

General Description

The MAX3935 is designed to drive an electro-absorption modulator (EAM) at data rates up to 10.7Gbps. It provides programmable output levels through externally adjustable bias and modulation currents. This EAM driver is fabricated with Maxim's in-house second-generation SiGe process.

The MAX3935 accepts differential ECL or ground-referenced CML clock and data-input signals. Inputs are terminated with on-chip 50Ω resistors. An input-data retiming latch can be used to reject input-patterndependent jitter if a clock signal is available.

The driver can modulate EAM devices at amplitudes up to 3.0V_{P-P} when the device impedance is 50Ω . Typical (20% to 80%) edge speeds are 34ps. The output has an on-chip 75Ω resistor for back termination. The MAX3935 allows for an EAM bias voltage up to 1.2V.

The MAX3935 also includes an adjustable pulse-width control circuit to precompensate for asymmetrical EAM characteristics.

Applications

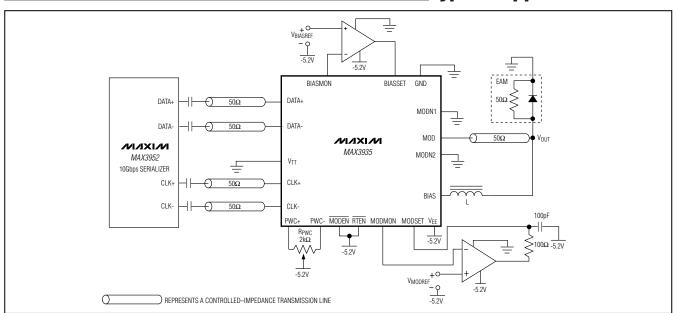
SONET OC-192 and SDH STM-64 Transmission Systems

Metro and Long-Haul Transmitters Add/Drop Multiplexers

Features

- ♦ Single -5.2V Power Supply
- ♦ Low 110mA Supply Current
- ♦ 34ps Typical Rise/Fall Time
- ♦ Up to 10.7Gbps (NRZ) Operation
- **♦ On-Chip Termination Resistors**
- ♦ Programmable Modulation Voltage Up to 3.0V_{P-P}
- ♦ Programmable EAM Bias Voltage Up to 1.2V
- **♦ Adjustable Pulse-Width Control**
- ♦ Selectable Data Retiming Latch
- **♦ Modulation Enable Control**
- ♦ ESD Protection

Ordering Information


PART	TEMP RANGE	PIN- PACKAGE	PKG CODE
MAX3935EGJ	-40°C to +85°C	32 QFN	G3255-I
MAX3935E/D	-40°C to +85°C	Dice**	_

^{**}Dice are designed to operate over this range, but are tested and guaranteed at $T_A = +25$ °C only. Contact factory for availability.

For the latest package outline information, go to www.maxim-ic.com/packages.

Pin Configuration appears at end of data sheet

Typical Application Circuit

ABSOLUTE MAXIMUM RATINGS

Supply Voltage VEE6.0V to +0.5V	MODN1 and MODN2 Voltage0.5V to +0.5V
V _{TT} (V _{EE} - 0.5V) to +0.5V	Operating Junction Temperature Range55°C to +150°C
DATA+, DATA- and CLK+, CLK(V _{TT} - 1.2V) to the lower of	Storage Temperature Range55°C to +150°C
$(V_{TT} + 1.2V)$ or $+0.5V$	Lead Temperature (soldering, 10s)+300°C
MODEN, RTEN, PWC+, and PWC(VEE - 0.5V) to +0.5V	Current into DATA+, DATA-, CLK+, CLK-
MODSET and BIASSET Voltage(VEE - 0.5V) to (VEE + 1.5V)	$(V_{TT} = 0V)$ 24mA to +30.5mA
MOD and BIAS Voltage(VEE + 1.0V) to +0.5V	Current into DATA+, DATA-, CLK+, CLK-
-	$(V_{TT} = -1.3V)$ 24mA to +24mA

