

6 W, RF Power GaN HEMT, Plastic

Description

Wolfspeed's CGH40006S is an unmatched, gallium nitride (GaN) high electron mobility transistor (HEMT). The CGH40006S, operating from a 28 volt rail, offers a general purpose, broadband solution to a variety of RF and microwave applications. GaN HEMTs offer high efficiency, high gain and wide bandwidth capabilities making the CGH40006S ideal for linear and compressed amplifier circuits. The transistor is available in a 3mm x 3mm, surface mount, quad-flat-no-lead (QFN) package.

Package Type: 440203 PN: CGH40006S

Features

- Up to 6 GHz Operation
- 13 dB Small Signal Gain at 2.0 GHz
- 11 dB Small Signal Gain at 6.0 GHz
- 8 W typical at P_{IN} = 32 dBm
- 65% Efficiency at P_{IN} = 32 dBm
- 28 V Operation
- 3mm x 3mm Package

Applications

- 2-Way Private Radio
- Broadband Amplifiers
- Cellular Infrastructure
- Test Instrumentation
- Class A, AB, Linear amplifiers suitable for OFDM, W-CDMA, EDGE, CDMA waveforms

Large Signal Models Available for ADS and MWO

Absolute Maximum Ratings (not simultaneous) at 25°C Case Temperature

Parameter	Symbol	Rating	Units	Conditions
Drain-Source Voltage	V _{DSS}	120	M	25°C
Gate-to-Source Voltage	V _{GS}	-10, +2	V	25°C
Storage Temperature	T _{STG}	-65, +150	°C.	
Operating Junction Temperature	TJ	175	C	
Maximum Forward Gate Current	I _{GMAX}	2.1	mA	25°C
Maximum Drain Current ¹	I _{DMAX}	0.75	Α	25 C
Soldering Temperature ²	Ts	260	°C	
Thermal Resistance, Junction to Case ^{3,4}	R _{θJC}	10.1	°C/W	
Case Operating Temperature ^{3,4}	Tc	-40, +150	°C	85°C

Notes:

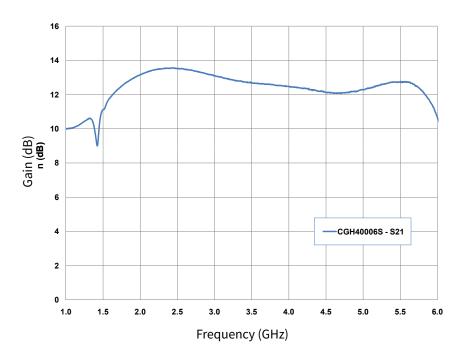
Electrical Characteristics (T_c = 25°C)

Characteristics	Symbol	Min.	Тур.	Max.	Units	Conditions
DC Characteristics ¹						
Gate Threshold Voltage	$V_{GS(th)}$	-3.8	-3.0	-2.3	V	$V_{DS} = 10 \text{ V}, I_{D} = 132.8 \text{ mA}$
Gate Quiescent Voltage	$V_{GS(Q)}$	_	-2.7	_	V _{DC}	$V_{DS} = 50 \text{ V}, I_D = 800 \text{ mA}$
Saturated Drain Current	I _{DS}	1.5	2.1	_	Α	$V_{DS} = 6.0 \text{ V}, V_{GS} = 2.0 \text{ V}$
Drain-Source Breakdown Voltage	V_{BR}	84	_	_	V _{DC}	$V_{GS} = -8 \text{ V}, I_D = 132.8 \text{ mA}$
RF Characteristics ² ($T_c = 25$ °C, $F_0 = 5$	5.8 GHz unl	ess othe	rwise no	ted)		
Small Signal Gain	Gss	10	11.8	_	dB	V = 20 V L = 100 mA
Power Output at P _{IN} = 30 dBm	Роит	5	6.9	_	W	$V_{DD} = 28 \text{ V}, I_{DQ} = 100 \text{ mA}$
Drain Efficiency ³	η	40	53	_	%	$V_{DD} = 28 \text{ V}, I_{DQ} = 200 \text{ mA}, P_{IN} = 30 \text{ dBm}$
Output Mismatch Stress	VSWR	_	_	10:1	Ψ	No damage at all phase angles, $V_{DD} = 28 \text{ V}$, $I_{DQ} = 200 \text{ mA}$, $P_{IN} = 32 \text{ dBm}$
Dynamic Characteristics						
Input Capacitance	C _{GS}	_	2.7	_		
Output Capacitance	C _{DS}	_	0.8	_	pF	$V_{DS} = 50 \text{ V}, V_{GS} = -8 \text{ V}, f = 1 \text{ MHz}$
Feedback Capacitance	$C_{\sf GD}$	_	0.1	_		

