- 1 -

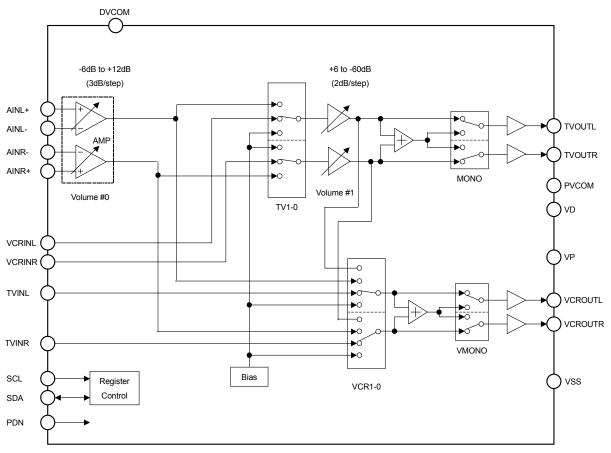
AK4708 AV SCART Switch with Two RGB Outputs

GENERAL DESCRIPTION

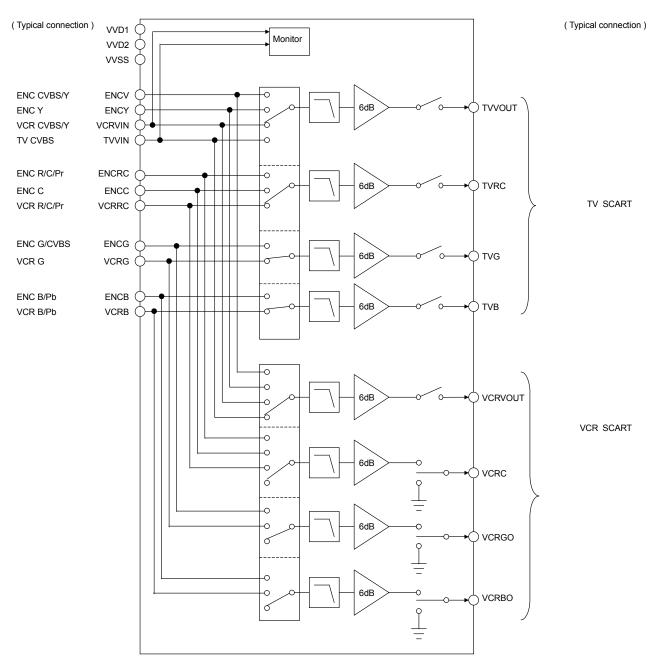
The AK4708 is an IIC controlled audio and video switch matrix designed for digital TV and set-top-box applications. The AK4708 offers the ideal features for digital set-top-box systems. The AK4708 includes the audio switches, video switches, video filters. The AK4708 provides high performance audio and video routings to meet dual SCART connections. The AK4708 is supplied in a small 48-pin LQFP package to contribute space saving in PCB.

FEATURES

□Analog Switches for SCART

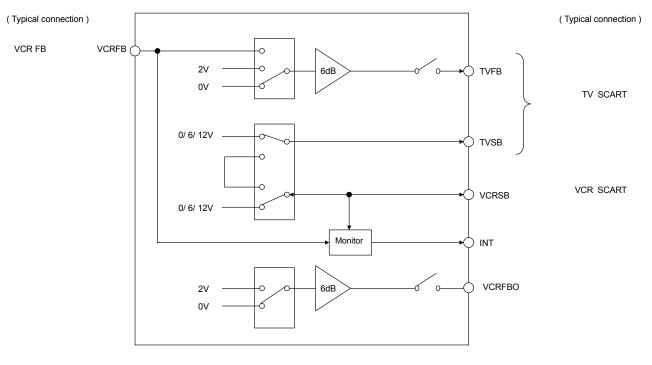

Audio section THD+N: -86dB (@2Vrms) Dynamic Range: 96dB (@2Vrms) **Analog Inputs** Two Full Differential Stereo Inputs or Single-ended input for Decoder DAC Two Stereo Inputs (TV & VCR SCART) Analog Outputs Two Stereo Outputs (TV & VCR SCART) Stereo Analog Volume with Pop-noise Free Circuit (+6dB to –60dB & Mute) Pop Noise Free Circuit for Power on/off Video section VCR SCART supports RGB mode Integrated LPF: -40dB@27MHz 75Ω driver 6dB Gain for Outputs Four CVBS/Y inputs (ENCx2, TV, VCR), Two CVBS/Y outputs (TV, VCR) Three R/C inputs (ENCx2, VCR), Two R/C outputs (TV, VCR) Two G and B inputs (ENC, VCR), Two G and B outputs (TV, VCR) **TV/VCR** input monitor Loop-through Mode for standby Auto-Startup Mode for power saving SCART pin#16 (Fast Blanking), pin#8 (Slow Blanking) Control □Power supply 5V+/--5% and 12V+/--10% Small current consumption in Standby Mode (VD=10µA typ., VVD1+VVD2=10µA typ., VP=10µA typ.) 48-pin LQFP

Asahi**KASEI**


ASAHI KASEI EMD

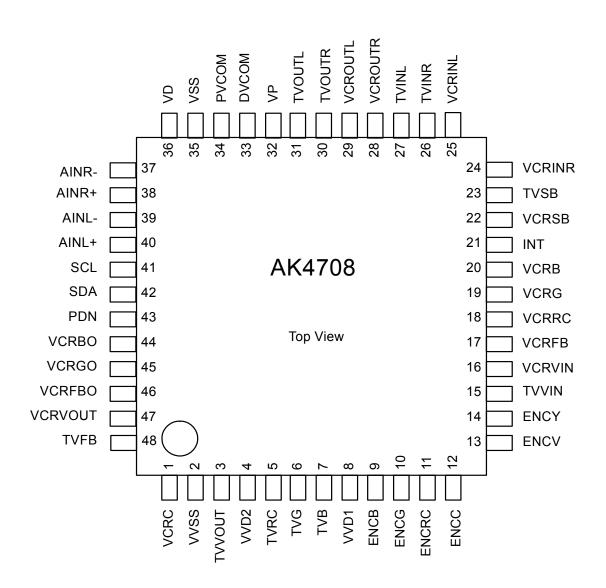
Block Diagram

Audio Block



Video Block

[AK4708]


Video Blanking Block

Ordering Guide

AK4708EQ	-10 ~ +70°C	48pin LQFP (0.5mm pitch)
AKD4708	Evaluation board for Ak	\$4708

Pin Layout

INO.	Pin Name	1/0	Function
1	VCRC	0	Chrominance Output Pin for VCR
2	VVSS	-	Video Ground Pin #1, 0V
3	TVVOUT	0	Composite/Luminance Output Pin for TV
			Video Power Supply Pin #2, 5V
4	VVD2	-	Normally connected to VVSS with a 0.1µF ceramic capacitor in parallel
			with a 10μ F electrolytic cap.
5	TVRC	0	Red/Chrominance Output Pin for TV
6	TVG	0	Green Output Pin for TV
7	TVB	0	Blue Output Pin for TV
	1.12		Video Power Supply Pin #1, 5V
8	VVD1	_	Normally connected to VVSS with a 0.1μ F ceramic capacitor in parallel
0			with a 10μ F electrolytic cap.
9	ENCB	Ι	Blue Input Pin for Encoder
10	ENCG	I	Green Input Pin for Encoder
10	ENCRC	I	Red/Chrominance Input Pin #1 for Encoder
11	ENCC	I	Chrominance Input Pin #2 for Encoder
12	ENCC	I	Composite/Luminance Input Pin #1 for Encoder
15	ENCY	I	Composite/Luminance Input Pin #1 for Encoder
14			
	TVVIN	I	Composite/Luminance Input Pin for TV
16	VCRVIN	I	Composite/Luminance Input Pin for VCR
17	VCRFB	I	Fast Blanking Input Pin for VCR
18	VCRRC	I	Red/Chrominance Input Pin for VCR
19	VCRG	Ι	Green Input Pin for VCR
20	VCRB	Ι	Blue Input Pin for VCR
21	INT	0	Interrupt Pin for Video Blanking
			Normally connected to VD(5V) through $10k\Omega$ resistor externally.
22	VCRSB	I/O	Slow Blanking Input/Output Pin for VCR
23	TVSB	0	Slow Blanking Output Pin for TV
24	VCRINR	I	Rch VCR Audio Input Pin
25	VCRINL	Ι	Lch VCR Audio Input Pin
26	TVINR	Ι	Rch TV Audio Input Pin
27	TVINL	Ι	Lch TV Audio Input Pin
28	VCROUTR	0	Rch Analog Output Pin #1
29	VCROUTL	0	Lch Analog Output Pin #1
30	TVOUTR	0	Rch Analog Output Pin #2
31	TVOUTL	0	Lch Analog Output Pin #2
			Power Supply Pin, 12V
32	VP	-	Normally connected to VSS with a 0.1µF ceramic capacitor in parallel
			with a 10µF electrolytic cap.
			Audio Common Voltage Pin #1
33	DVCOM	0	Normally connected to VSS with a 0.1µF ceramic capacitor in parallel
			with a 10μ F electrolytic cap.
			Audio Common Voltage Pin #2
		-	Normally connected to VSS with a 0.1μ F ceramic capacitor in parallel
34	PVCOM	0	with a 10μ F electrolytic cap. The caps affect the settling time of audio bias
			level.
35	VSS	_	Ground Pin , 0V
55		1	, ~ .