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

(VEE = -4.9V to -5.5V \pm 6%, TA = -40°C to +85°C. Typical values are at VEE = -5.2V, IBIAS = 16.7mA, IMOD = 83.3mA, TA = +25°C, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Power-Supply Voltage	VEE		-5.5	-5.2	-4.9	V
Power-Supply Current	lEE	Excluding bias and modulation current		106	140	mA
Single-Ended Input Resistance		Input to V _{TT}	40	50	60	Ω
Bias Current-Setting Range	I _{BIAS}	IBIAS defined in Figure 3	1		40	mA
Bias Current-Setting Error		Bias current = 40mA, T _A = +25°C	-10		+10	%
Bias Sensing Resistor	R _{BIAS}		6.7	7.5	8.3	Ω
Bias Current Temperature		IBIAS = 40mA (Note 2)	-480		+480	nnm/0C
Stability		I _{BIAS} = 1mA		-200		ppm/°C
Bias Off-Current		BIASSET ≤ (V _{EE} + 0.4V)			0.05	mA
MODEN and RTEN Input High	V _{IH}		V _{EE} + 2.0			V
MODEN and RTEN Input Low	VIL				V _{EE} + 0.8	V
Power-Supply Rejection Ratio	PSRR	f ≤ 10MHz, 100mV _{P-P} (Note 8)		50		dB
SIGNAL INPUT FOR V _{TT} = 0						
Single-Ended Input	1/10	At high		0		
(DC-Coupled)	VIS	At low	-1.00		-0.15]
Single-Ended Input	\/.0	At high	0.075		0.400	V
(AC-Coupled)	V _{IS}	At low	-0.400		-0.075	

DC ELECTRICAL CHARACTERISTICS (continued)

 $(V_{EE} = -4.9V \text{ to } -5.5V \pm 6\%, T_A = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}. \text{ Typical values are at } V_{EE} = -5.2V, I_{BIAS} = 16.7\text{mA}, I_{MOD} = 83.3\text{mA}, T_A = +25^{\circ}\text{C}, unless otherwise noted.})$ (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Differential Input Swing (DC-Coupled)	V _{ID}		0.3		2.0	V _{P-P}
Differential Input Swing (AC-Coupled)	V _{ID}		0.3		1.6	V _{P-P}
SIGNAL INPUT FOR V _{TT} = -1.3V	SIGNAL INPUT FOR V _{TT} = -1.3V					
Input Common Mode	VICM			-1.3		V
Cinals Ended Input	\/.o	At high	-1.225		-0.800	\/
Single-Ended Input	VIS	At low	-1.800	•	-1.375	V
Differential Input Swing	V _{ID}		0.3		2.0	V _{P-P}

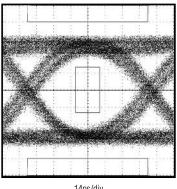
AC ELECTRICAL CHARACTERISTICS

(VEE = -4.9V to -5.5V $\pm 6\%$, T_A = -40°C to +85°C. Typical values are at V_{EE} = -5.2V, I_{BIAS} = 16.7mA, I_{MOD} = 83.3mA, T_A = +25°C, unless otherwise noted.) (Notes 1, 4, 5)

PARAMETER	PARAMETER SYMBOL CONDITIONS		MIN	TYP	MAX	UNITS
Input Data Rates NRZ (Note 2)		NRZ (Note 2)		10.7		Gbps
Input Return Loss	RLIN	f ≤ 15GHz (Notes 2, 6)		15		dB
Modulation Current-Setting Range		I _{MOD} defined in Figure 3 (Note 7)	20		100	mA
Modulation Current-Setting Error		$T_A = +25^{\circ}C$ (Note 9)	-10		+10	%
Modulation Sensing Resistor	RMOD		2.7	3.0	3.3	Ω
Modulation Current Temperature		I _{MOD} = 100mA (Note 2)	-550 +550 -200		+550	ppm/°C
Stability		$I_{MOD} = 20mA$				
Modulation Off-Current		MODSET ≤ (V _{EE} + 0.4V)			0.1	mA
Output Back Termination Resistor			63.8	75.0	86.3	Ω
Output Edge Speed	t _R , t _F	$Z_L = 50\Omega$, 20% to 80% (Note 3)		34		ps
Setup/Hold-Time	tsu, thd	Figure 2 (Notes 2, 3)	25			ps
Pulse-Width Adjustment Range		$Z_L = 50\Omega$, at 10Gbps (Notes 2, 3)		±60		ps
Pulse-Width Stability		PWC+ and PWC- open (Notes 2, 3)	-6		+6	ps
Pulse-Width Control Input Range		For PWC+ and PWC-	VEE	V _{EE} + 1.0	V _{EE} + 2.0	V