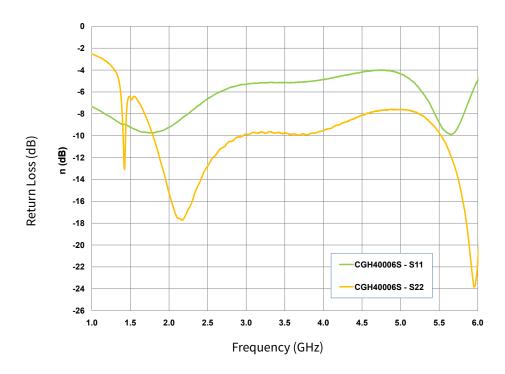
Notes:

¹ Current limit for long term, reliable operation

² Refer to the Application Note on soldering at wolfspeed.com/rf/document-library


 $^{^{3}}$ Measured for the CGH40006S at P_{DISS} = 8 W.

⁴T_C = Wolfspeed temperature for the device. It refers to the temperature at the ground tab underneath the package. The PCB will add additional thermal resistance. The RTH for Wolfspeed's demonstration amplifier, CGH40006S-AMP1, with 13 (Ø20 mil) via holes designed on a 20 mil thick Rogers 5880 PCB, is 5.1°C. The total Rth from the heat sink to the junction is 10.1°C +5.1°C = 15.2°C/W.


¹ Measured on wafer prior to packaging.

² Measured in Wolfspeed's narrow band production test fixture AD-000291. This fixture is designed for high volume test at 5.8 GHz and may not show the full capability of the device due to source inductance and thermal performance. The demonstration amplifier, CGH40006S-AMP1, is a better indicator of the true RF performance of the device.

³ Drain Efficiency = P_{OUT} / P_{DC}

Figure 1. Small Signal Gain vs Frequency at 28 V of the CGH40006S in the CGH40006S-AMP1

Figure 2. Input & Output Return Losses vs Frequency at 28 V of the CGH40006S in the CGH40006S-AMP1

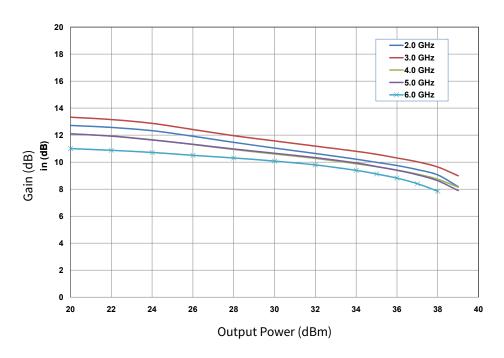


Figure 3. Power Gain vs Output Power as a Function of Frequency of the CGH40006S in the CGH40006S-AMP1 $V_{DD}=28\ V,\ I_{DO}=100\ mA$