Function

I/O

No.

Pin Name

PIN/FUNCTION (Continued)

No.	Pin Name	I/O	Function
36	VD	-	Power Supply Pin, 5V Normally connected to VSS with a 0.1µF ceramic capacitor in parallel with a 10µF electrolytic cap.
37	AINR-	Ι	Rch Negative Analog Input Pin
38	AINR+	Ι	Rch Positive Analog Input Pin
39	AINL-	Ι	Lch Negative Analog Input Pin
40	AINL+	Ι	Lch Positive Analog Input Pin
41	SCL	Ι	Control Data Clock Pin
42	SDA	I/O	Control Data Pin
43	PDN	Ι	Power-Down Mode Pin When at "L", the AK4708 is in the power-down mode and is held in reset. The AK4708 should always be reset upon power-up.
44	VCRBO	0	Blue Output Pin for VCR
45	VCRGO	0	Green Output Pin for VCR
46	VCRFBO	0	Fast Blanking Output Pin for VCR
47	VCRVOUT	0	Composite/Luminance Output Pin for VCR
48	TVFB	0	Fast Blanking Output Pin for TV

Note: All digital input pins should not be left floating.

	K	A.I	
A	NAN	41	

INTERNAL EQUIVALENT CIRCUIT

Pin No.	Pin Name	Туре	Equivalent Circuit	Description
41 43	SCL PDN	Digital IN	VD 200 W VSS	
38 37 39 40	AINR+ AINR– AINL– AINL+	Audio IN	VD 150K W VSS	
42	SDA	Digital I/O	VD 200 W- VSS VSS	I2C Bus voltage must not exceed VD.
21	INT	Digital OUT	VVD1 VVD1 VSS VSS	Normally connected to VD(5V) through $10k\Omega$ resister externally.
47 48 3 5 6 7 1 44 45 46	VCRVOUT TVFB TVVOUT TVRC TVG TVB VCRC VCRGO VCRBO VCRFBO	Video OUT	VVD2 VVD2 VVD2 VVSS1 VVSS2	

Pin No.	Pin Name	Туре	Equivalent Circuit	Description
9 10 11 12 13 14 15 16 17 18 19 20	ENCB ENCG ENCRC ENCV ENCY TVVIN VCRVIN VCRFB VCRRC VCRG VCRB	Video IN	VVD1 200 200 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	The 60kΩ is attached for Chrominance input.
22 23	VCRSB TVSB	Video SB	VP 200 200 VP 200 VP 200 VP VP VP VP VP VP VP VP VP VP VP VP VP	The 120k Ω is not attached for TVSB.
24 25 26 27	VCRINR VCRINL TVINR TVINL	Audio IN	VP 150k W VSS	
28 29 30 31	VCROUTR VCROUTL TVOUTR TVOUTL	Audio OUT	VP VP VP VP VP VP VP VP VP VP VP	
33 34	DVCOM PVCOM	VCOM OUT	VD VD VD VD VD VD VD VD VD VD VD VD VD V	

AKM

ABSOLU	ABSOLUTE MAXIMUM RATINGS							
(VSS = VVSS = 0V; Note 1)								
Parameter	Symbol	min	max	Units				
Power Supply (Note 2)	VD	-0.3	6.0	V				
	VVD1	-0.3	6.0	V				
	VVD2	-0.3	6.0	V				
	VP	-0.3	15	V				
Input Current (any pins except for supplies)	IIN	-	±10	mA				
Input Voltage	VIND	-0.3	VD+0.3	V				
Video Input Voltage	VINV	-0.3	VVD1+0.3	V				
Audio Input Voltage (except AINL+/-, AINR+/- pins)	VINA1	-0.3	VP+0.3	V				
Audio Input Voltage (AINL+/-, AINR+/- pins)	VINA2	-0.3	VD+0.3	V				
Ambient Operating Temperature	Та	-10	70	°C				
Storage Temperature	Tstg	-65	150	°C				

Note 1.All voltages with respect to ground.

Note 2.VSS and VVSS must be connected to the same analog ground plane.

WARNING: Operation at or beyond these limits may result in permanent damage to the device. Normal operation is not guaranteed at these extremes.

	RECOMMENDED OPERATING CONDITIONS							
(VSS = VVSS = 0)	VSS = VVSS = 0V; Note 1)							
Parameter		Symbol	min	typ	max	Units		
Power Supply	(Note 2)	VD	4.75	5.0	5.25	V		
		VVD1	4.75	5.0	5.25	V		
		VVD2	4.75	5.0	VVD1	V		
		VP	10.8	12	13.2	V		

Note 1. All voltages with respect to ground.

Note 2. VVD1 and VVD2 must be connected to the same voltage.

*AKEMD assumes no responsibility for the usage beyond the conditions in this datasheet.

ELE	ELECTRICAL CHARACTERISTICS						
$(Ta = 25^{\circ}C; VP = 12V, VD = 5V; VVD1 =$	VVD2 = 5V)						
Power Supplies		min	typ	max	Units		
Power Supply Current Normal Operation (PDN = "H") VD+VVD1+VVD2 VP	(Note 3)		5	120 10	mA mA		
Power-Down Mode (PDN = "L") VD VVD1+VVD2 VP	(Note 4)		10 10 10	100 100 100	μΑ μΑ μΑ		

Note 3. STBY bit = "0", All video outputs active. No signal, no load for A/V switches.

Note 4. All digital inputs are held at VD or VSS.

DIGITAL CHARACTERISTICS							
$(Ta = 25^{\circ}C; VD = 4.75 \sim 5.25V)$							
Parameter	Symbol	min	typ	max	Units		
High-Level Input Voltage	VIH	2.0	-	-	V		
Low-Level Input Voltage	VIL	-	-	0.8	V		
Low-Level Output Voltage (SDA pin: Iout= 3mA, INT pin: Iout= 1mA)	VOL	-	-	0.4	V		
Input Leakage Current (Except VCRSB pin)	Iin	-	-	±10	μA		

	D = 5V; VVD1 = VVD2 = 5V; Sign				
	20Hz ~ 20kHz; $R_L \ge 4.5k\Omega$; 0dB=2		inless otherwise s	specified)	
Parameter		min	typ	max	Units
	CVINR/VCRINL/VCRINR pins)				
Analog Input Charac	cteristics				-
Input Voltage				2.0	Vrms
Input Resistance		100	150	-	kΩ
Analog Input: (AINL+/A	AINL-/AINR-/AINR+ pins)				
Analog Input Charac	eteristics				
Input Voltage	(AIN+) - (AIN-) (Note 6)			2.0	Vrms
Input Resistance	(AINL+, AINR+ pins) (Note 7)	140	210		kΩ
Input Resistance	(AINL-, AINR- pins) (Note 7)	75	115	-	kΩ
Stereo/Mono Output: (T	VOUTL/TVOUTR/VCROUTL/VO	CROUTR pins)	(Note 5)		
Analog Output Char	acteristics				
Volume#0 Step Width	(Note 8)	2.3	3.0	3.7	dB
Volume#1 Step Width		1.6	2	2.4	dB
	(-12dB to -40dB)	0.5	2	3.5	dB
	(-40dB to -60dB)	0.1	2	3.9	dB
THD+N	(at 2Vrms output, Note 9)		-86	-80	dB
	3Vrms output, Note 9, Note 10)		-60		dB
	dB Output, A-weighted, Note 9)	92	96		dB
S/N	(A-weighted, Note 9)	92	96		dB
Interchannel Isolation	(Note 9, Note 11)	80	90		dB
Interchannel Gain Mis	match (Note 9, Note 11)	-	0.3	-	dB
Gain Drift		-	200	-	ppm/°C
Load Resistance	(AC-Lord)				
TVOUTL/R, V	/CROUTL/R	4.5			kΩ
Load Capacitance				20	
	TL/R, VCROUTL/R	1.05		20	pF
Output Voltage	(Note 13)	1.85	2	2.15	Vrms
Power Supply Rejection (PSR) (Note 12)	-	50		dB

ANALOG CHARACTERISTICS (AUDIO)

Note 5. Measured by Audio Precision System Two Cascade.

Note 6. If input is single ended, maximum input voltage is 1Vrms.

Note 7. Differential signal is input to AIN- and AIN+. volume #0 = 0dB.

Note 8. The output level of the internal AMP with volume #0 should be less than 2Vrms..

The output level must be adjusted by the volume #1 when output level of the AK4708 exceeds 2Vrms.

Note 9. Analog In to TVOUT. Path : AINL+/- \rightarrow TVOUTL, AINR+/- \rightarrow TVOUTR

Note 10. Except VCROUTL/VCROUTR pins.

Note 11. Between TVOUTL and TVOUTR with analog inputs AINL+/-, AINL/R+/-, 1kHz/0dB.

Note 12. The PSR is applied to VD with 1kHz, 100mV.

Note 13. The audio output must not exceed 3Vrms at VP±5%. The audio output must not exceed 2.15Vrms at VP±10%.