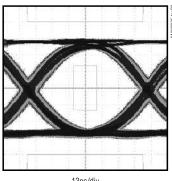
AC ELECTRICAL CHARACTERISTICS (continued)

 $(V_{EE} = -4.9V \text{ to } -5.5V \pm 6\%, T_A = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}. \text{ Typical values are at } V_{EE} = -5.2V, I_{BIAS} = 16.7\text{mA}, I_{MOD} = 83.3\text{mA}, T_A = +25^{\circ}\text{C}, T_{MOD} = 83.3\text{mA}$ unless otherwise noted.) (Notes 1, 4, 5)

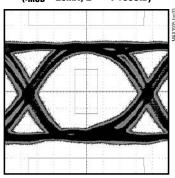

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Output Overshoot/Undershoot	δ	(Note 3)		1		%
Driver Random Jitter		(Note 3)		0.75		psrms
Driver Deterministic Jitter		(Note 5)		11	•	ps _{P-P}

- Note 1: Specifications at -40°C are guaranteed by design and characterization.
- Note 2: Guaranteed by design and characterization.
- Note 3: Measured using a 10.7Gbps repeating 0000 0000 1111 1111 pattern.
- Note 4: AC characterization performed using the circuit in Figure 1.
- Note 5: Measured using a 10.7Gbps 213 -1 PRBS with eighty zeros + eighty ones input data pattern.
- **Note 6:** For both data inputs (DATA+, DATA-) and clock inputs (CLK+, CLK-).
- **Note 7:** Load impedance is 50Ω in parallel with an internal 75Ω termination.
- Note 8: PSRR = $20 \times \log_{10} (V_{NOISE} (ON VCC)/(\Delta I_{MOD} \times 30\Omega))$. Excludes the effect of the external op amp.
- **Note 9:** For $40\text{mA} \le I_{MOD} \le 100\text{mA}$.

Typical Operating Characteristics

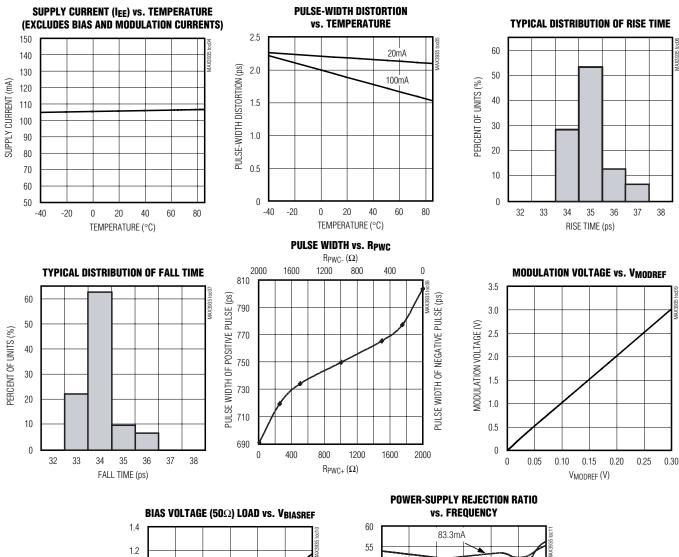

 $(T_A = +25^{\circ}C, \text{ unless otherwise noted.})$

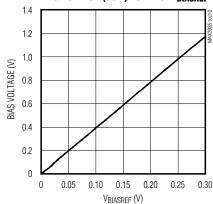
OPTICAL EYE DIAGRAM $(I_{MOD} = 100mA, 2^{13} - 1 + 80CID)$