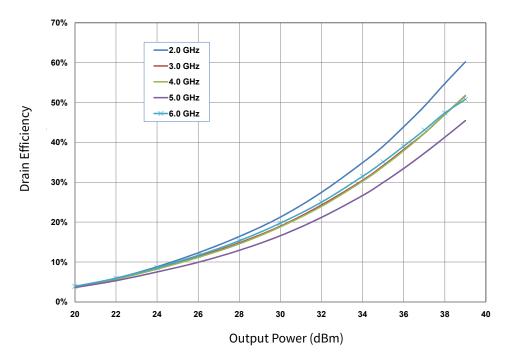


Figure 4. Drain Efficiency vs Output Power as a Function of Frequency of the CGH40006S in the CGH40006S-AMP1 $V_{DD} = 28 \text{ V}, I_{DO} = 100 \text{ mA}$

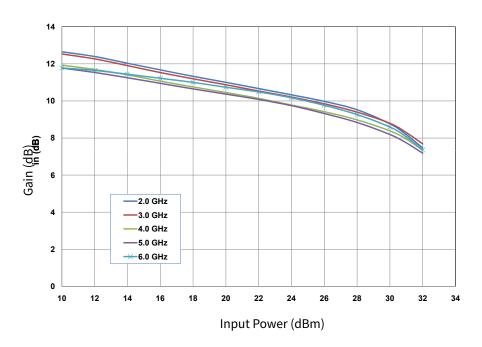
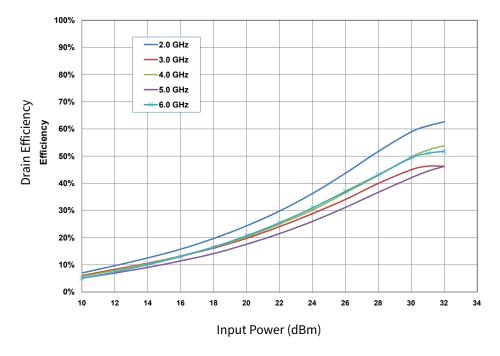
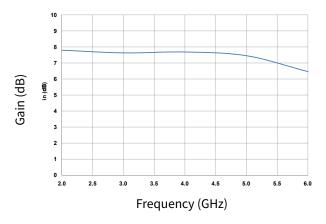
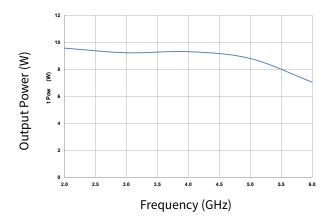


Figure 5. Power Gain vs Input Power as a Function of Frequency of the CGH40006S in the CGH40006S-AMP1 $V_{DD} = 28 \text{ V}, I_{DQ} = 100 \text{ mA}$

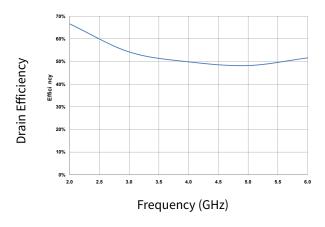

Figure 6. Drain Efficiency vs Input Power as a Function of Frequency of the CGH40006S in the CGH40006S-AMP1 $V_{DD} = 28 \text{ V}, I_{DQ} = 100 \text{ mA}$

Figure 7. Power Gain vs Frequency of the CGH40006S in the CGH40006S-AMP1 at $P_{IN} = 32$ dBm, $V_{DD} = 28$ V

Figure 8. Output Power vs Frequency of the CGH40006S in the CGH40006S-AMP1 at $P_{IN} = 32 \text{ dBm}$, $V_{DD} = 28 \text{ V}$

Figure 9. Drain Efficiency vs Frequency of the CGH40006S in the CGH40006S-AMP1 at $P_{IN} = 32$ dBm, $V_{DD} = 28$ V

Typical Noise Performance

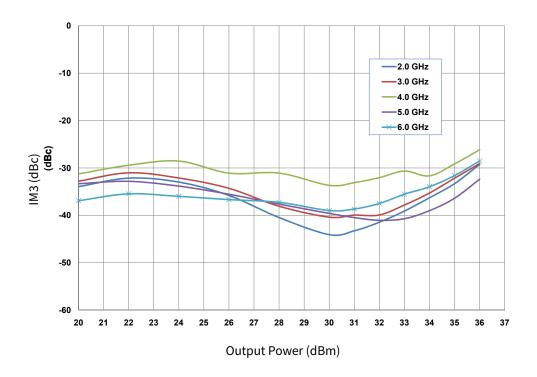


Figure 10. Third Order Intermodulation Distortion vs Average Output Poweras a Function of Frequency of the CGH40006S in the CGH40006S-AMP1 $V_{DD} = 28 \text{ V}, I_{DQ} = 60 \text{ mA}$

Electrostatic Discharge (ESD) Classifications

Parameter	Symbol	Class	Classification Level	Test Methodology
Human Body Model	НВМ	TBD	ANSI/ESDA/JEDEC JS-001 Table 3	JEDEC JESD22 A114-D
Charge Device Model	CDM	TBD	ANSI/ESDA/JEDEC JS-001 Table 3	JEDEC JESD22 C101-C

Moisture Sensitivity Level (MSL) Classification

Parameter	Symbol	Level	Test Methodology
Moisture Sensitivity Level	MSL	3 (168 hours)	IPC/JEDEC J-STD-20

Typical Performance

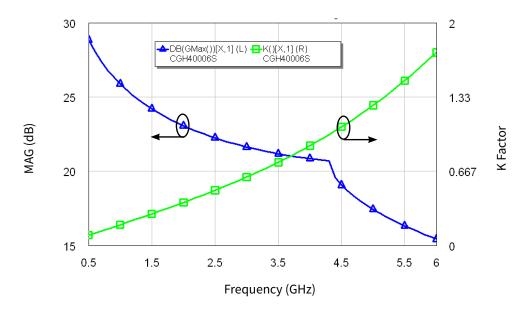


Figure 11. Simulated Maximum Available Gain and K Factor of the CGH40006S $V_{DD} = 28 \text{ V}$, $I_{DO} = 100 \text{ mA}$

Note: On a 20 mil thick PCB

Typical Noise Performance

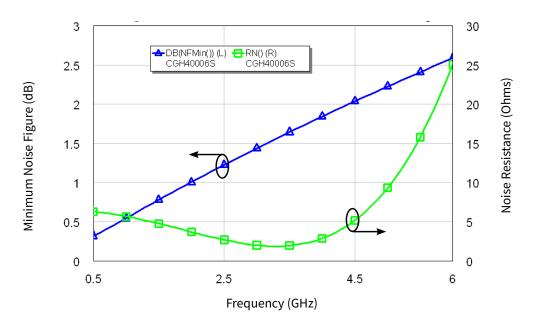
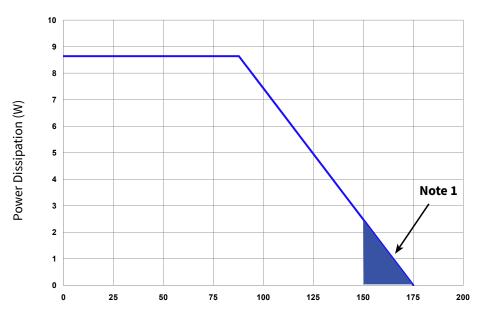
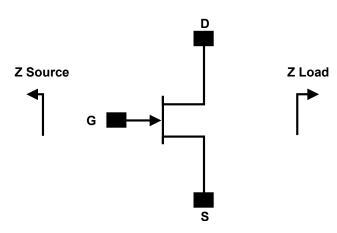



Figure 12. Simulated Minimum Noise Figure and Noise Resistance vs Frequency of the CGH40006S $V_{DD} = 28 \text{ V}, I_{DQ} = 100 \text{ mA}$

CGH40006S CW Power Dissipation De-rating Curve



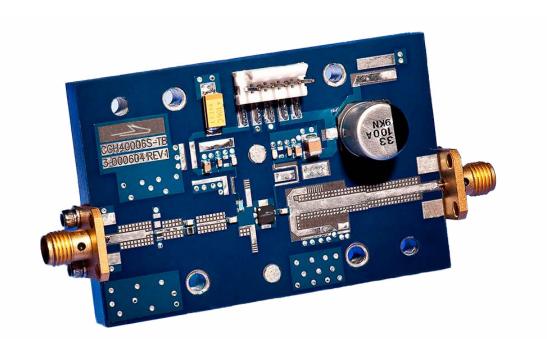
Maximum Case Temperature (°C)

Note:

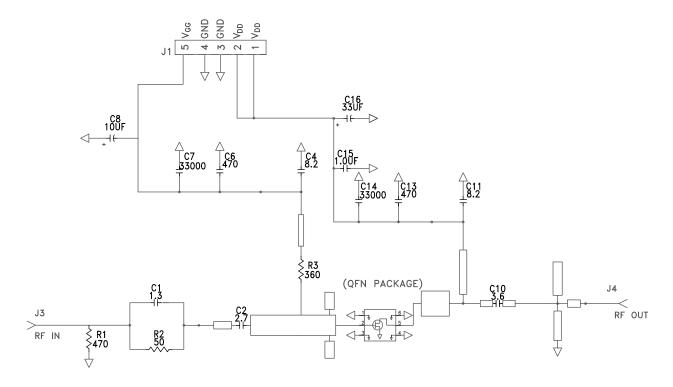
 $^{\mbox{\tiny 1}}\mbox{Area}$ exceeds Maximum Case Operating Temperature (See Page 2).

Source and Load Impedances

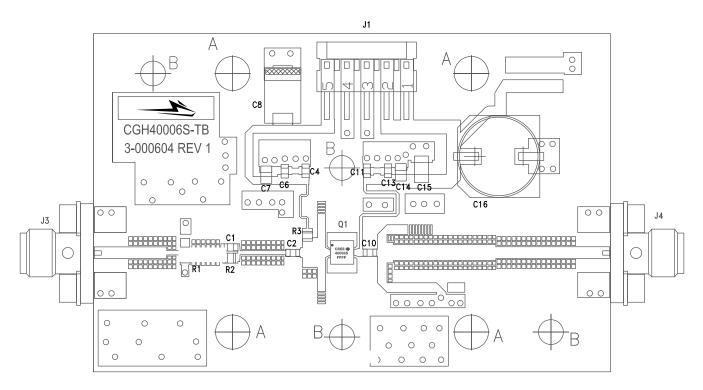
Frequency	Z Source	Z Lead
1000	12.7 + j20.2	62.3 + j42
2000	5.98 + j6.81	32.7 + j32.9
3000	3.32 - j2.89	19.2 + j29.8
4000	2.38 - j9.45	15.2 + j15.7
5000	2.62 - j15.6	9.98 + j9.6
6000	1.94 - j21.35	8.51 + j2.07


Notes:

- $^{\rm 1}\,\mbox{V}_{\mbox{\scriptsize DD}}$ = 28 V, $\mbox{I}_{\mbox{\scriptsize DQ}}$ = 100 mA in the 440203 package.
- ² Optimized for power gain, P_{SAT} and PAE
- ³ When using this device at low frequency, series resistors should be used to maintain amplifier stability.
- ⁴ 35 pH source inductance is assumed between the package and RF ground (20 mil thick PCB).

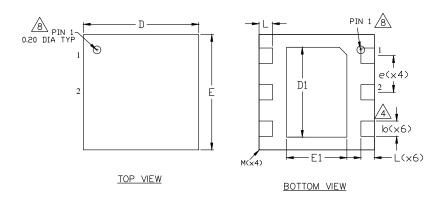

CGH40006S-AMP1 Demonstration Amplifier Circuit Bill of Materials

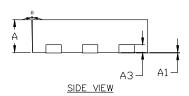
Designator	Description	Qty
R1	RES, AIN, 0505, 470 Ohms (≤5% tolerance)	1
R2	RES, AIN, 0505, 50 Ohms (≤5% tolerance)	1
R3	RES, AIN, 0505, 360 Ohms (≤5% tolerance)	1
C1	CAP, 1.3pF +/-0.1pF, 0603, ATC 600S	1
C2	CAP, 2.7pF +/-0.25pF, 0603, ATC 600S	1
C10	CAP, 3.6pF +/-0.1pF, 0603, ATC 600S	1
C4,C11	CAP, 8.2pF +/-0.25, 0603, ATC 600S	2
C6,C13	CAP, 470pF +/-5%, 0603, 100 V	2
C7,C14	CAP, 33000pF, CER, 100V, X7R, 0805	2
C8	CAP, 10µf, 16V, SMT, TANTALUM	1
C15	CAP, 1.0μF +/-10%, CER, 100V, X7R, 1210	1
C16	CAP, 33μF, 100V, ELECT, FK, SMD	1
J3,J4	CONN, SMA, STR, PANEL, JACK, RECP	2
J1	HEADER RT>PLZ .1CEN LK 5POS	1
-	PCB, RO5880, 0.020" THK	1
Q1	CGH40006S	1


CGH40006S-AMP1 Demonstration Amplifier Circuit

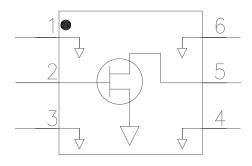
CGH40006S-AMP1 Demonstration Amplifier Circuit Schematic

CGH40006S-AMP1 Demonstration Amplifier Circuit Outline


Typical Package S-Parameters for CGH40006S, (Small Signal, V_{DS} = 28 V, I_{DQ} = 100 mA, angle in degrees)


Frequency	Mag S11	Ang S11	Mag S21	Ang S21	Mag S12	Ang S12	Mag S22	Ang S22
500 MHz	0.933	-92.95	18.74	125.47	0.024	38.02	0.459	-48.87
600 MHz	0.922	-104.26	16.89	118.64	0.026	31.70	0.428	-54.78
700 MHz	0.912	-113.77	15.28	112.75	0.028	26.33	0.402	-59.82
800 MHz	0.905	-121.83	13.90	107.61	0.029	21.71	0.381	-64.21
900 MHz	0.899	-128.73	12.70	103.06	0.030	17.68	0.365	-68.10
1.0 GHz	0.894	-134.72	11.67	98.96	0.030	14.11	0.352	-71.62
1.1 GHz	0.891	-139.97	10.77	95.23	0.030	10.91	0.342	-74.86
1.2 GHz	0.888	-144.62	9.99	91.80	0.031	8.00	0.334	-77.87
1.3 GHz	0.886	-148.78	9.31	88.61	0.031	5.34	0.328	-80.72
1.4 GHz	0.884	-152.55	8.71	85.61	0.031	2.88	0.325	-83.43
1.5 GHz	0.883	-155.97	8.17	82.77	0.031	0.58	0.322	-86.03
1.6 GHz	0.881	-159.12	7.69	80.07	0.031	-1.57	0.321	-88.54
1.7 GHz	0.881	-162.04	7.26	77.49	0.031	-3.60	0.321	-90.98
1.8 GHz	0.880	-164.75	6.88	75.00	0.031	-5.53	0.321	-93.35
1.9 GHz	0.879	-167.29	6.53	72.60	0.031	-7.38	0.323	-95.67
2.0 GHz	0.879	-169.68	6.21	70.26	0.031	-9.14	0.325	-97.94
2.1 GHz	0.879	-171.94	5.92	68.00	0.030	-10.83	0.327	-100.17
2.2 GHz	0.879	-174.09	5.65	65.79	0.030	-12.46	0.330	-102.36
2.3 GHz	0.879	-176.14	5.40	63.62	0.030	-14.03	0.334	-104.51
2.4 GHz	0.879	-178.10	5.18	61.51	0.030	-15.55	0.338	-106.63
2.5 GHz	0.879	-179.98	4.97	59.43	0.030	-17.02	0.342	-108.71
2.6 GHz	0.879	178.20	4.77	57.38	0.029	-18.44	0.346	-110.77
2.7 GHz	0.879	176.44	4.59	55.37	0.029	-19.83	0.351	-112.81
2.8 GHz	0.879	174.74	4.42	53.39	0.029	-21.18	0.355	-114.82
2.9 GHz	0.879	173.09	4.26	51.43	0.029	-22.48	0.360	-116.80
3.0 GHz	0.880	171.49	4.11	49.50	0.028	-23.76	0.366	-118.76
3.2 GHz	0.880	168.39	3.84	45.70	0.028	-26.20	0.376	-122.63
3.4 GHz	0.881	165.43	3.60	41.97	0.027	-28.51	0.387	-126.41
3.6 GHz	0.882	162.57	3.38	38.31	0.026	-30.70	0.399	-130.13
3.8 GHz	0.883	159.81	3.19	34.71	0.025	-32.75	0.410	-133.78
4.0 GHz	0.884	157.13	3.01	31.16	0.025	-34.68	0.422	-137.38
4.2 GHz	0.885	154.52	2.85	27.65	0.024	-36.47	0.433	-140.91
4.4 GHz	0.887	151.96	2.71	24.19	0.023	-38.12	0.445	-144.40
4.6 GHz	0.888	149.45	2.57	20.77	0.022	-39.63	0.457	-147.84
4.8 GHz	0.889	146.98	2.45	17.38	0.022	-40.97	0.468	-151.24
5.0 GHz	0.890	144.55	2.33	14.03	0.021	-42.15	0.480	-154.60
5.2 GHz	0.892	142.15	2.23	10.71	0.020	-43.15	0.491	-157.92
5.4 GHz	0.893	139.78	2.13	7.41	0.019	-43.95	0.503	-161.20
5.6 GHz	0.894	137.43	2.04	4.15	0.018	-44.53	0.514	-164.45
5.8 GHz	0.896	135.11	1.95	0.91	0.018	-44.89	0.525	-167.66
6.0 GHz	0.897	132.80	1.87	-2.30	0.017	-45.00	0.535	-170.85

