, is applied, confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect product performance and reliability.
- 7. De-rate Power Dissipation depending on ambient temperature. When used in sealed area, confirm that it is the use in the range that does not exceed the maximum junction temperature.
- 8. Confirm that operation temperature is within the specified range described in the product specification.
- 9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in this document.

Precaution for Mounting / Circuit board design

- 1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product performance and reliability.
- 2. In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products, please consult with the ROHM representative in advance.

For details, please refer to ROHM Mounting specification

Precautions Regarding Application Examples and External Circuits

- If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the characteristics of the Products and external components, including transient characteristics, as well as static characteristics.
- 2. You agree that application notes, reference designs, and associated data and information contained in this document are presented only as guidance for Products use. Therefore, in case you use such information, you are solely responsible for it and you must exercise your own independent verification and judgment in the use of such information contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of such information.

Precaution for Electrostatic

This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron, isolation from charged objects, setting of lonizer, friction prevention and temperature / humidity control).

Precaution for Storage / Transportation

- 1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:
 - [a] the Products are exposed to sea winds or corrosive gases, including Cl₂, H₂S, NH₃, SO₂, and NO₂
 - [b] the temperature or humidity exceeds those recommended by ROHM
 - [c] the Products are exposed to direct sunshine or condensation
 - [d] the Products are exposed to high Electrostatic
- 2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is exceeding the recommended storage time period.
- 3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads may occur due to excessive stress applied when dropping of a carton.
- 4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of which storage time is exceeding the recommended storage time period.

Precaution for Product Label

A two-dimensional barcode printed on ROHM Products label is for ROHM's internal use only.

Precaution for Disposition

When disposing Products please dispose them properly using an authorized industry waste company.

Precaution for Foreign Exchange and Foreign Trade act

Since concerned goods might be fallen under listed items of export control prescribed by Foreign exchange and Foreign trade act, please consult with ROHM in case of export.

Precaution Regarding Intellectual Property Rights

- 1. All information and data including but not limited to application example contained in this document is for reference only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any other rights of any third party regarding such information or data.
- 2. ROHM shall not have any obligations where the claims, actions or demands arising from the combination of the Products with other articles such as components, circuits, systems or external equipment (including software).
- 3. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any third parties with respect to the Products or the information contained in this document. Provided, however, that ROHM will not assert its intellectual property rights or other rights against you or your customers to the extent necessary to manufacture or sell products containing the Products, subject to the terms and conditions herein.

Other Precaution

- 1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.
- 2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written consent of ROHM.
- In no event shall you use in any way whatsoever the Products and the related technical information contained in the Products or this document for any military purposes, including but not limited to, the development of mass-destruction weapons.
- 4. The proper names of companies or products described in this document are trademarks or registered trademarks of ROHM, its affiliated companies or third parties.

Notice-PAA-E Rev.004