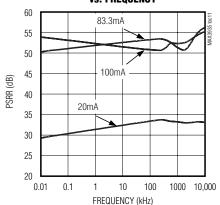

14ps/div

ELECTRICAL EYE DIAGRAM $(I_{MOD} = 100mA, 2^{13} - 1 + 80CID)$

13ps/div

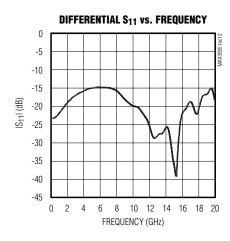

ELECTRICAL EYE DIAGRAM $(I_{MOD} = 20mA, 2^{13} - 1 + 80CID)$

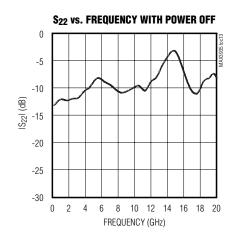



13ps/div

Typical Operating Characteristics (continued)

 $(T_A = +25^{\circ}C, \text{ unless otherwise noted.})$





Typical Operating Characteristics (continued)

 $(T_A = +25^{\circ}C, \text{ unless otherwise noted.})$

Pin Description

PIN	NAME	FUNCTION
1, 4	VTT	Termination Reference Voltage for Data Inputs
2	DATA+	Noninverting Data Input, with 50 Ω On-Chip Termination
3	DATA-	Inverting Data Input, with 50Ω On-Chip Termination
5, 8	VTT	Termination Voltage for Clock Inputs
6	CLK+	Noninverting Clock Input for Data Retiming, with 50Ω On-Chip Termination
7	CLK-	Inverting Clock Input for Data Retiming, with 50Ω On-Chip Termination
9	PWC+	Positive Input for Modulation Pulse-Width Adjustment. Connected to VEE through RPWC.
10	PWC-	Negative Input for Modulation Pulse-Width Adjustment. Connected to VEE through RPWC.
11, 18, 22, 30	GND	Ground
12, 13, 17, 23, 28, 29	VEE	Negative Supply Voltage
14	MODMON	Modulation Current Monitor. ($V_{MODMON} - V_{EE}$) / $3\Omega = I_{MOD}$.
15	MODSET	Modulation Current Set. Connected to the output of an external op amp (see the <i>Design Procedure</i> section).
16, 24	N.C.	No Connection. Leave unconnected.
19, 21	MODN2, MODN1	Complementary Modulation Output with On-Chip Resistive Load. Connect to GND.
20	MOD	Modulation Output, DC-Coupled to EAM
25	BIAS	EAM Bias Output. Connect to the EAM through an inductor.

Pin Description (continued)

PIN	NAME	FUNCTION		
26	BIASSET	Bias Current Set. Connected to the output of an external op amp (see the <i>Design Procedure</i> section).		
27	BIASMON	Bias Current Monitor. (VBIASMON - VEE) / 7.5Ω = IBIAS.		
31	MODEN	TTL/CMOS Modulation Enable Input. Low for normal operation, high to put the EAM in the absorption (logic 0) state. Internal 100kΩ pullup to GND.		
32	RTEN	TTL/CMOS Data Retiming Input. Low for retimed data, high to bypass retiming latch. Internal $100k\Omega$ pullup to GND.		

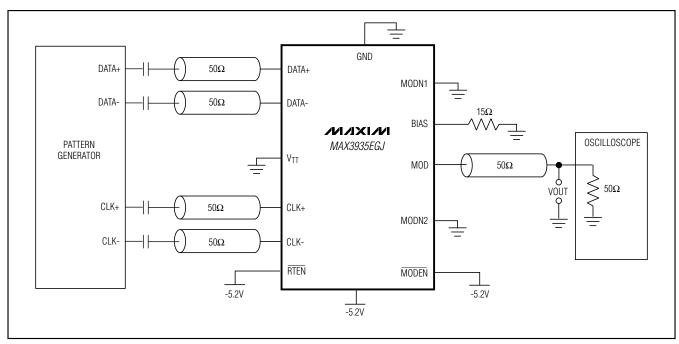


Figure 1. AC Characterization Circuit

Detailed Description

The MAX3935 EAM driver consists of a high-speed modulation driver and an EAM-biasing block (see Figure 3). The clock and data inputs to the modulation driver interface with ECL and CML logic levels. The modulation and bias outputs sink current to VEE at -5.2V.

The modulation output stage is composed of a high-speed differential pair and a programmable current source rise times a maximum modulation current of 100mA. The rise and fall times are typically 34ps. The modulation current is designed to produce an EAM voltage up to $3.0V_{P-P}$ when driving a 50Ω module. The

3.0Vp-p results from 100mA through 50 $\!\Omega$ in parallel with an internal 75 $\!\Omega$ resistor (30 $\!\Omega$).

Any loading of the EAM module with capacitance degrades the optical output performance. Because the BIAS output is connected to the EAM, minimize the parasitic capacitance associated with this pad by using an inductor (L) to isolate the BIAS pin from the EAM.

Clock/Data Input Logic Levels

The MAX3935 is directly compatible with 0V reference CML. Other logic interfaces are possible with AC-coupling capacitors. For 0V CML of AC-coupled logic, set VTT to 0V. For other DC-coupled differential signals, set VTT to the common-mode input voltage.

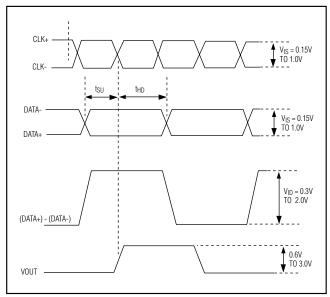


Figure 2. Required Input Signal, Setup/Hold-Time Definition and Output Polarity

Optional Input Data Retiming

To eliminate pattern-dependent jitter in the input data, connect a synchronous differential clock signal to the CLK+ and CLK- inputs, and the RTEN control input should be tied low. The input data is retimed on the rising edge of CLK+. If RTEN is tied high or left floating, the retiming function is disabled and the input data is directly connected to the output stage. Leave CLK+ and CLK- open when retiming is disabled.

Pulse-Width Control

The pulse-width control circuit can be used to minimize pulse-width distortion. The differential voltage between PWC+ and PWC- adjusts the pulse-width compensation. When PWC+ and PWC- are left open, the pulse-width control circuit is automatically disabled.

Modulation Output Enable

The MAX3935 incorporates a modulation current enable input. When MODEN is low, the modulation output (MOD) is enabled. When MODEN is high or floating, the output is disabled. In the disabled condition, the modulation output sinks current to keep the EAM module in the high-absorption state. The typical EAM enable time is 2ns, and the typical disable time is 5ns.

Current Monitors

The MAX3935 features a bias-current monitor output (BIASMON) and a modulation-current monitor output

(MODMON). The voltage at BIASMON is equal to (IBIAS \times RBIAS) + VEE, and the voltage at MODMON is equal to (IMOD \times RMOD) + VEE. IBIAS and IMOD are shown in Figure 3. The internal resistors RBIAS and RMOD are 7.5 Ω and 3 Ω , respectively (±10%). Connect BIASMON and MODMON to the inverting input of an op amp to program the bias and modulation current (see $Design\ Procedure$).

Design Procedure

Programming the Modulation Voltage

The EAM modulation voltage results from I_{MOD} passing through the EAM impedance in parallel with the internal 75Ω termination resistor.

$$V_{MOD} \approx I_{MOD} \times \frac{Z_{EAM} \times 75\Omega}{Z_{FAM} + 75\Omega}$$

To program the desired modulation current, connect the inverting input of an op amp (see the *Typical Application Circuit*) to MODMON and connect the output to MODSET. Connect the positive op amp voltage supply to ground and the negative supply to VEE. The modulation current is set by connecting a reference voltage VMODREF to the noninverting input of the op amp. See the Modulation Voltage vs. VMODREF graph in the *Typical Operating Characteristics* to select the value of VMODREF that corresponds to the required modulation current.

$$I_{MOD} = \frac{V_{MODREF}}{3\Omega}$$

Programming the Bias Voltage

The EAM bias voltage results from IBIAS passing through the EAM impedance in parallel with the internal 75Ω termination resistor.

$$V_{BIAS} \approx I_{BIAS} \times \frac{Z_{EAM} \times 75\Omega}{Z_{EAM} + 75\Omega}$$

To program the desired EAM bias current, connect the inverting input of an op amp (see the *Typical Application Circuit*) to BIASMON and connect the output to BIASSET. Connect the positive op amp voltage supply to ground and the negative supply to VEE. The EAM bias current is set by connecting a reference voltage VBIASREF to the noninverting input of the op amp. See the Bias Voltage vs. VBIASREF graph in the *Typical Operating Characteristics* to select the value of VBIAS that corresponds to the required EAM bias voltage.

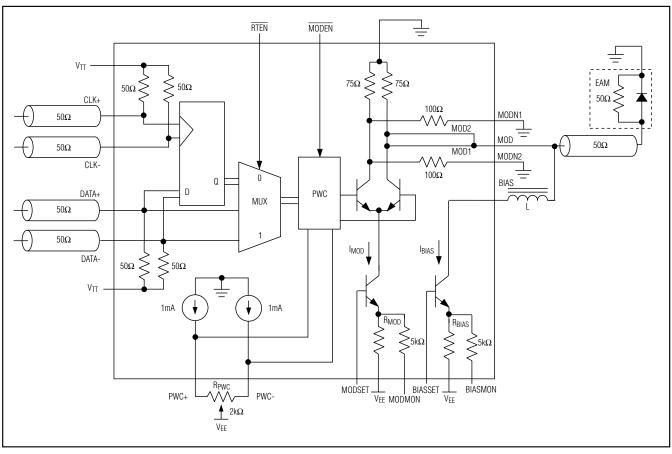


Figure 3. MAX3935EGJ Functional Diagram

$$I_{BIAS} = \frac{V_{BIASREF}}{7.5\Omega}$$

To keep the bias and modulation currents in compliance, the following constraint on the total current must be made for 50Ω EAM modules:

$$|V_{EE}| - (|B_{IAS} + |M_{OD}) \times 30\Omega \ge 1.55V$$

External Op Amp Selection

External op amps are required for regulating the bias and modulation currents. The ability to operate from a single supply with input common-mode range extending to the negative supply rail is critical in the op amp selection. Low bias current and high PSRR also are important. Bias current to the inverting input passes through a $5k\Omega$ resistor. This could add an error to the voltage produced by the modulation and bias current-sense resistors. The op amp gain bandwidth must be

high enough to regulate at the power-supply ripple frequency on VEE.

Pulse-Width Control Setup

Two methods of control are possible when pulse predistortion is desired to minimize distortion at the receiver. The pulse width can be set with a $2k\Omega$ potentiometer (or equivalent fixed resistors); or applying a voltage, with VEE + 1V common mode, to the PWC pins can set it. See Table 1 for the desired effect of the pulse-width setting.

Table 1. Pulse-Width Control

PULSE WIDTH	RP, RN for RP + RN = $2k\Omega$	V _{PWC+} , V _{PWC-} for V _{CM} = V _{EE} + 1V
100%	1k Ω or Open	$V_{PWC+} = V_{PWC-} = V_{EE} + 1V$
>100%	RP > RN	V _{PWC+} > V _{PWC-}
<100%	RP < RN	V _{PWC+} < V _{PWC-}

Applications Information

Layout Considerations

To minimize loss and crosstalk, keep the connections between the MAX3935 output and the EAM module as short as possible. Use good high-frequency layout techniques and multilayer boards with uninterrupted ground plane to minimize EMI and crosstalk. Make circuit boards using low-loss dielectrics. Use controlled-impedance lines for the clock and data inputs as well as the modulation output.

Wire Bonding Die

For high-current density and reliable operation, the MAX3935 uses gold metalization. Make connections to the die with gold wire only, using ball-bonding techniques. Wedge-bonding processes are not recommended due to possible fracturing of sublayers caused by stress during bonding. Die thickness is 8 mils (203µm). Die size is 64 mils by 120 mils (1.626mm by 3.048mm).

The inductance at the high-speed connections for MOD1, MOD2 and MODN1, MODN2 must be minimized. The minimum length of the bond wires is constrained by the type of wire bonder used as well as the dimensions of the die. Wire length measured in the x-y plane from the edge of the die should approach 15 mils if possible. The bond wire must not come closer to the edge of die than 2X the bond wire diameter. MOD1 and MOD2 should each have a wire bond to reduce the total inductance for the MOD output.

Input and Output Schematics

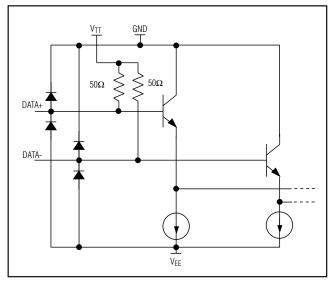


Figure 4. Equivalent Input Circuit

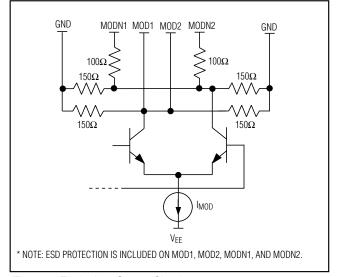
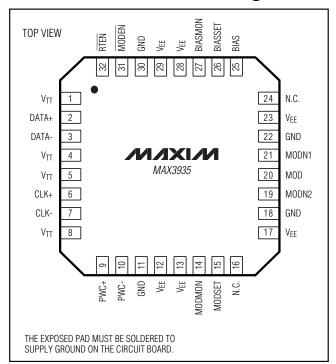
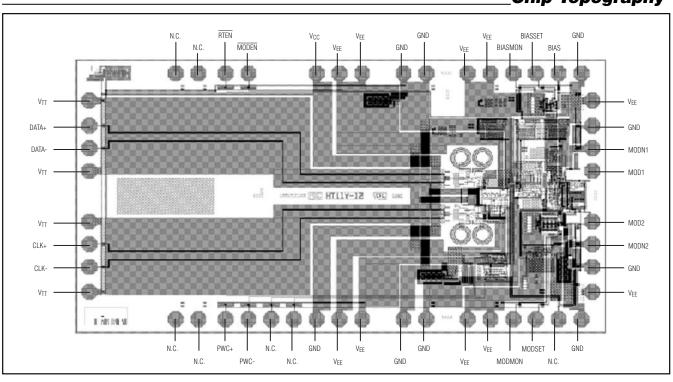



Figure 5. Equivalent Output Circuit

Pin Configuration

Chip Topography

The origin for pad coordinates is the center of the die. All pad locations are referenced from the origin and indicate the center of the pad where the bond wire should be connected. For more information on bonding coordinates refer to Maxim Application Note HFAN-08.0.1: *Understanding Bonding Coordinates and Physical Die Size* on Maxim's website.

