

86mm 1U Front End AC-DC Power Supply

NB: D1U86P-W-1600-12-HB3DC Model Shown

FEATURES

1600W output power
94% minimum efficiency at 50% load
12V main output
12V standby output of 30W
1U height: 3.4" x 7.78" x 1.59"
38.6 Watts per cubic inch density
N+1 redundancy, including hot plugging (up to 8
in parallel)
Droop Current sharing both outputs
Overvoltage, overcurrent, overtemperature
protection
Internal cooling fan (variable speed)
PMBus [™] / I ² C interface monitoring and control
RoHS compliant
Two Year Warranty

PRODUCT OVERVIEW

The D1U86P-W-1600-12-HBxDC products are high efficiency 1600 watt, power factor corrected front end supplies with a 12V main output and a 12V (30W) standby. They have current sharing and up to 8 supplies may be operated in parallel. The supplies may be hot plugged, they recover from over-temperature faults, and have logic and PMBus[™] monitoring and control. Their low profile 1U package and >38.6W/cubic inch power density make them ideal for delivering reliable, efficient power to servers, workstations, storage systems and other 12V distributed power systems.

ORDERING GUIDE								
Dort Number	Powe	Main	Standby	Airflow	Handle			
Fait Nullipei	(90-264V)	(108-264V)	(180-264V)	Output	Output	AII IIOW	Colour	
D1U86P-W-1600-12-HB4DC	1000W 1	1350W	1600W	10\/	101/	Back to Front	Red	
D1U86P-W-1600-12-HB3DC	120000			12V	IZV	Front to Back	Blue	

INPUT CHARACTERISTICS Parameter Conditions Min. Nom. Max. Units Input Voltage Operating Range 90 115/230 264 Vac Frequency 47 50/60 63 Hz Turn-on Voltage 89 Ramp up 81 Vac Turn-off Voltage Ramp down 70.5 73 78 1200W, 100Vac Maximum Input Current 14.1 Arms Inrush Current At 264Vac at 25°C cold start 35 Apk Power Factor At 230Vac, half load 0.98 90 20% load Efficiency (230Vac) excluding fan 50% load 94 % load 100% load 91

OUTPUT VOI TAGE CHARACTERISTICS

Output Voltage	Parameter	Conditions	Min.	Тур.	Max.	Units
	Voltage Set Point	50% load	12.17	12.2	12.23	Vda
	Line and Load Regulation		11.4		12.6	vuc
	Droop			3.10		mV/A
10\/	Ripple Voltage & Noise ¹	20MHz Bandwidth			120	mV p-p
IZV	Output Current (230 Vac) ²		0		133.4	Á
	Output Current (120 Vac) ²		0		112.5	A
	Output Current (100 Vac) ²		0		100.0	A
	Load Capacitance				10,000	μF
	Voltage Set Point	50% load	11.97	12.0	12.02	Vdc
12VSB	Ripple Voltage & Noise ¹	20MHz Bandwidth			120	mV p-p
	Output Current		0		2.5	Á

¹Ripple and noise measured with a parallel combination of a 1.0µF ceramic and 10µF tantalum capacitor on each of the power module outputs. A short coaxial cable connected directly to the input of a scope is required. ²To meet ripple and transient step load specifications a minimum load of 4A is required.

www.murata-ps.com/support

86mm 1U Front End AC-DC Power Supply

OUTPUT CHARACTERISTICS

Parameter	Conditions	Min.	Тур.	Max.	Units	
Output Rise Monotonicity	No voltage excursion					
Startup Time	AC ramp up		1.5	3	S	
Transiant Despanse	12V, 50% load step, 1.0Aµs di/dt		600		m\/	
Transient Response	12VSB, 50% load step,1.0Aµs di/dt		600		IIIV	
Current sharing accuracy (up to 8 in parallel) ³	At 100% load			±5	%	
Hot Swap Transients	All outputs remain in regulation			5	%	
Holdup Time	At full load	12			ms	
A						

³ Load current of 100% applies to each power module max load connected in an N+1 configuration; therefore the total load will be "N" x 100%. The share accuracy of ±5% is a fixed percentage irrespective of total loading and number of units connected in parallel.

ENVIRONMENTAL CHARACTERISTICS								
Parameter	Conditions	Min.	Тур.	Max.	Units			
Storage Temperature Range		-40		85				
Operating Temperature Range		0		55	°C			
Operating Humidity	Noncondensing	5		90				
Storage Humidity		5		95	%			
Altitude (without derating at 45°C)		3000			m			
Shock	30G non-operating							
Vibration	10-500Hz, 0.5G (non-operational)							
MTBF	Per Telcordia SR-322 M1C1@40°C	559K			hrs			
Acoustic				65	dBA/@1m			
Safety Approvals	CSA 60950-1-07+A1:2011 ANSI/UL 60950-1-2011, Second Edition IEC 60950-1:2005 (2nd Edition) + A1:20 EN 60950-1:2006 +A11+A1+A2 BIS IS13252(Part 1):2010/ IEC 60950 BSMI CNS13438 (095/06/01), CNS14336 Power Supply has internal 16A/25	CSA 60950-1-07+A1:2011 ANSI/UL 60950-1-2011, Second Edition IEC 60950-1:2005 (2nd Edition) + A1:2009 EN 60950-1:2006 +A11+A1+A2 BIS IS13252(Part 1):2010/ IEC 60950-1: 2005 BSMI CNS13438 (095/06/01), CNS14336 (099/09/30), CNS15663 5 (102)						
Parameter Storage Temperature Range Operating Temperature Range Operating Humidity Storage Humidity Altitude (without derating at 45°C) Shock Vibration MTBF Acoustic Safety Approvals Input Fuse Weight	0V fast blow fuse on the AC line input	OV fast blow fuse on the AC line input						
Weight				2.33/1.06	lbs/Ka			

	PROTECTI						
	Output Voltage	Parameter	Conditions	Min.	Тур.	Max.	Units
		Overtemperature (intake)	An OTP warning will be issued via the PMBus [™] interface when the air inlet exceeds 65°C; however the power module shall not shut down until critical internal hotspot temperatures are exceeded.		65		°C
		Overvoltage	Latching	13.2		14.4	V
	12V	Overcurrent at 220Vac	Shutdown of the output followed by auto- recovery after one second. The output shall attempt three such auto-recovery attempts	140		153	
		Overcurrent at 120Vac	and then enter a permanent latched state. Recovery of the permanent latched state shall require cycling of the incoming AC source or toggling of the PSON# signal.	118		129	A
	10//00	Overvoltage	Latching	13.2		14.4	V
	12120	Overcurrent	Auto-recovery	2.75		3	Α

ISOLATION CHARACTERISTICS							
Parameter	Conditions	Min.	Тур.	Max.	Units		
Insulation Safety Rating / Test Voltage	Input to Output - Reinforced	3000			Vrms		
	Input to Chassis - Basic	1500			Vrms		
Isolation	Output to Chassis	500			Vdc		
Leakage Current	1.5mA at 264Vac, 50/60Hz						

www.murata-ps.com/support

86mm 1U Front End AC-DC Power Supply

Murata Power Solutions

EMISSIONS AND IMMUNITY		
Characteristic	Standard	Compliance
Input Current Harmonics	IEC/EN 61000-3-2	Complies
Voltage Fluctuation and Flicker	IEC/EN 61000-3-3	Complies
Conducted Emissions	FCC 47 CFR Part 15/CISPR 22/EN55022	Class A, 6dB margin
ESD Immunity	IEC/EN 61000-4-2	Level 3 criteria A
Radiated Field Immunity	IEC/EN 61000-4-3	Level 3 criteria B
Electrical Fast Transient Immunity	IEC/EN 61000-4-4	Level 3 criteria A
Surge Immunity	IEC/EN 61000-4-5	Level 3 criteria A
Radiated Field Conducted Immunity	IEC/EN 61000-4-6	Level 3 criteria A
Magnetic Field Immunity	IEC/EN 61000-4-8	3 A/m criteria B
		230Vin, 100% load, Phase 0°, Dip 100% Duration 10ms (A)
Voltage dips, interruptions	IEC/EN 61000-4-11	230Vin, 50% load, Phase 0°, Dip 100% Duration 20ms (VSB:A, V1:A)
		230Vin, 100% load, Phase 0°, Dip 100% Duration > 20ms (VSB, V1:B)

