Power MOSFET 6.9 Amps, 20 Volts

N-Channel TSSOP-8

Features

- New Low Profile TSSOP-8 Package
- Ultra Low R_{DS(on)}
- Higher Efficiency Extending Battery Life
- Logic Level Gate Drive
- Diode Exhibits High Speed, Soft Recovery
- Avalanche Energy Specified
- I_{DSS} and V_{DS(on)} Specified at Elevated Temperatures
- Pb-Free Package is Available

Applications

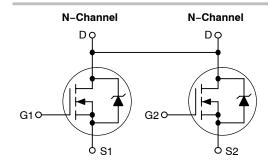
- Power Management in Portable and Battery-Powered Products, i.e.: Computers, Printers, PCMCIA Cards, Cellular and Cordless Phones
- Battery Applications
- NoteBook PC

MAXIMUM RATINGS (T_C = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Drain-to-Source Voltage	V _{DSS}	20	Vdc
Drain-to-Gate Voltage (R _{GS} = 1.0 MΩ)	V_{DGR}	20	Vdc
Gate-to-Source Voltage - Continuous	V _{GS}	±12	Vdc
Thermal Resistance – Single Die Junction-to-Ambient (Note 1) Total Power Dissipation @ T _A = 25°C Continuous Drain Current @ T _A = 25°C Pulsed Drain Current (Note 4)	R _{θJA} P _D I _D	62.5 2.0 6.9 24	°C/W W Adc Adc
Thermal Resistance – Single Die Junction-to-Ambient (Note 2) Total Power Dissipation @ T _A = 25°C Continuous Drain Current @ T _A = 25°C Continuous Drain Current @ T _A = 70°C Pulsed Drain Current (Note 4)	R _{0JA} P _D I _D I _D	88 1.42 5.8 4.6 20	°C/W W Adc Adc Adc
Thermal Resistance – Single Die Junction–to–Ambient (Note 3) Total Power Dissipation @ T _A = 25°C Continuous Drain Current @ T _A = 25°C Continuous Drain Current @ T _A = 70°C Pulsed Drain Current (Note 4)	R _{θJA} P _D I _D I _D	132 0.94 4.7 3.8 14	°C/W W Adc Adc Adc
Operating and Storage Temperature Range	T _J , T _{stg}	-55 to +150	°C
Single Pulse Drain-to-Source Avalanche Energy – Starting $T_J = 25^{\circ}C$ ($V_{DD} = 20$ Vdc, $V_{GS} = 5.0$ Vdc, Peak $I_L = 5.5$ Apk, $L = 10$ mH, $R_G = 25 \Omega$)	E _{AS}	150	mJ
Maximum Lead Temperature for Soldering Purposes for 10 seconds	TL	260	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

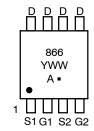
- 1. Mounted onto a 2" square FR-4 board
 - (1 in sq, 2 oz Cu 0.06" thick single-sided), t < 10 seconds.
- 2. Mounted onto a 2" square FR-4 board
- (1 in sq, 2 oz Cu 0.06'' thick single-sided), t = ss. 3. Minimum FR-4 or G-10 PCB, t = steady state.
- 4. Pulse Test: Pulse Width = 300 μs, Duty Cycle = 2%.



ON Semiconductor®

http://onsemi.com

6.9 AMPERES 20 VOLTS


30 m Ω @ V_{GS} = 4.5 V

MARKING DIAGRAM & PIN ASSIGNMENT

TSSOP-8 **CASE 948S PLASTIC**

866 = Specific Device Code Α = Assembly Location

= Year ww = Work Week = Pb-Free Package

ORDERING INFORMATION

Device	Package	Shipping [†]
NTQD6866R2	TSSOP-8	4000/Tape & Reel
NTQD6866R2G	TSSOP-8 (Pb-Free)	4000/Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D

ELECTRICAL CHARACTERISTICS ($T_C = 25^{\circ}C$ unless otherwise noted)