ANALOG CHARACTERISTICS (VIDEO)										
$(Ta = 25^{\circ}C; VP = 12V, VD = 5V; VVD1 = VVD2 = 5V; unless otherwise specified.)$										
Parameter	Conditions	min	typ	max	Units					
Sync Tip Clamp Voltage	at output pin.		0.7		V					
R/G/B Clamp Voltage	at output pin.		0.7		V					
Pb/Pr Clamp Voltage	at output pin.		2.2		V					
Chrominance Bias Voltage	at output pin.		2.2		V					
Gain	Input = 0.3 Vp-p, 100 kHz	5.5	6	6.5	dB					
Interchannel Gain Mismatch1	TVRC, TVG, TVB. Input = 0.3Vp-p, 100kHz.	-0.5	-	0.5	dB					
Interchannel Gain Mismatch2	VCRC, VCRGO, VCRBO. Input = 0.3Vp-p, 100kHz.	-0.5	-	0.5	dB					
Frequency Response	Input=0.3Vp-p, C1=C2=0pF. 100kHz to 6MHz.	-1.0		0.5	dB					
	at 10MHz.		-3		dB					
	at 27MHz.		-40	-25	dB					
Group Delay Distortion	At 4.43MHz with respect to 1MHz.			15	ns					
Input Impedance	Chrominance input (internally biased)	40	60	-	kΩ					
Input Signal	f = 100kHz, maximum with distortion < 1.0%, gain = 6dB.	-	-	1.5	Vpp					
Load Resistance	(Figure 1)	150	-	-	Ω					
Load Capacitance	C1 (Figure 1)			400	pF					
-	C2 (Figure 1)			15	pF					
Dynamic Output Signal	f = 100kHz, maximum with distortion < 1.0%	-	-	3	Vpp					
Y/C Crosstalk	f = 4.43MHz, 1Vp-p input. Among TVVOUT, TVRC and VCRVOUT outputs.	-	-50	-	dB					
S/N	Reference Level = 0.7 Vp-p, CCIR 567 weighting. BW = 15 kHz to 5MHz.	-	74	-	dB					
Differential Gain	0.7Vpp 5steps modulated staircase. chrominance &burst are 280mVpp, 4.43MHz.	-	0.6	-	%					
Differential Phase	0.7Vpp 5steps modulated staircase. chrominance &burst are 280mVpp, 4.43MHz.	-	0.8	-	Degree					

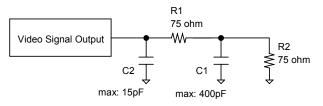


Figure 1. Load Resistance R1+R2 and Load Capacitance C1/C2.

SWITCHING CHARACTERISTICS											
Ta = 25° C; VP = $10.8 \sim 13.2$ V, VD = $4.75 \sim 5.25$ V, VVD1 = VVD2 = $4.75 \sim 5.25$ V)											
Parameter		Symbol	min	typ	max	Units					
Control Interface Timing (I ² C Bus)):										
SCL Clock Frequency		fSCL	-		400	kHz					
Bus Free Time Between Transr	nissions	tBUF	1.3		-	μs					
Start Condition Hold Time		tHD:STA	0.6		-	μs					
(prior to first clock pulse)											
Clock Low Time		tLOW	1.3		-	μs					
Clock High Time		tHIGH	0.6		-	μs					
Setup Time for Repeated Start	Condition	tSU:STA	0.6		-	μs					
SDA Hold Time from SCL Fall	ing (Note 14)	tHD:DAT	0		-	μs					
SDA Setup Time from SCL Ri	sing	tSU:DAT	0.1		-	μs					
Rise Time of Both SDA and SO	CL Lines	tR	-		0.3	μs					
Fall Time of Both SDA and SC	L Lines	tF	-		0.3	μs					
Setup Time for Stop Condition		tSU:STO	0.6		-	μs					
Pulse Width of Spike Noise		tSP	0		50	ns					
Suppressed by Input Filter											
Capacitive load on bus		Cb			400	pF					
Reset Timing											
PDN Pulse Width	(Note 15)	tPD	150			ns					

Note 14. Data must be held for sufficient time to bridge the 300 ns transition time of SCL. Note 15. The AK4708 should be reset by PDN pin = "L" upon power up.

Note 16. I²C is a registered trademark of Philips Semiconductors.

AKM

Timing Diagram

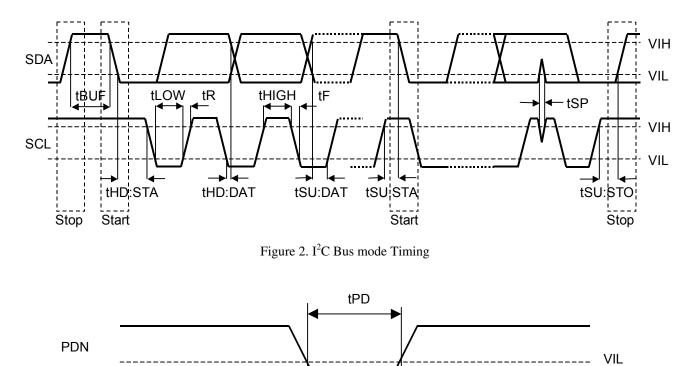


Figure 3. Power-down Timing

OPERATION OVERVIEW

1. System Reset and Power-down options

The AK4708 should be reset once by bringing PDN pin = "L" upon power-up. The AK4708 has several operation modes. The PDN pin, AUTO bit, BIAS bit, STBY bit and AMP bit control operation modes as shown in Table 1 and Table 2.

Mode	PDN pin	AUTO bit	STBY bit	BIAS bit	Mode
0	"L"	Х	Х	Х	Full Power-down
1	"Н"	1	х	х	Auto Startup mode (Power-on default)
2	"H"	0	1	1	Standby & Mute
3	"H"	0	1	0	Standby
4	"Н"	0	0	1	Mute (AMP power down)
5	"H"	0	0	0	Normal operation (AMP operation)

Table 1. Operation Mode Settings (x: Don't Care)

	Mode		Register Control	Audio Bias Level	Video Output	TVFB TVSB VCRFBO	VCRSB	
0	Full Power-down	NOT available	Power	Hi-Z	Hi-Z	Pull -down (Note 17)		
1	Auto Startup mode input			down			111-22	
	(Power-on default)	Video input (Note 18)		Active	Active (Note 25)			
2	2 Standby & mute		Available	Power down				
3	3 Standby			Active	Hi-Z/	Active	Active	
4	4 Mute (AMP power down)			Power down	Active			
5	Normal operation (AMP operation)			Active (Note 19)				

Note 17. Internally pulled down by $120k\Omega$ (typ) resistor.

- Note 18. Video input to TVVIN or VCRVIN.
- Note 19. TVOUTL/R are muted by Mute bit in the default state.
- Note 20. VCRC, VCRGO, VCRBO output 0V for termination.

Table 2. Status of each operation modes

System Reset and Full Power-down Mode

The AK4708 should be reset once by bringing PDN pin = "L" upon power-up.

PDN pin: Power down pin L: Device power down & reset H: Normal operation.

■ Auto Startup Mode

After when the PDN pin is set to "H", the AK4708 is in the auto startup mode. In this mode, all blocks except for the video detection circuit are powered down. Once the video detection circuit detects video signal from TVVIN pin or VCRVIN pin, the AK4708 goes to the stand-by mode automatically and sends "H" pulse via INT pin. The sources of TVOUTL/R are fixed to VCRINL/R, the sources of VCROUTL/R are fixed to TVINL/R respectively. The source of DC- restore circuit is VCRVIN pin. To exit the auto startup mode, set the AUTO bit to "0".

AUTO bit (00H D3): Auto startup bit

- 0: Auto startup disable. (Manual startup)
- 1: Auto startup enable. (default)

Bias Mode

When the BIAS bit = "1", the bias voltage on the audio output goes to GND level. Bringing BIAS bit to "0" changes this bias voltage smoothly from GND to VP/2 by 2sec (typ.). This removes the huge click noise related the sudden change of bias voltage at power-on. The change of BIAS bit from "1" to "0" also makes smooth transient from VP/2 to GND by 2sec (typ). This removes the huge click noise related the sudden change of bias voltage at power-off.

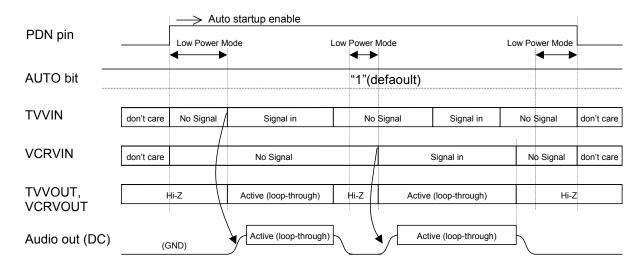
BIAS bit (00H D1): Bias-off bit

0: Normal operation.

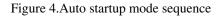
1: Set the audio bias to GND. (default)

Standby Mode

When the AUTO bit = BIAS bit = "0" and the STBY bit = "1", the AK4708 is forced into TV-VCR loop through mode. In this mode, the sources of TVOUTL/R pins are fixed to VCRINL/R pins; the sources of VCROUTL/R are fixed to TVINL/R pins respectively. All register values themselves are NOT changed by STBY bit = "1".