STATUS AND CONTRO	OL SIGNALS							
Signal Name	I/0	Description						Interface Details
PSOK (Output OK)	Output	The PSOK output "digital" signal the logic signals are 1. DC_OU 2. PWR_ 3. PS_FA The following is a upon the three in PSOK TRUTH	: is a logical "OR" nat transitions be as follows: K_H GOOD_H WLT_L a "truth table" tha ternal logic signa TABLE VS. ANALC	Each internal signal is buffered and provided with a series or pull up resistor: 1. DC_OK_H; 1K62 series resistor 2. PWR_GOOD_H; 3K32 series resistor				
		DC_OK_H	PWR_GOOD_H	PS_FAULT_L	F	SOK	OPERATION MODE	3. PS_FAULT_L; a 10K pull up resistor to VDD_OR (an internally derived 2.3/DC rail)
		0	0	1	< 0.1Vdc		No AC Input	derived 5.5VDC fail)
		0	1	1	(1/3) VDD		Invalid	The embedded truth table shows the
		1	0	1	(2/3) VDD	VDD = 3.3Vdc	Standby	appropriate levels.
		1	1	1	VDD		Power Good	
		X	X	0	0.2-0.4Vdc		PS Fault	
		The timing relation	onship of this sig	nal is shown in i	the Timing Sp	ecification section	that follows.	
PS_INTERRUPT (FAULT/WARNING)	Output	The signal output is intended to ale correctly (within a The signal will re removed.	t is driven low to ert the system. Th specified limits). vert to a high lev	indicate that the is output must I el when the wai	e power suppl be driven high rning/fault stir	y has detected a v n when the power mulus (that caused	varning or fault and is operating d the alert) is	Pulled up internally via 10K to 3.3Vdc. A logic high >2.0Vdc A logic low <0.8Vdc Driven low by internal buffer (open drain output).
PRESENT#	Output	Based on the ind of an (installed) p Main 12Vdc outp The signal is also conjunction with To "enable" the I In the host system 1. If the signal 2. If the signal resistor value	ustry standard Co ower module wit ut. o designed to con the host system Main 12Vdc outpu m. The value of th is to be pulled up is to be pulled up e should be 5.11	letect the presence ed to "Enable" the n/extraction in b break" signal pin. espect +12V_GND. hould be 21KΩ t system) then the	 The voltage level on the system side of the PSPRESENT# signal will be follows: 1. When the power module is not installed the voltage will be the as per the rail to which it is pulled up to 3.3Vdc or 12Vdc (host system) 2. When the power module is installed the voltage will be pulled down to 0.54Vdc ±5%) by the PSU 			
PS_ON (Power Supply Enable/Disable	Input	The PS_ON can be "enable" the Mai Alternatively, the switch between ' The signal is pull power supply ma In the low state, to The 12Vdc output this signal shall co	e permanently co n 12Vdc output. signal can be co fenable/disable" ed up internally tr in 12Vdc output s the signal input s t will be disabled dear latched fault	id/backplane) to ide the ability to power supply). The p +12V_GND. pen circuit. Cycling	Pulled up internally via 10K to 3.3Vdc. A logic high >2.0Vdc A logic low <0.8Vdc Input is via CMOS Schmitt trigger buffer.			
ADDR (Address Select)	Input	An analogue inpu microprocessor) Connection of a s will configure the	It that is used to sused for digital co suitable resistor to required address	set the address ommunications. o +12V_GND, ir s.	of the interna conjunction	l slave devices (EE with an internal re	PROM and sistor divider chain,	DC voltage between the limits of 0 and +3.3Vdc.

86mm 1U Front End AC-DC Power Supply

Murata Power Solutions

STATUS AND CUNTRU	JL SIGNAL	S (CONTINUED)	
Signal Name	I/O	Description	Interface Details
SCL (Serial Clock)	Both	A serial clock line compatible with PMBus [™] Power Systems Management Protocol Part 1 – General Requirements Rev 1.1. No additional internal capacitance is added that would affect the speed of the bus. The signal is provided with a series isolator device to disconnect the internal power supply bus in the event that the power module is unpowered,	VIL is 0.8V maximum Vo∟ is 0.4V maximum when sinking 3mA VIH is 2.1V minimum
SDA (Serial Data)	Both	A serial data line compatible with PMBus [™] Power Systems Management Protocol Part 1 – General Requirements Rev 1.1. The signal is provided with a series isolator device to disconnect the internal power supply bus in the event that the power module is unpowered,	$ \begin{array}{l} V_{I\!L} \text{ is } 0.8V \text{ maximum} \\ V_{0L} \text{ is } 0.4V \text{ maximum when sinking} \\ 3mA \\ V_{I\!H} \text{ is } 2.1V \text{ minimum} \end{array} $
<u>IMONITOR</u>	Analogue Voltage	An analogue DC output voltage signal directly proportional to load current and can be used as an indication of the power supply's load current. This signal of multiple connected units should not be tied together.	Analogue output voltage: 60.15mV/Amp

STATUS INDICATOR CONDITIONS

	LED State	Mode	Operating Condition
1.	Off	AC Turn-off	The incoming AC source is below the minimum power module turn-on specification
2.	Green – blinking 1Hz	Standby	The power module VStandby output is operating within normal parameters and main output is disabled
3.	Green – solid	Power-good	The power module active; VStandby & Main outputs are operating within normal parameters and delivering
4.	Yellow – blinking 1Hz	Warning	A warning condition within the power supply has been detected
5.	Yellow – solid	Fault	A fault condition within the power supply has been detected.