Cha	racteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					•	
Drain-to-Source Breakdown Voltage ($V_{GS} = 0$ Vdc, $I_D = 250 \mu Adc$) Temperature Coefficient (Positive)	9	V _{(BR)DSS}	20 -	_ 18.5	_ _	Vdc mV/°C
Zero Gate Voltage Drain Current $(V_{GS} = 0 \text{ Vdc}, V_{DS} = 20 \text{ Vdc}, T_J = (V_{GS} = 0 \text{ Vdc}, V_{DS} = 0 \text{ Vdc}, T_J = (V_{GS} = 0 \text{ Vdc}, V_{DS} = 0 \text{ Vdc}, V_{DS} = 0 \text{ Vdc}, T_J = (V_{GS} = 0 \text{ Vdc}, V_{DS} = 0 \text{ Vdc}, V_{DS} = 0 \text{ Vdc}, T_J = (V_{GS} = 0 \text{ Vdc}, V_{DS} = 0 \text{ Vdc}, V_{DS} = 0 \text{ Vdc}, V_{DS} = 0 \text{ Vdc}, T_J = (V_{GS} = 0 \text{ Vdc}, V_{DS} = 0 \text{ Vdc},$	= 25°C) = 100°C)	I _{DSS}	- -	- -	1.0 10	μAdc
Gate-Body Leakage Current (V _{GS} = ±12 Vdc, V _{DS} = 0 Vdc)		I _{GSS}	-	-	±100	nAdc
ON CHARACTERISTICS		•		•		1
Gate Threshold Voltage ($V_{DS} = V_{GS}, I_D = 250 \mu Adc$) Temperature Coefficient (Negative)		V _{GS(th)}	0.6 -	0.9 -2.7	1.2	Vdc mV/°C
	esistance	R _{DS(on)}	- - -	0.026 0.025 0.030 0.030	0.032 0.030 0.038 0.038	Ω
Forward Transconductance $(V_{DS} = 10 \text{ Vdc}, I_D = 5.8 \text{ Adc})$		9FS	-	14	-	Mhos
DYNAMIC CHARACTERISTICS						•
Input Capacitance		C _{iss}	-	875	1400	pF
Output Capacitance	(V _{DS} = 16 Vdc, V _{GS} = 0 Vdc, f = 1.0 MHz)	C _{oss}	-	325	550	
Reverse Transfer Capacitance		C _{rss}	-	100	175	
SWITCHING CHARACTERISTICS	(Note 5)					
Turn-On Delay Time		t _{d(on)}	-	10	18	ns
Rise Time	$ \begin{aligned} &(V_{DD}=16~Vdc,~I_D=5.8~Adc,\\ &V_{GS}=4.5~Vdc,~R_G=6.0~\Omega) \end{aligned} $	t _r	-	45	80	
Turn-Off Delay Time		t _{d(off)}	-	40	75	
Fall Time		t _f	-	90	150	
Turn-On Delay Time		t _{d(on)}	-	8.0	-	
Rise Time	(V _{DD} = 16 Vdc, I _D = 5.8 Adc,	t _r	-	45	-	
Turn-Off Delay Time	$V_{GS} = 4.5 \text{ Vdc}, \ \bar{R}_{G} = 3.0 \ \Omega)$	t _{d(off)}	-	35	-	
Fall Time		t _f	-	75	-	
Gate Charge		Q _{tot}	-	13	22	nC
	$(V_{DS} = 16 \text{ Vdc}, V_{GS} = 4.5 \text{ Vdc}, I_{D} = 5.8 \text{ Adc})$	Q _{gs}	-	1.8	-	
		Q _{gd}	-	4.5	-	
BODY-DRAIN DIODE RATINGS						•
Forward On-Voltage	$(I_S = 5.8 \text{ Adc}, V_{GS} = 0 \text{ Vdc})$ $(I_S = 5.8 \text{ Adc}, V_{GS} = 0 \text{ Vdc}, T_J = 100^{\circ}\text{C})$	V _{SD}	1 1	0.85 0.75	1.0 -	Vdc
Reverse Recovery Time	(I _S = 5.8 Adc, V _{GS} = 0 Vdc,	t _{rr}	-	23	-	ns
	$V_{DS} = 20 \text{ Vdc}$	t _b	-	11	-]
	dl _S /dt = 100 A/μs)	ta	-	12	-	
Reverse Recovery Stored Charge		Q _{RR}	-	0.013	-	μС

^{5.} Switching characteristics are independent of operating junction temperature.