STBY bit (00H D0): Standby bit

- 0: Normal operation.
- 1: Standby mode. (default)


Normal Operation Mode

To change analog switches, set the AUTO bit, BIAS bit and STBY bit to "0". The AK4708 is in power-down mode until PDN pin = "H". The Figure 4 shows an example of the system timing at the power-down and power-up by PDN pin.

■ Typical Operation Sequence (auto setup mode)

The Figure 4 shows an example of the system timing at auto startup mode.

■ Typical Operation Sequence (except auto setup mode)

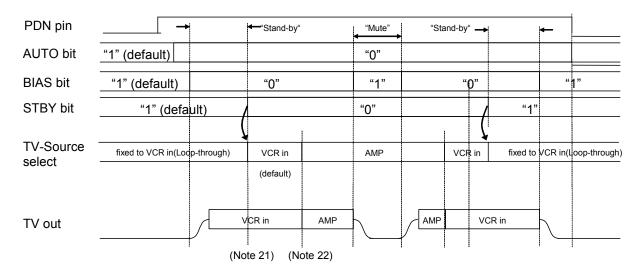


Figure 5 shows an example of the system timing at normal operation mode.

Note 21. Set the STBY bit = "0" to pass for 20.2ms after set the VMUTE bit = "0", to prevent the click noise. Note 22. Mute the analog outputs externally if click noise affects the system.

Figure 5. Typical operating sequence

Switch Control

The AK4708 has switch matrixes designed primarily for SCART routing. Those are controlled via the control register as shown in, Table 3 and Table 4 (Please refer to the Block Diagram).

(01H: D1-	-D0)		_
TV1	TV0	Source of TVOUTL/R	
0	0	AMP	
0	1	VCRIN	(default)
1	0	Mute	
1	1	(Reserved)	
	\ \	(01H: D1-D0) TV1 TV0 0 0 0 1 1 0 1 1	TV1TV0Source of TVOUTL/R00AMP01VCRIN10Mute

Table 3. TVOUT Switch Configuration

(01H: D5-D4)

1	VCR0	Source of VCROUTL/R	
	0	AMP	
	1	TVIN	(default)
	0	Mute	
	1	Volume#1 output	
	T-11.4	VCDOUT C	-

 Table 4. VCROUT Switch Configuration

■ Volume Control #0 (7-Level Volume)

The AK4708 has a 7-level volume control (Volume #0) as shown in Table 5. The volume reflects the change of register value immediately.

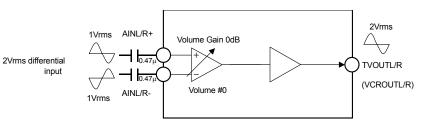


Figure 6. Volume #0(Volume Gain=0dB:default), Full Differential Stereo Input

(0DH: D5	5-D3)				_
VOL2	VOL1	VOL 0	Volume #0 Gain	Output Level (Typ)	
1	1	1	+12dB	2Vrms (with 0.5Vrms differential input)	
1	1	0	+9dB	-	
1	0	1	+6dB	2Vrms (with 1Vrms differential input)	
1	0	0	+3dB	-	
0	1	1	0dB	2Vrms (with 2Vrms differential input)	(default)
0	1	0	-3dB	-	
0	0	1	-6dB	1Vrms (with 2Vrms differential input)	
0	0	0	Mute	-	

Note: Volume #1=0dB

Table 5. Volume #0, Full Differential Stereo Input

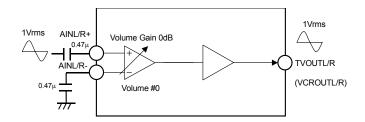


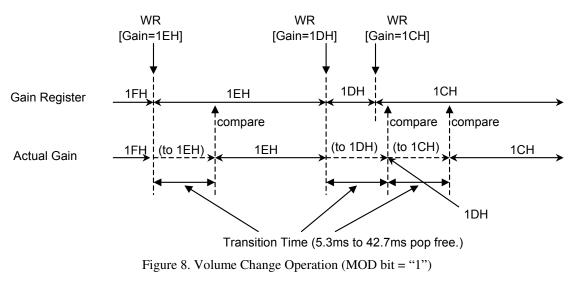
Figure 7. Volume #0(Volume Gain=0dB:default), Single-ended Input

(0DH: D5-	D3)				_
VOL2	VOL 1	VOL 0	Volume #0 Gain	Output Level (Typ)	
1	1	1	+12dB	2Vrms (with 0.5Vrms input)	
1	1	0	+9dB	-	
1	0	1	+6dB	2Vrms (with 1Vrms input)	
1	0	0	+3dB	-	
0	1	1	0dB	1Vrms (with 1Vrms input)	(default)
0	1	0	-3dB	-	
0	0	1	-6dB	0.5Vrms (with 1Vrms input)	
0	0	0	Mute	-	

Note: Volume #1=0dB

Table 6. Volume #0, Single-ended Input

■ Volume Control #1 (Main Volume)


The AK4708 has main volume control (Volume #1) as shown in Table 7.

(02H: D5-I	00)						_
L5	L4	L3	L2	L1	LO	Gain	
1	0	0	0	1	0	+6dB	
1	0	0	0	0	1	+4dB	
1	0	0	0	0	0	+2dB	
0	1	1	1	1	1	0dB	(default)
0	0	0	0	0	1	-60dB	
0	0	0	0	0	0	Mute	J

Note: The output must not exceed 3Vrms.

Table 7. Volume #1

When the MOD bit = "1"(default), changing levels don't have pop noise. MDT1-0 bits select the transition time (Table 8). When the new gain value 1EH(-2dB) is written to gain resistor while the actual (stable) gain is 1FH(0dB), the gain changes to 1EH(-2dB) within the transition time selected by MDT1-0 bits. The AK4708 compares the actual gain to the value of gain register after finishing the transition time, and re-changes the actual gain to new resister value within the transition time if the register value is different from the actual gain when compared. When the MOD bit = "0" then there is no transition time and the gain changes immediately. This change may cause a click noise.

MDT1	MDT0	Transition Time	
0	0	5.3ms	
0	1	10.7ms	
1	0	21.3ms	
1	1	42.7ms	(default)

Table 8. Volume Transition Time (typ.)

3. Video Block

Video Switch Control

The AK4708 has switches for TV and VCR. Each switch can be controlled via registers independently. When AUTO bit = "1" or STBY bit = "1", these switches setting is ignored and set to fixed configuration (loop-through mode). Please refer the auto startup mode and standby mode.

(04H: D2-D0)					
Mode	VTV2-0 bit	Source of TVVOUT pin	Source of TVRC pin	Source of TVG pin	Source of TVB pin
Shutdown	000	(Hi-Z)	(Hi-Z)	(Hi-Z)	(Hi-Z)
Encoder CVBS+RGB or Encoder YPbPr	001	ENCV pin (Encoder CVBS or Y)	ENCRC pin (Encoder Red,C or Pb)	ENCG pin (Encoder Green or Y)	ENCB pin (Encoder Blue or Pr)
Encoder Y/C 1	010	ENCV pin (Encoder Y)	ENCRC pin (Encoder C)	(Hi-Z)	(Hi-Z)
Encoder Y/C 2	011	ENCY pin (Encoder Y)	ENCC pin (Encoder C)	(Hi-Z)	(Hi-Z)
VCR (default)	100	VCRVIN pin (VCR CVBS or Y)	VCRRC pin (VCR Red,C or Pb)	VCRG pin (VCR Green or Y)	VCRB pin (VCR Blue or Pr)
TV CVBS	101	TVVIN pin (TV CVBS)	(Hi-Z)	(Hi-Z)	(Hi-Z)
(Reserved)	110	-	-	-	-
(Reserved)	111	-	-	-	-

Table 9. TV video output (Note 23)

(04H: D5-D3)					
Mode	VVCR2-0 bit	Source of VCRVOUT pin	Source of VCRC pin	Source of VCRGO pin	Source of VCRBO pin
Shutdown	000	(Hi-Z)	(Hi-Z)	(Hi-Z)	(Hi-Z)
Encoder CVBS or Y/C 1	001	ENCV pin (Encoder CVBS or Y)	ENCRC pin (Encoder C)	(Hi-Z)	(Hi-Z)
Encoder CVBS or Y/C 2	010	ENCY pin (Encoder CVBS or Y)	ENCC pin (Encoder C)	(Hi-Z)	(Hi-Z)
TV CVBS (default)	011	TVVIN pin (TV CVBS)	(Hi-Z)	(Hi-Z)	(Hi-Z)
VCR	100	VCRVIN pin (VCR CVBS)	VCRRC pin (VCR Red, C)	VCRG pin (VCR Green)	VCRB pin (VCR Blue)
Encoder CVBS /RGB	101	ENCV pin (Encoder CVBS or Y)	ENCRC pin (Encoder Red,C or Pb)	ENCG pin (Encoder Green or Y)	ENCB pin (Encoder Blue or Pr)
(Reserved)	110	-	-	-	-
(Reserved)	111	-	-	-	-

Table 10. VCR video output (Refer Note 23)

Note 23. When input the video signal via ENCRC pin or VCRRC pin, set CLAMP1-0 bits respectively.

■ Video Output Control (05H: D6-D0, 0CH:D2-D0)

Each video output can be set to Hi-Z individually via control registers. These settings are ignored when the AUTO bit = "1".

TVV:TVVOUT output controlTVR:TVRCOUT output controlTVG:TVGOUT output controlTVB:TVBOUT output controlVCRV:VCRVOUT output controlVCRG:VCRC output controlVCRB:VCRGO output controlVCRB:VCRBO output controlVCRFB:VCRFBO output controlVCRFB:VCRFBO output control0:Hi-Z. (default)1:Active.

■ RGB/Chroma Bi-directional Control for VCR SCART (05H: D7, D5)

The AK4708 supports the bi-directional RGB/Chroma signal on the VCR SCART.

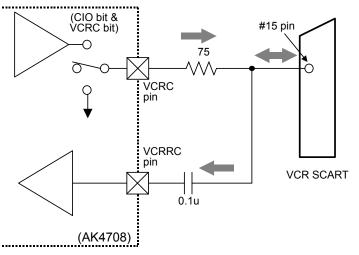
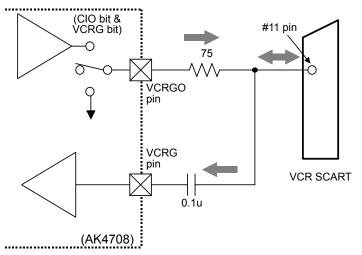



Figure 9. VCR Red/Chroma Bi-directional Control

CIO	VCRC	State of VCRC pin	
0	0	Hi-z	(default)
0	1	Active	
1	0	Connected to GND	
1	1	Connected to GND	

Table 11 VCR Red/Chroma Bi-directional Control

CIO	VCRG	State of VCRGO pin	
0	0	Hi-z	(default)
0	1	Active	
1	0	Connected to GND	
1	1	Connected to GND	

Table 12 VCR Green Bi-directional Control

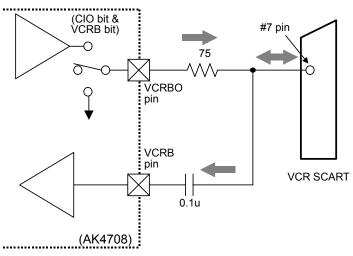


Figure 11. VCR Blue Bi-directional Control

	State of VCRC pin	VCRB	CIO
(default)	Hi-z	0	0
	Active	1	0
	Connected to GND	0	1
	Connected to GND	1	1

Table 13 VCR Blue Bi-directional Control

■ Clamp and DC-restore circuit control (06H: D7-D2)

Each CVBS and Y input has the sync tip clamp circuit. The DC-restore circuit has two clamp voltages 0.7V(typ) and 2.2V(typ) to support both RGB and YPbPr signal. They correspond to 0.35V(typ) and 1.1V(typ) at the SCART connector when matched by 75 Ω resistors. The CLAMP1, CLAMP0 and CLAMPB bits select the input circuit for ENCRC pin (Encoder Red/Chroma), ENCB pin (Encoder Blue), VCRRC pin (VCR Red/Chroma) and VCRB pin (VCR Blue) respectively. VCLP2-0 bits select the sync source of DC- restore circuit.

CLAMPB	CLAMP0	VCRRC Input Circuit	VCRB Input Circuit	note	
0 0		DC restore clamp active	DC restore clamp active	for RGB	
Ű		(0.7V at sync timing/output pin)	(0.7V at sync timing/output pin)		Į
0	1	Biased	(DC restore clamp active)	for Y/C	(default)
0 1	1 ((2.2V at sync timing/output pin)	(0.7V at sync timing output pin)	101 1/C	(default)
1	0	DC restore clamp active	DC restore clamp active	for Y/Pb/Pr	
1 0	(2.2V at sync timing/output pin)	(2.2V at sync timing/output pin)	10F 1/P0/P1		
1	1	(reserved)	(reserved)		

Table 14. DC-restore control for VCR Input

CLAMPB	CLAMP1	ENCRC Input Circuit	ENCB Input Circuit	note	
0	0	DC restore clamp active	DC restore clamp active	for RGB	(default)
0	0	0 (0.7V at sync timing/output pin)	(0.7V at sync timing/output pin)	101 KGD	(uerault)
0	1	Biased	DC restore clamp active	for Y/C	
0	0 1	(2.2V at sync timing/output pin)	(0.7V at sync timing output pin)	101 1/C	
1	0	DC restore clamp active	DC restore clamp active	for Y/Pb/Pr	
1 0	(2.2V at sync timing/output pin)	(2.2V at sync timing/output pin)	101 1/F0/F1		
1	1	(reserved)	(reserved)		

Table 15. DC-restore control for Encoder Input

CLAN	1P2	ENCG Input Circuit	note	
0		DC restore clamp active (0.7V at sync timing/output pin)	for RGB	(default)
1		Sync tip clamp active (0.7V at sync timing/output pin)	for Y/Pb/Pr	

Note: When the VTV2-0 bits = "001" (source for TV = Encoder CVBS /RGB), TVG bit = "1" (TVG = active) and VCLP1-0 bits = "11" (DC restore source = ENCG), the sync tip is selected even if the CLAMP2 bit = "0".

Table 16. DC-restore control for Encoder Green/Y Input

VCLP2-0: DC restore source control

	Sync Source of DC Restore	VCLP0	VCLP1	VCLP2
(default)	ENCV	0	0	0
-	ENCY	1	0	0
]	VCRVIN	0	1	0
	ENCG	1	1	0
1	VCRG	0	0	1
	(reserved)	1	0	1
	(reserved)	0	1	1
	(reserved)	1	1	1

Note: When the AUTO bit = "1", the source is fixed to VCRVIN. Table 17. DC-restore source control

4. Blanking Control

The AK4708 supports Fast Blanking signals and Slow Blanking (Function Switching) signals for TV/VCR SCART.

■ Input/Output Control for Fast/Slow Blanking

FB1-0: TV Fast Blanking output control (07H: D1-D0)

	TVFB pin Output Level	FB0 bit	FB1 bit
(default)	0V	0	0
	$2V$ <, $4V$ (typ) at 150Ω load	1	0
	Same as VCR FB input (4V/0V)	0	1
	(Reserved)	1	1
15000		THE DI	F 11 10

Table 18. TV Fast Blanking output (Note: minimum load is 150Ω)

SBT1-0: TV Slow Blanking output control (07H: D3-D2)

SBT1 bit	SBT0 bit	TVSB pin Output Level	
0	0	< 2V	(default)
0	1	5V <, < 7V	
1	0	(Reserved)	
1	1	10V <	

Table 19. TV Slow Blanking output (Note: minimum load is $10k\Omega$)

FBV: VCR Fast Blanking output control (0CH: D7)

ſ	FBV bit	VCRFBO pin Output Level	
	0	0V	(default)
I	1	$2V\leq$, $4V(typ)$ at 150Ω load	

Table 20. VCR Fast Blanking output (Note: minimum load is 150Ω)

SBV1-0: VCR Slow Blanking output control (07H: D5-D4)

SBV1 bit	SBV0 bit	VCRSB pin Output Level	
0	0	< 2V	(default)
0	1	5V <, < 7V	
1	0	(Reserved)	
1	1	10V <	

Table 21. VCR Slow Blanking output (Note: minimum load is $10k\Omega$)

SBIO1-0: TV/VCR Slow Blanking I/O control (07H: D7-D6)

SBIO1 bit	SBIO0 bit	VCRSB pin Direction	TVSB pin Direction	
0	0	Output	Output	(default)
0	0	(Controlled by SBV1-0 bits)	(Controlled by SBT1-0 bits)	
0	1	(Reserved)	(Reserved)	
1	0	Input	Output	
1	0	(Stored in SVCR1-0 bits)	(Controlled by SBT1-0 bits)	
1	1	Input	Output	
1	1	(Stored in SVCR1-0 bits)	(Same output as VCR SB)	

Table 22. TV/VCR Slow Blanking I/O control

AKM

■ VCR Fast Blanking for VCR SCART (0CH: D7, D2)

The AK4708 supports the bi-directional VCR Fast Blanking signal on the VCR SCART.

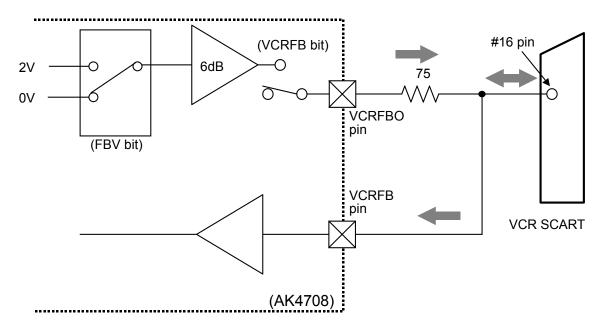


Figure 12. VCR Fast Blanking Bi-directional Control

FBV	VCRFB	State of VCRFBO pin	
0	0	Hi-Z	(default)
0	1	Active / 0V(typ)	
1	0	Hi-Z	
1	1	Active / $2V$ <, $4V(typ)$ at 150Ω load	

Table 23 VCR Fast Blanking Bi-directional Control

5. Monitor Options and INT function

■ Monitor Options (08H: D4-D0)

The AK4708 has several detection functions. SVCR1-0 bits, FVCR bit, VCMON bit and TVMON bit reflect the input DC level of VCR slow blanking, the input DC level of VCR fast blanking and signals input to TVVIN or VCRVIN pins.

SVCR1-0: VCR Slow blanking status monitor

SVCR1-0 bits reflect the voltage at VCRSB pin only when the VCRSB is in the input mode. When the VCRSB is in the output mode, SVCR1-0 bits hold previous value.

VCRSB pin input level	SVCR1 bit	SVCR0 bit
< 2V	0	0
4.5 to 7V	0	1
(Reserved)	1	0
9.5 <	1	1

Table 24. VCR Slow Blanking monitor

FVCR: VCR Fast blanking input level monitor

This bit is enabled when TVFB bit = "1".

VCRFB pin input level	FVCR bit
< 0.4V	0
1V <	1

Table 25. VCR Fast Blanking monitor (Typical threshold is 0.7V)

VCMON: VCRVIN pin video input monitor (MCOMN bit = "1"),

TVVIN pin or VCRVIN pin video input monitor (MCOMN bit = "0")

0: No video signal detected.

1: Detects video signal.


TVMON: TVVIN pin video input monitor (active when MCOMN bit = "1")

0: No video signal detected.

1: Detects video signal.

AUTO (00H D3)	MCOMN (09H D7)	TVVIN signal	VCRVIN signal	TVMON (08H D4)	VCMON (08H D3)
0	0	0	0	0	0
0	0	0	1	0	1
0	0	1	0	0	1
0	0	1	1	0	1
0	1	0	0	0	0
0	1	0	1	0	1
0	1	1	0	1	0
0	1	1	1	1	1
1	Х	0	0	0	0
1	X	0	1	0	1
1	Х	1	0	0	1
1	Х	1	1	0	1

x:don't care

■ INT Function and Mask Options (09H: D3-D1)

Changes of the 08H status can be monitored via the INT pin. The INT pin is the open drain output and goes "L" for 2μ s (typ.) when the status of 08H is changed. This pin should be connected to VD (typ. 5V) through $10k\Omega$ resistor or lower voltage through $10k\Omega$ resistor. MTV bit, MVC bit, MCOMN bit, MFVCR bit and MSVCR bit control the reflection of the status change of these monitors onto the INT pin from report to prevent to masks each monitor.

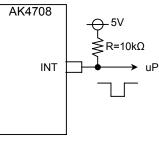


Figure 13. INT pin

MVC: VCMON Mask. Refer Table 28. MTV: TVMON Mask. Refer Table 27. MCOMN: Refer Table 26

AUTO (00H D3)	TVMON (08H D4)	MTV (09H D4)	INT
0	No Change	0	Hi-Z
0	No Change	1	Hi-Z
0	Change	0	Generates "L" Pulse
0	Change	1	Hi-Z
1	No Change	0	Hi-Z
1	No Change	1	Hi-Z

Note 25. When the STBY bit = "0", the TV Monitor Mask function is enabled.

Note 26. When AUTO bit = "1", TVMON does not change

Table 27. TV Monitor Mask

AUTO (00H D3)	VCMON (08H D3)	MVC (09H D3)	INT
0	No Change	0	Hi-Z
0	No Change	1	Hi-Z
0	Change	0	Generates "L" Pulse
0	Change	1	Hi-Z
1	No Change	0	Hi-Z
1	No Change	1	Hi-Z
1	Change	0	Generates "L" Pulse
1	Change	1	Generates "L" Pulse

Note 27. When the STBY bit = "0", the VCR Monitor Mask function is enabled.

Table 28. VCR Monitor Mask

MFVCR: FVCR Monitor mask.

0: Change of FVCR is reflected to INT pin. (default)

1: Change of FVCR is NOT reflected to INT pin.

MSVCR: SVCR1-0 Monitor mask

- 0: Change of SVCR1-0 is reflected to INT pin. (default)
- 1: Change of SVCR1-0 is NOT reflected to INT pin.

6. Control Interface

I²C-bus Control Mode

1. WRITE Operations

Figure 14 shows the data transfer sequence in I²C-bus mode. All commands are preceded by a START condition. A HIGH to LOW transition on the SDA line while SCL is HIGH indicates a START condition (Figure 20). After the START condition, a slave address is sent. This address is 7bits long followed by the eighth bit that is a data direction bit (R/W). The most significant seven bits of the slave address are fixed as "0010001". If the slave address match that of the AK4708, the AK4708 generates the acknowledge and the operation is executed. The master must generate the acknowledge-related clock pulse and release the SDA line (HIGH) during the acknowledge clock pulse (Figure 22). A "1" for R/W bit indicates that the read operation is to be executed. A "0" indicates that the write operation is to be executed. The second byte consists of the address for control registers of the AK4708. The format is MSB first, and those most significant 3-bits are fixed to zeros (Figure 16). The data after the second byte contain control data. The format is MSB first, 8bits (Figure 17). The AK4708 generates an acknowledge after each byte has been received. A data transfer is always terminated by a STOP condition generated by the master. A LOW to HIGH transition on the SDA line while SCL is HIGH defines a STOP condition (Figure 20).

The AK4708 can execute multiple one byte write operations in a sequence. After receipt of the third byte, the AK4708 generates an acknowledge, and awaits the next data again. The master can transmit more than one byte instead of terminating the write cycle after the first data byte is transferred. After the receipt of each data, the internal address counter is incremented by one, and the next data is taken into next address automatically. If the address exceeds 0DH prior to generating the stop condition, the address counter will "roll over" to 00H and the previous data will be overwritten. The data on the SDA line must be stable during the HIGH period of the clock. The HIGH or LOW state of the data line can only change when the clock signal on the SCL line is LOW (Figure 22) except for the START and the STOP condition.

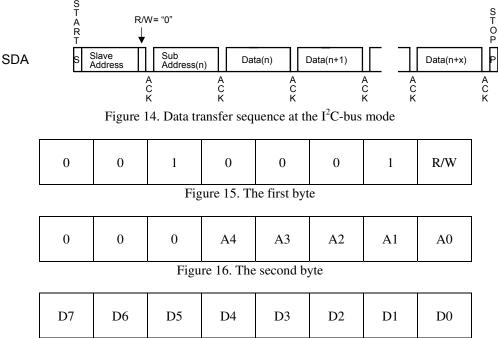
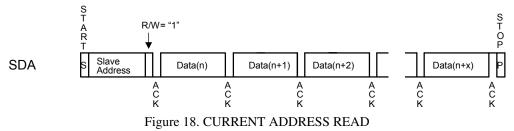
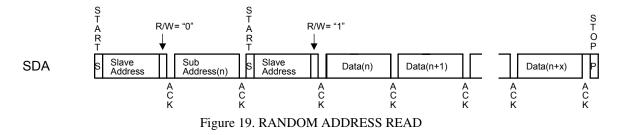


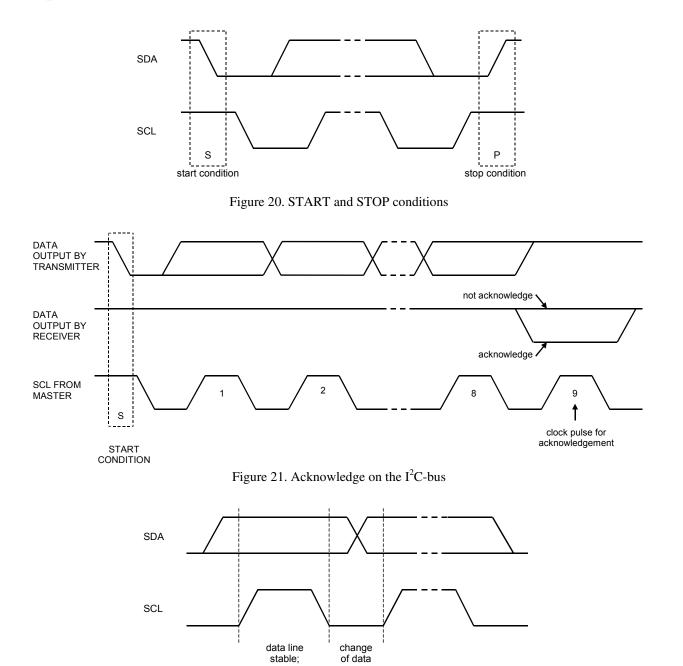
Figure 17. Byte structure after the second byte

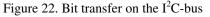

2. READ Operations

Set R/W bit = "1" for READ operations. After transmission of data, the master can read the next address's data by generating an acknowledge instead of terminating the write cycle after the receipt the first data word. After the receipt of each data, the internal address counter is incremented by one, and the next data is taken into next address automatically. If the address exceeds 09H prior to generating the stop condition, the address counter will "roll over" to 00H and the previous data will be overwritten.

The AK4708 supports two basic read operations: CURRENT ADDRESS READ and RANDOM READ.


2-1. CURRENT ADDRESS READ


The AK4708 contains an internal address counter that maintains the address of the last word accessed, incremented by one. Therefore, if the last access (either a read or write) was to address n, the next CURRENT READ operation would access data from the address n+1. After receipt of the slave address with R/W bit set to "1", the AK4708 generates an acknowledge, transmits 1byte data which address is set by the internal address counter and increments the internal address counter by 1. If the master does not generate an acknowledge to the data but generate the stop condition, the AK4708 discontinues transmission.


2-2. RANDOM READ

Random read operation allows the master to access any memory location at random. Prior to issuing the slave address with the R/W bit set to "1", the master must first perform a "dummy" write operation. The master issues a start condition, slave address (R/W bit = "0") and then the register address to read. After the register address is acknowledge, the master immediately reissues the start condition and the slave address with the R/W bit set to "1". Then the AK4708 generates an acknowledge, 1-byte data and increments the internal address counter by 1. If the master does not generate an acknowledge to the data but generate the stop condition, the AK4708 discontinues transmission.

stable; of data data valid allowed

Register Map

Addr	Register Name	D7	D6	D5	D4	D3	D2	D1	D0
00H	Control	0	0	0	0	AUTO	0	BIAS	STBY
01H	Switch	VMUTE	0	VCR1	VCR0	MONO	1	TV1	TV0
02H	Main Volume	0	0	L5	L4	L3	L2	L1	LO
03H	Zerocross	0	VMONO	1	0	0	MOD	MDT1	MDT0
04H	Video switch	0	0	VVCR2	VVCR1	VVCR0	VTV2	VTV1	VTV0
05H	Video output enable	CIO	TVFB	VCRC	VCRV	TVB	TVG	TVR	TVV
06H	Video volume/clamp	CLAMPB	VCLP1	VCLP0	CLAMP2	CLAMP1	CLAMP0	0	0
07H	S/F Blanking control	SBIO1	SBIO0	SBV1	SBV0	SBT1	SBT0	FB1	FB0
08H	S/F Blanking monitor	0	0	FVCR1	TVMON	VCMON	FVCR0	SVCR1	SVCR0
09H	Monitor mask	MCOMN	0	0	MTV	MVC	MFVCR	MSVCR	0
0AH	DC restore	0	0	0	0	VCLP2	0	1	1
0BH	Reserve	0	0	0	0	0	0	0	0
0CH	VCR output	FVB	0	0	0	0	VCRFB	VCRB	VCRG
0DH	Volume	0	0	VOL2	VOL1	VOL0	1	1	1

When the PDN pin goes "L", the registers are initialized to their default values.

While the PDN pin = "H", all registers can be accessed.

Do not write any data to the register over 0DH.

Register Definitions

Addr	Register Name	D7	:	D6		D5	:	D4	:	D3	:	D2	:	D1	:	D0
00H	Control	0	:	0	:	0	:	0	:	AUTO	:	0	:	BIAS	:	STBY
	R/W	R/W														
	Default	0		0		0		0		1	-	0		1		1

STBY: Standby control

- 0: Normal Operation
- 1: Standby Mode (default). All registers are not initialized. AMP: Powered down and timings are reset. Source of TVOUT: fixed to VCRIN. Source of VCROUT: fixed to TVIN. Source of MONOOUT: fixed to VCRIN. Source of TVVOUT: fixed to VCRVIN (or Hi-Z). Source of TVRC: fixed to VCRRC (or Hi-Z). Source of TVG: fixed to VCRG (or Hi-Z). Source of TVB: fixed to VCRB (or Hi-Z). Source of VCRVOUT: fixed to TVVIN (or Hi-Z). Source of VCRCC: fixed to Hi-Z. Source of VCRGO: fixed to Hi-Z. Source of VCRBO: fixed to Hi-Z.

BIAS: Audio output control

- 0: Normal operation
- 1: ALL Audio outputs to GND (default)

AUTO: Auto startup bit

- 0: Auto startup disable (Manual startup).
- 1: Auto startup enable (default). Note: When the SBIO1 bit = "1"(default = "0"), the change of AUTO bit may cause a "L" pulse on INT pin.

Addr	Register Name	D7	:	D6		D5	:	D4	1	D3		D2	:	D1	:	D0
01H	Switch	VMUTE	-	0		VCR1	:	VCR0	:	MONO	:	1	:	TV1	:	TV0
	R/W							R	2/14	V						
	Default	1	-	0	-	0		1	-	0	-	1		0		1

TV1-0: TVOUTL/R pins source switch 00: AMP 01: VCRINL/R pins (default) 10: MUTE 11: Reserved

MONO: Mono select for TVOUTL/R pins

0: Stereo. (default)

1: Mono. (L+R)/2

VCR1-0: VCROUTL/R pins source switch

00: AMP

01: TVINL/R pins (default)

10: MUTE

11: Volume#1 output

VMUTE: Mute switch for volume #1

0: Normal operation

1: Mute the volume #1 (default)

Addr	Register Name	D7	D6	D5	D4	D3	D2	D1	D0
02H	Main volume	0	0	L5	L4	L3	L2	L1	LO
	R/W	W							
	Default	0	0	0	1	1	1	1	1

L5-0: Volume #1 control

Those registers control both Lch and Rch of Volume #1.

111111 to

100011: (Reserved) 100010: Volume gain = +6dB 100001: Volume gain = +4dB 100000: Volume gain = +2dB 011111: Volume gain = +0dB (default) 011110: Volume gain = -2dB ... 000011: Volume gain = -56dB 000001: Volume gain = -58dB 000001: Volume gain = -60dB 000000: Volume gain = Mute

Addr	Register Name	D7	:	D6	:	D5		D4	:	D3	:	D2	:	D1	D0
03H	Volume Control	0	:	VMONO	:	1	:	0	:	0	:	MOD	:	MDT1	MDT
	R/W								R/W						
	Default	0	-	0		1		0		0		1		1	1

MDT1-0: The time length control of volume transition time

00: typ. 5.3 ms 01: typ. 10.7 ms 10: typ. 21.3 ms

11: typ. 42.7 ms (default)

MOD: Soft transition enable for volume #1 control

0: Disable

The volume value changes immediately without soft transition.

1: Enable (default)

The volume value changes with soft transition.

This function is disabled when STBY bit = "1".

VMONO: Mono select for VCROUTL/R pins

0: Stereo. (default)

1: Mono. (L+R)/2

Addr	Register Name	D7	:	D6	:	D5		D4	:	D3	:	D2	-	D1	:	D0
04H	Video switch	0	:	0	:	VVCR2	2:	VVCR1	:	VVCR0	:	VTV2	:	VTV1	:	VTV0
	R/W							R	2/W	V						
	Default	0	-	0		0		1		1		1	-	0	-	0

VTV2-0: Selector for TV video output Refer Table 9.

VVCR2-0: Selector for VCR video output Refer Table 10.

Addr	Register Name	D7	D6	D5	D4	D3	D2	D1	D0
05H	Output Enable	CIO	TVFB	VCRC	VCRV	TVB	TVG	TVR	TVV
	R/W				R/V	V			
	Default	0	0	0	0	0	0	0	0

TVV: TVVOUT output control TVR: TVRCOUT output control TVG: TVGOUT output control TVB: TVBOUT output control VCRV: VCRVOUT output control VCRC: VCRC output control TVFB: TVFB output control 0: Hi-Z (default) 1: Active.

1. Active.

CIO: VCR RGB I/O control for VCR SCART Refer Table 11, Table 12 and Table 13.

Addr	Register Name	D7	D6	D5	D4	D3	D2	D1	D0
06H	Video volume	CLAMPB	VCLP1	VCLP0	CLAMP2	CLAMP1	CLAMP0	0	0
	R/W				R/V	N			
	Default	0	0	0	0	0	1	0	0

CLAMPB, CLAMP2-0: Clamp control.

Refer Table 14, Table 15 and Table 16.

VCLP1-0: DC restore source control

- 00: ENCV pin (default)
 - 01: ENCY pin

10: VCRVIN pin

11: (Reserved) When the AUTO bit = "1", the source is fixed to VCRVIN pin.

Addr	Register Name	D7	D6	D5	D4	D3	D2	D1	D0
07H	S/F Blanking	SBI01	SBIO0	SBV1	SBV0	SBT1	SBT0	FB1	FB0
	R/W				R/\	W			
	Default	0	0	0	0	0	0	0	0

FB1-0: TV Fast Blanking output control (for TVFB pin)

00: 0V (default)

01: 2V<, 4V(typ) at 150 Ω load

10: follow VCR FB input (4V/0V)

11: (Reserved)

SBT1-0: TV Slow Blanking output control (for TVSB pin. minimum load is 10kΩ.)

00: < 2V (default) 01: 5V <, < 7V

10: (Reserved)

11: 10V <

SBV1-0: VCR Slow Blanking output control (for VCRSB pin. minimum load is 10kΩ.)

00: < 2V (default) 01: 5V <, < 7V 10: (Reserved) 11: 10V <

SBIO1-0: TV/VCR Slow Blanking I/O control Refer Table 22.

Addr	Register Name	D7	D6	D5	D4	D3	D2	D1	D0
08H	Monitor	0	0	FVCR1	TVMON	VCMON	FVCR0	SVCR1	SVCR0
	R/W				R	EAD			
	Default	0	0	0	0	0	0	0	0

SVCR1-0, FVCR1-0: VCR fast blanking/slow blanking monitor Refer Table 24, Table 25.

VCMON, TVMON: VCR/TV video input monitor Refer Table 26.

Addr	Register Name	D7	:	D6	-	D5	1	D4	:	D3		D2	:	D1	÷	D0
09H	Monitor mask	MCOMN	1	0	1	0	:	MTV	:	MVC	1	MFVCR	:	MSVCR	:	0
	R/W									R/W						
	Default	0	-	0		0	ł	0	;	1	÷	0	-	0	-	0

MSVCR: SVCR1-0 bits Monitor mask

0: The INT pin reflects the change of SVCR1-0 bit. (default)

1: The INT pin does not reflect the change of SVCR1-0 bits.

MFVCR: FVCR Monitor mask

0: The INT pin reflects the change of MFVCR bit. (default)

1: The INT pin does not reflect the change of MFVCR bit.

MVC: VCR input monitor mask Refer Table 28.

MTV: TV input monitor mask Refer Table 27.

MCOMN: Monitor mask option Refer Table 26.

Addr	Register Name	D7		D6		D5	-	D4		D3		D2		D1	-	D0
0AH	DC restore	0		0		0		0		VCLP2	-	0	-	1		1
	R/W							R/W								
	Default	0		0		0		0		0		0		1		1

VCLP2: DC restore source control Refer Table 17

Addr	Register Name	D7	Ē	D6	:	D5	D4	÷	D3	:	D2	:	D1	:	D0
0CH	VCR output	FBV	-	0		0	0	:	0		VCRFB	:	VCRB	:	VCRG
	R/W								R/W						
	Default	0		0		0	0	-	0		0	!	0	-	0

VCRG: VCRGO output control VCRB: VCRBO output control VCRFB: VCRFBO output control 0: Hi-Z (default)

1: Active.

FBV: VCR Fast Blanking output control (for VCRFBO pin) 0: 0V (default)

0: 2V<, 4V(typ) at 150 Ω load

Addr	Register Name	D7	 D6	:	D5	-	D4	D3	 D2	D1	-	D0
0DH	Main volume	0	0		VOL2		VOL1	VOL0	 1	 1		1
	R/W						R/	W				
	Default	0	0		0		1	1	1	 1		1

VOL2-0: Volume #0 control

Those registers control both Lch and Rch of Volume #0.

111: Volume gain = +12dB

110: Volume gain = +9dB

101: Volume gain = +6dB

100: Volume gain = +3dB

011: Volume gain = +0dB (default)

010: Volume gain = -3dB

001: Volume gain = -6dB

000: MUTE

SYSTEM DESIGN

Figure 23 shows the system connection diagram example. The evaluation board AKD4708 demonstrates application circuits, the optimum layout, power supply arrangements and measurement results.

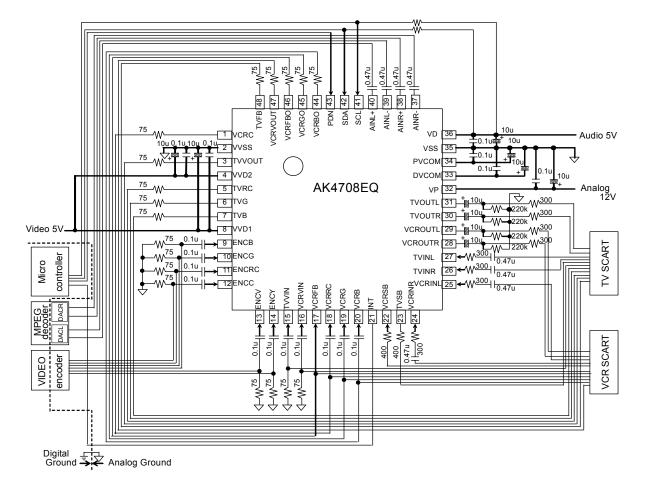
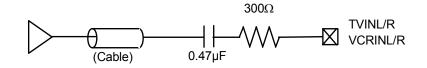


Figure 23. Typical Connection Diagram

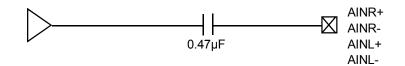
■ Grounding and Power Supply Decoupling

VD, VP, VVD1, VVD2, VSS and VVSS should be supplied from analog supply unit with low impedance and be separated from system digital supply. An electrolytic capacitor 10μ F parallel with a 0.1μ F ceramic capacitor should be attached to these pins to eliminate the effects of high frequency noise. The 0.1μ F ceramic capacitor should be placed as near to VD (VP, VVD1, VVD2) as possible.

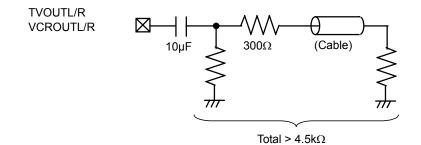
■ Voltage Reference

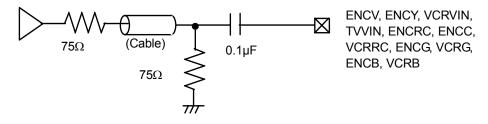

Each DVCOM/PVCOM are common voltage of this chip. An electrolytic capacitor 10μ F parallel with a 0.1μ F ceramic capacitor should be attached to these VCOM pins to eliminate the effects of high frequency noise. No load current should be drawn from these VCOM pins. All signals, especially clocks, should be kept away from these VCOM pins in order to avoid unwanted coupling into the AK4708.

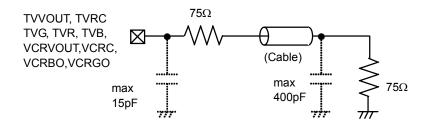
■ Analog Audio Outputs

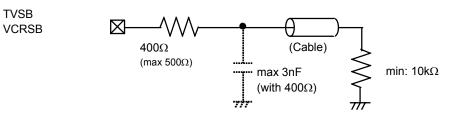

The analog outputs are also single-ended and centered on 5.6V(typ.). The output signal range is typically 2Vrms .

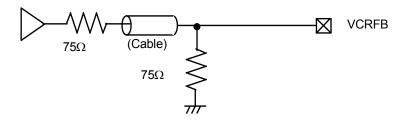
External Circuit Example

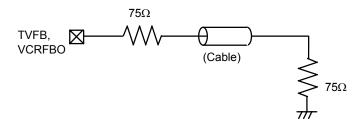

Analog Audio Input pin


Analog Audio Input pin

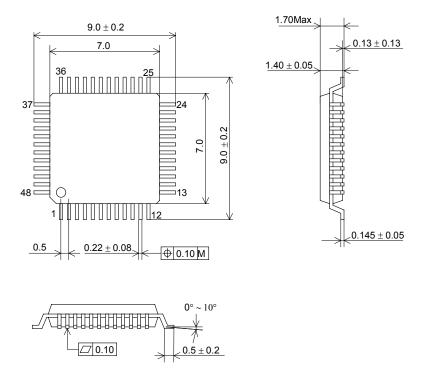

Analog Audio Output pin


Analog Video Input pin


Analog Video Output pin

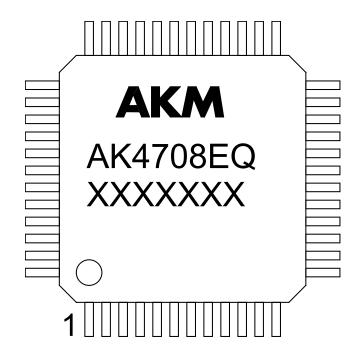

Slow Blanking pin

Fast Blanking Input pin



Fast Blanking Output pin

PACKAGE


48pin LQFP(Unit:mm)

Package & Lead frame material

Package molding compound:EpoxyLead frame material:CuLead frame surface treatment:Solder (Pb free) plate

MARKING

XXXXXXXX: Date code identifier

REVISION HISTORY											
Date (YY/MM/DD)	Revision	Reason	Page	Contents							

07/04/25

00

First Edition

IMPORTANT NOTICE

- These products and their specifications are subject to change without notice. When you consider any use or application of these products, please make inquiries the sales office of Asahi Kasei EMD Corporation (AKEMD) or authorized distributors as to current status of the products.
- AKEMD assumes no liability for infringement of any patent, intellectual property, or other rights in the application or use of any information contained herein.
- Any export of these products, or devices or systems containing them, may require an export license or other official approval under the law and regulations of the country of export pertaining to customs and tariffs, currency exchange, or strategic materials.
- AKEMD products are neither intended nor authorized for use as critical components_{Note1} in any safety, life support, or other hazard related device or system_{Note2}, and AKEMD assumes no responsibility for such use, except for the use approved with the express written consent by Representative Director of AKEMD. As used here:

Note1) A critical component is one whose failure to function or perform may reasonably be expected to result, whether directly or indirectly, in the loss of the safety or effectiveness of the device or system containing it, and which must therefore meet very high standards of performance and reliability.

Note2) A hazard related device or system is one designed or intended for life support or maintenance of safety or for applications in medicine, aerospace, nuclear energy, or other fields, in which its failure to function or perform may reasonably be expected to result in loss of life or in significant injury or damage to person or property.

• It is the responsibility of the buyer or distributor of AKEMD products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the above content and conditions, and the buyer or distributor agrees to assume any and all responsibility and liability for and hold AKEMD harmless from any and all claims arising from the use of said product in the absence of such notification.