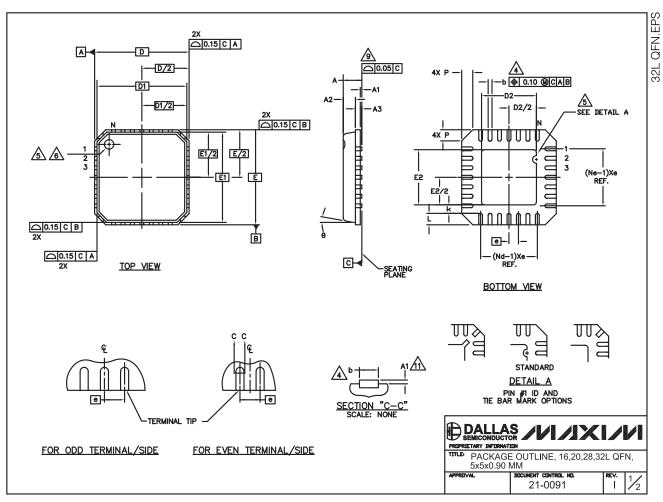

Chip Information

TRANSISTOR COUNT: 1535

SUBSTRATE: INSULATOR, CONNECT TO GND

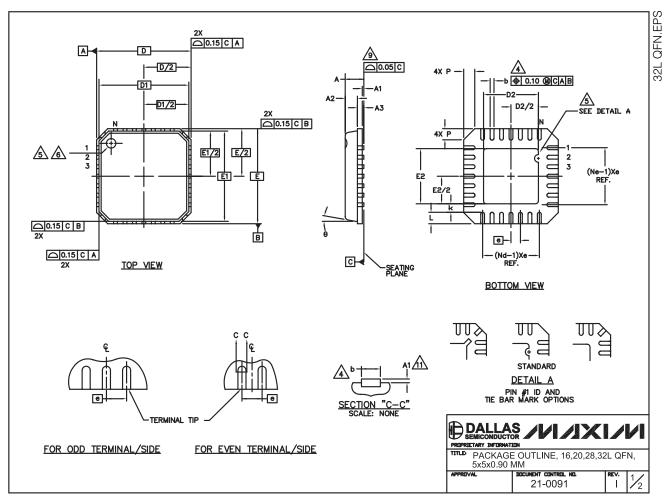
PROCESS: SiGe BIPOLAR DIE THICKNESS: 8 mils

Chip Topography


Pad Coordinates

	1	COORDINATE			
PAD	NAME	X	Y		
1	VTT	-1393.5	-531		
2	CLK-	-1393.5	-392		
3	CLK+	-1393.5	-266		
4	V _{TT}	-1393.5	-140		
5	V _{TT}	-1393.5	140		
6	DATA-	-1393.5	266		
7	DATA+	-1393.5	392		
8	V _{TT}	-1393.5	530		
9	N.C.	-914.5	681		
10	N.C.	-788.5	681		
11	RTEN	-637.5	681		
12	MODEN	-511.5	681		
13	GND	-133.5	681		
14	VEE	-7.5	681		
15	VEE	118.5	681		
16	GND	348.5	681		
17	GND	474.5	681		
18	VEE	703.5	681		
19	VEE	829.5	681		
20	BIASMON	955.5	681		
21	BIASSET	1081.5	681		
22	BIAS	1207.5	681		
23	GND	1333.5	681		
24	VEE	1393.5	530		

		COORE	DINATE
PAD	NAME	Х	Υ
25	GND	1393.5	392
26	MODN1	1393.5	266
27	MOD1	1393.5	140
28	MOD2	1393.5	-140
29	MODN2	1393.5	-266
30	GND	1393.5	-392
31	VEE	1393.5	-531
32	GND	1333.5	-681
33	N.C.	1207.5	-681
34	MODSET	1081.5	-681
35	MODMON	955.5	-681
36	VEE	829.5	-681
37	VEE	703.5	-681
38	GND	474.5	-681
39	GND	348.5	-681
40	VEE	118.5	-681
41	VEE	-7.5	-681
42	GND	-133.5	-681
43	N.C.	-259.5	-681
44	N.C.	-385.5	-681
45	PWC-	-511.5	-681
46	PWC+	-637.5	-681
47	N.C.	-788.5	-681
48	N.C.	-914.5	-681


Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.

Maxim makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Maxim assume any liability arising out of the application or use of any product or circuit and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "typicals" must be validated for each customer application by customer's technical experts. Maxim products are not designed, intended or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Maxim product could create a situation where personal injury or death may occur.

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

14 ______Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600