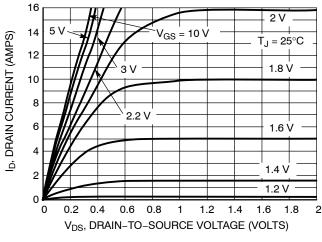


Figure 1. On-Region Characteristics

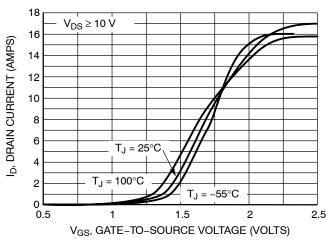


Figure 2. Transfer Characteristics

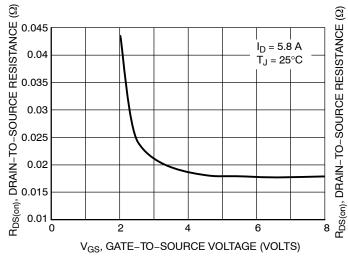


Figure 3. On-Resistance versus Gate-to-Source Voltage

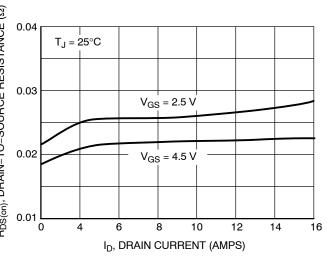


Figure 4. On-Resistance versus Drain Current and Gate Voltage

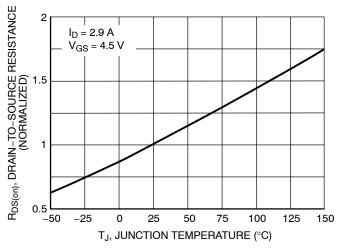


Figure 5. On–Resistance Variation with Temperature

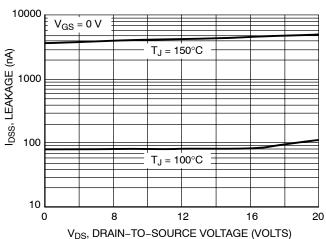


Figure 6. Drain-to-Source Leakage Current versus Voltage

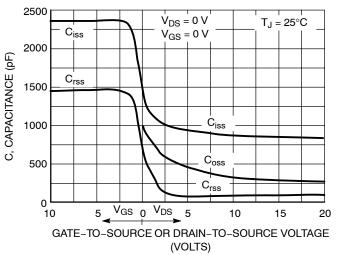


Figure 7. Capacitance Variation

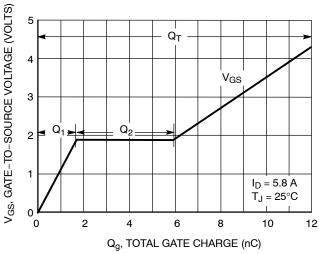


Figure 8. Gate-to-Source Voltage versus Total Charge

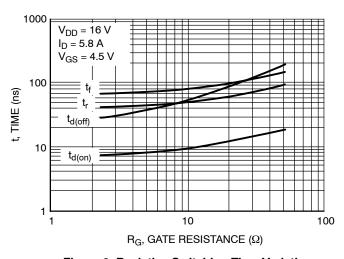


Figure 9. Resistive Switching Time Variation versus Gate Resistance

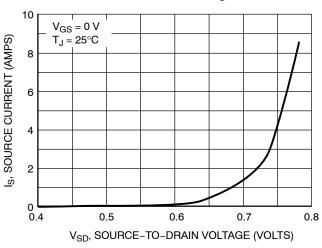


Figure 10. Diode Forward Voltage versus Current

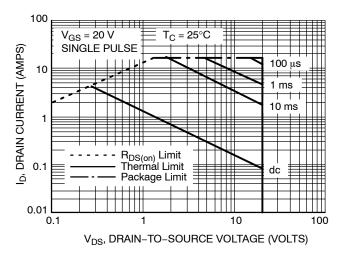


Figure 11. Maximum Rated Forward Biased Safe Operating Area

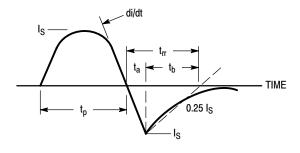
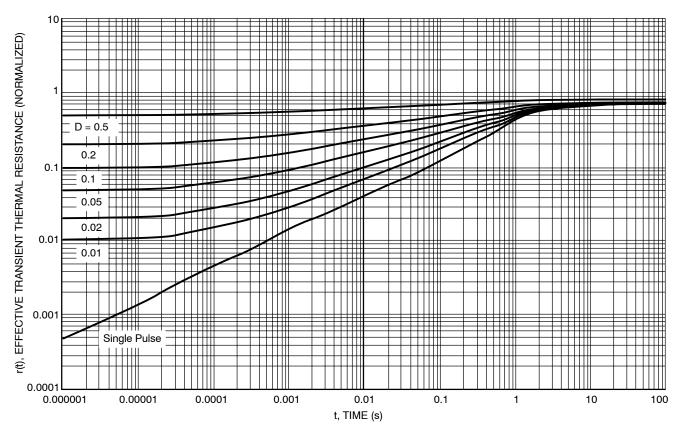
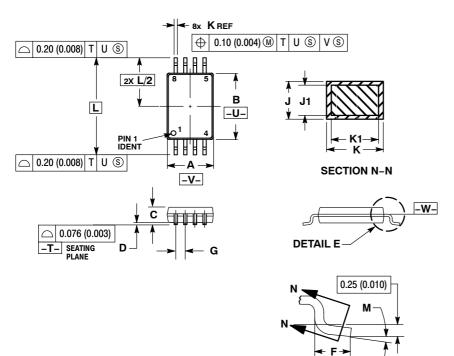


Figure 12. Diode Reverse Recovery Waveform




Figure 13. Thermal Response

TSSOP-8 CASE 948S-01 ISSUE C

DATE 20 JUN 2008

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI
- 714.5M, 1982.

 2. CONTROLLING DIMENSION: MILLIMETER.

 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH.
 PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
- (0.006) PEH SIDE.

 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE
- 5. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
- 6. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-.

	MILLIMETERS		MILLIMETERS INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	2.90	3.10	0.114	0.122	
В	4.30	4.50	0.169	0.177	
С		1.10		0.043	
D	0.05	0.15	0.002	0.006	
F	0.50	0.70	0.020	0.028	
G	0.65	BSC	0.026	BSC	
7	0.09	0.20	0.004	0.008	
J1	0.09	0.16	0.004	0.006	
K	0.19	0.30	0.007	0.012	
K1	0.19	0.25	0.007	0.010	
L	6.40 BSC		0.252	BSC	
М	0°	8°	0°	8°	

GENERIC MARKING DIAGRAM*

XXX = Specific Device Code = Assembly Location Α

= Year WW = Work Week

= Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present.

DESCRIPTION:	TSSOP-8		PAGE 1 OF 2
NEW STANDARD:		"CONTROLLED COPY" in red.	
STATUS:	ON SEMICONDUCTOR STANDARD	accessed directly from the Document versions are uncontrolled except v	, ,
DOCUMENT NUMBER:	98AON00697D	Electronic versions are uncontrolle	

DETAIL E

DOCUMENT	NUMBER:
98AON00697	'D

PAGE 2 OF 2

RELEASED FOR PRODUCTION. ADDED MARKING DIAGRAM INFORMATION. REQ. BY V. BASS. CORRECTED MARKING DIAGRAM PIN 1 LOCATION AND MARKING. REQ. BY C. REBELLO. REMOVED EXPOSED PAD VIEW AND DIMENSIONS P AND P1. CORRECTED MARKING INFORMATION. REQ. BY C. REBELLO.	18 APR 2000 13 JAN 2006 13 MAR 2006 20 JUN 2008
CORRECTED MARKING DIAGRAM PIN 1 LOCATION AND MARKING. REQ. BY C. REBELLO. REMOVED EXPOSED PAD VIEW AND DIMENSIONS P AND P1. CORRECTED	13 MAR 2006
REBELLO. REMOVED EXPOSED PAD VIEW AND DIMENSIONS P AND P1. CORRECTED	
	20 JUN 2008

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights or the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales