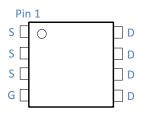


RM052N100DF

100V N-Ch Power MOSFET

Feature

- Optimized for high speed smooth switching,Logic level
- \diamond Enhanced Body diode dv/dt capability
- ◇ Enhanced Avalanche Ruggedness
- \diamond 100% UIS Tested, 100% Rg Tested
- \diamond V_{DS} spike 120V@10us


Application

- \diamond DC-DC Conversion
- \diamond Hard Switching and High Speed Circuit
- \diamondsuit Power Tools
- \diamond UPS
- \diamond SSR

Part Number	Package	Marking
RM052N100DF	DFN5x6	052N100

$\begin{array}{c|c} V_{DS} & 100 & V \\ \hline R_{DS(on),typ} & V_{GS} \mbox{=} 10V & 5.5 & m\Omega \\ \hline R_{DS(on),typ} & V_{GS} \mbox{=} 4.5V & 7.8 & m\Omega \\ \hline I_D \mbox{ (Continuous)} & 70 & A \\ \end{array}$

Drain Gate

Absolute Maximum Ratings at T_i=25°C (unless otherwise specified)

Parameter	Symbol	Conditions	Value	Unit
Continuous Drain Current (Continuous)	1	T _C =25°C	70	
Continuous Drain Current (Continuous)	I _D	T _C =100°C	44	A
Drain to Source Voltage	V _{DS}	-	100	V
Gate to Source Voltage	V _{GS}	-	±20/-12	V
Pulsed Drain Current	I _{DM}	-	280	А
Avalanche Energy, Single Pulse	E _{AS}	L=0.3mH, T _C =25°C	320	mJ
Power Dissipation	PD	T _C =25°C	142	W
Operating and Storage Temperature	T _J , T _{stg}	-	-55 to150	°C

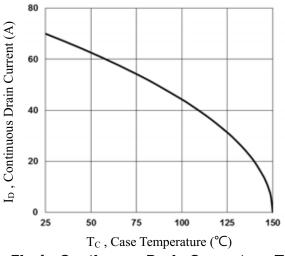
Absolute Maximum Ratings

Parameter	Symbol	Max	Unit
Thermal Resistance Junction-Case	R _{eJC}	0.88	°C/W
Thermal Resistance Junction-Ambient	R _{eJA}	62	°C/W

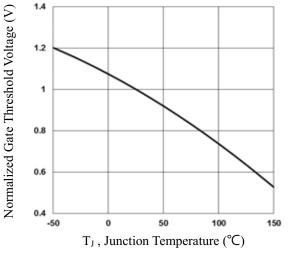
Electrical Characteristics at $T_j=25$ °C (unless otherwise specified) Static Characteristics

Perometer	Symbol	Conditions	Value			Unit
Parameter	Symbol	Conditions	min	typ	max	Unit
Drain to Source Breakdown Voltage	V _{(BR)DSS}	V _{GS} =0V, I _D =250μA	100	-	-	v
Gate Threshold Voltage	V _{GS(th)}	V _{GS} =V _{DS} , I _D =250μA	1.0	1.6	2.5	
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} =0V, V _{DS} =100V, T _j =25°C	-	-	1	μA
		V _{GS} =0V, V _{DS} =100V, T _j =100°C	-	-	100	
Gate to Source Leakage Current	I _{GSS}	V_{GS} =±20V, V_{DS} =0V	-	-	±100	nA
Drain to Source on Resistance	R _{DS(on)}	V _{GS} =10V, I _D =20A	-	4.6	5.5	mΩ
		V _{GS} =4.5V, I _D =10A	-	6.2	7.8	mΩ
Transconductance	g _{fs}	V _{DS} = 10V, I _D =5A	-	18	-	S
Gate Resistance	R _G	V _{GS} =0V, V _{DS} Open, f=1MHz	-	2.0	4.0	Ω

Dynamic Characteristics


Input Capacitance	C _{iss}		-	4570	9100	
Output Capacitance	C _{oss}	V_{GS} =0V, V_{DS} =25V, f=1MHz	-	1180	2300	pF
Reverse Transfer Capacitance	C _{rss}		-	49	98	
Total Gate Charge	Qg		-	58.2	100	
Gate to Source Charge	Q _{gs}	V _{DD} =80V, I _D =10A, V _{GS} =10V	-	9.2	18	nC
Gate to Drain (Miller) Charge	Q _{gd}		-	20.8	30	
Turn on Delay Time	t _{d(on)}		-	24	48	
Rise time	t _r	V _{DD} =50V, I _D =1 A, V _{GS} =10V,	-	19.8	39	ns
Turn off Delay Time	t _{d(off)}	R _G = 6 Ω,	-	46	92	
Fall Time	t _f		-	26	52	

Reverse Diode Characteristics


Diode Forward Voltage	V _{SD}	V _{GS} =0V, I _F =1 A	-	-	1.0	V
Reverse Recovery Time	t _{rr}	\/0\/_I_10A_dL/dt=100A/a	-	61.6	-	ns
Reverse Recovery Charge	Q _{rr}	V _{GS} =0V, I _F =10A, dI _F /dt=100A/μs	-	120	-	nC