*NOTE: The PSOK levels after the loss of the incoming AC source may be either 1.1V or 2.2V depending on the relative timing of the TACPOK_OFF and TPWRP_GOOD_HOLD-Up

TIMING SPECIFICATIONS				
Parameter	Description	Min	Max	Unit
Tsb_On	Delay from AC being applied to standby output being within regulation	0	3000	ms
Tsb_Vout	Delay from standby output to main output voltage being within regulation	50	500	ms
TPWR_GOOD_On	Delay from output voltages within regulation limits to PWR_GOOD assertion	20	500	ms
TAC_OK_OFF	Delay from loss of AC to deassertion of AC_OK	20	60	ms
TAC_OK_On	Delay from AC being applied to assertion of AC_OK	1	3000	ms
TPWR_GOOD_Hold-up	Delay from loss of AC to deassertion of PWR_GOOD	7	30	ms
TVout_Hold-up	Delay from loss of AC to main output being out of regulation	12	20	ms
Tsb_Hold-up	Delay from loss of AC to standby output being out of regulation	20	2000	ms
TPWR_GOOD_OFF	Delay from deassertion of PWR_GOOD to output falling out of regulation	0	2	ms
TPSON_On_Delay	Delay from PSON assertion to output being within regulation	1	200	ms

86mm 1U Front End AC-DC Power Supply

Morala i ower Sciencins

OUTPUT CONNECTOR AND SIGNAL SPECIFICATION

Pin#	Function	Pin Type	Description
14-26, 39- 51	+12V_GND/RTN	Power Ground	Power and Standby Return
1-13, 52-64	+12V	Power	12V Output
37	+12VSB	Power	12V Standby Output
38	PSINTERRUPT	Output	Active low; interrupt line for power supply fault & warning detection as per PMBus™ spec
36	PRESENT#	Input	Power Supply Present Signal (shortest pin)
35	PSOK	Analog output	Combination of three power supply output indicator signals: 1. AC input OK 2. Power Good 3. Power Supply Fault
34	<u>IMONITOR</u>	Analog I/O	main output current signal ypical analog voltage shall be 60.15mV/Amp of main output current.
33	PSON#	Input	Power Supply on/off control signal
32	SCL	Input	SMBus/PMBus Clock
31	SDA	I/0	SMBus/PMBus Data
30	+12V_GND/RTN	Analog I/O	Power Supply Signal Ground
29	N/A	N/A	Reserved; no User connection
28	N/A	N/A	Reserved; no User connection
27	ADDR	Analog input	PMBus Address

DERATING CURVES

86mm 1U Front End AC-DC Power Supply

WIRING DIAGRAM FOR OUTPUT

CURRENT SHARING NOTES

Main Output: Current share is achieved using the droop method. Nominal output voltage (12.20V) is achieved at 50% load and output voltage varies at a rate of 3.10mv per amp increase/decrease. Startup of parallel power supplies is not internally synchronized. If more than 1600W combined power is needed, start-up synchronization must be provided by using a common PS_ON signal. To account for \pm 5% full load current sharing accuracy and the reduction in full load output voltage due to droop, available output power must be derated by 10% when units are operated in parallel.

The Standby output can be tied together for redundancy however the total combined power must not exceed the Standby rail capability (30W) of a single supply. Internal MOSFET ORING devices are employed.

86mm 1U Front End AC-DC Power Supply

MECHANICAL DIMENSIONS

- 2. 86.4mm x 197.7mm x 40.5mm [3.4" x 7.78" x 1.59"]
- This drawing is a graphical representation of the product and may not show all fine details.
 Reference File: D1U86P-W-1600-12-HBxDC (TG1748-M1822)_Drawing for Product Datasheet_20160106.PDF

MATING CONNECTOR		
Part Number		Description
FCI 10053363-200LF		Right Angle
FCI 10046971-001LF		Vertical
OPTIONAL ACCESSORIES		
Description	Part Number	

Description	Fait Nullibei	
12V D1U86P Output Connector Card	D1U86P-12-CONC	

APPLICATION NOTES		
Document Number	Description	Link
ACAN-50	D1U86P-12-CONC Interface Connector Card	https://power.murata.com/datasheet?/data/apnotes/acan-50.pdf
ACAN-51	D1U86P PMBus [™] Communication Protocol	https://power.murata.com/datasheet?/data/apnotes/acan-51.pdf

Murata Power Solutions, Inc. 129 Flanders Rd. Westborough, Ma 01581, USA. ISO 9001 REGISTERED

Critical Application Sales Policy. Refer to: https://www.murata-ps.com/requirements/ Murata Power Solutions, Inc. ("Murata") makes no representation that the use of its products in the circuits described herein, or the use of other technical information contained herein, will not infringe upon existing or future patent rights. The descriptions contained herein to do not imply the granting of licenses to make, use, or sell equipment constructed in accordance therewith. Buyer represents and agrees that it has all the necessary experises to create and implement safeguards that anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm, and take appropriate media actions. Buyer will fully indemnity Murata, its affiliated companies, and its representatives against any damages arising out of the use of any Murata products in safety-critical applications. Specifications are subject to change without notice.

This product is subject to the following operating requirements and the Life and Safety

© 2023 Murata Power Solutions, Inc.