RATING AND CHARACTERISTICS CURVES (RM052N100DF)

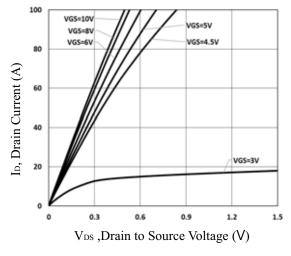


Fig.5 Typical Output Characteristics

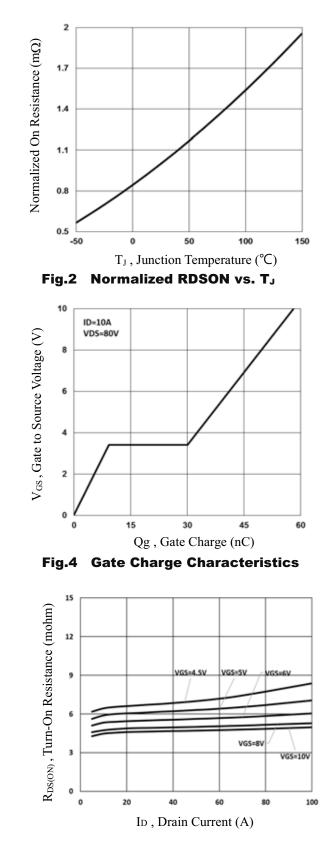
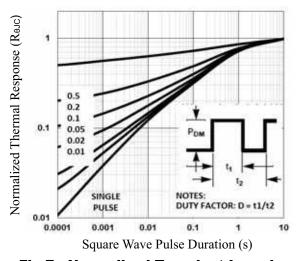



Fig.6 Turn-On Resistance vs. ID

RATING AND CHARACTERISTICS CURVES (RM052N100DF)

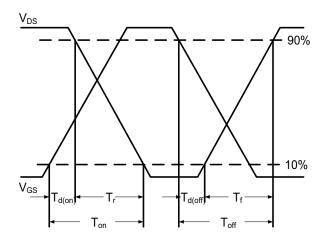


Fig.9 Switching Time Waveform

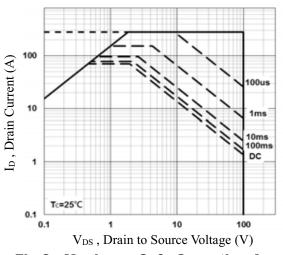


Fig.8 Maximum Safe Operation Area

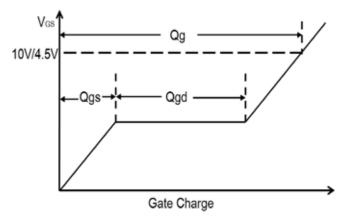
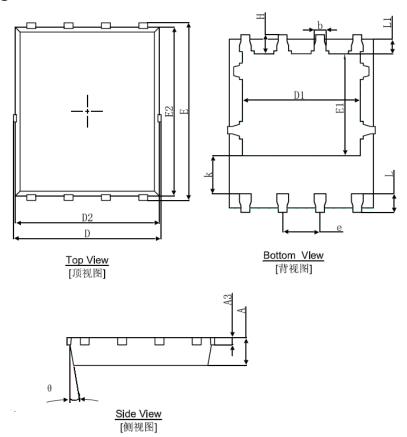



Fig.10 Gate Charge Waveform

DFN5X6-8L Package Information

Cumula al	Dimensions I	n Millimeters	llimeters Dimensions		
Symbol	Min.	Max.	Min.	Max.	
A	0.900	1.000	0.035	0.039	
A3	0.254	REF.	0.010REF.		
D	4.944	5.096	0.195	0.201	
E	5.974	6.126	0.235	0.241	
D1	3.910	4.110	0.154	0.162	
E1	3.375	3.575	0.133	0.141	
D2	4.824	4.976	0.190	0.196	
E2	5.674	5.826	0.223	0.229	
k	1.190	1.390	0.047	0.055	
b	0.350	0.450	0.014	0.018	
е	1.270	TYP.	0.050	TYP.	
L	0.559	0.711	0.022	0.028	
L1	0.424	0.576	0.017	0.023	
Н	0.574	0.726	0.023	0.029	
θ	8°	12°	8°	12°	

DISCLAIMER NOTICE

Rectron Inc reserves the right to make changes without notice to any product specification herein, to make corrections, modifications, enhancements or other changes. Rectron Inc or anyone on its behalf assumes no responsibility or liability for any errors or inaccuracies. Data sheet specifications and its information contained are intended to provide a product description only. "Typical" parameters which may be included on RECTRON data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. Rectron Inc does not assume any liability arising out of the application or use of any product or circuit.

Rectron products are not designed, intended or authorized for use in medical, life-saving implant or other applications intended for life-sustaining or other related applications where a failure or malfunction of component or circuitry may directly or indirectly cause injury or threaten a life without expressed written approval of Rectron Inc. Customers using or selling Rectron components for use in such applications do so at their own risk and shall agree to fully indemnify Rectron Inc and its subsidiaries harmless against all claims, damages and expenditures.