To download the s-parameters in s2p format, go to the CGH40006S Product Page and click on the documentation tab. Note: On a 20 mil thick PCB.


Product Dimensions CGH40006S (Package Type — 440203)

DD.	MILLIMETERS				INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX	
Α	0.80	0.90	1.00	0.032	0.035	0.039	
A1	0	0.02	0.05	0	0.0008	0.002	
A3		0.20REF.			0.008REF.		
b	0.30	0.40	0.45	0.012	0.016	0.018	
D		3.00BSC			0.118BSC		
D1		2.34BSC			0.092BSC		
Е		3.00BSC			0.118BSC		
E1		1.57BSC			0.062BSC		
e		0.95BSC			0.037BSC		
L	0.20	0.30	0.45	0.008	0.012	0.018	
θ	0		12	0		12	
M			0.05			0.002	
N	6						
NE	3						

Pin	Input/Output
1	GND
2	RF IN
3	GND
4	GND
5	RF OUT
6	GND

Product Ordering Information

Order Number	Description	Unit of Measure	Image
CGH40006S	GaN HEMT	Each	40065 E330
CGH40006S-AMP1	Test board with GaN HEMT installed	Each	

For more information, please contact:

4600 Silicon Drive Durham, NC 27703 USA Tel: +1.919.313.5300 www.wolfspeed.com/RF

Sales Contact RFSales@wolfspeed.com

RF Product Marketing Contact RFMarketing@wolfspeed.com

Notes & Disclaimer

Specifications are subject to change without notice. "Typical" parameters are the average values expected by Wolfspeed in large quantities and are provided for information purposes only. Wolfspeed products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death. No responsibility is assumed by Wolfspeed for any infringement of patents or other rights of third parties which may result from use of the information contained herein. No license is granted by implication or otherwise under any patent or patent rights of Wolfspeed.

©2010-2022 Wolfspeed, Inc. All rights reserved. Wolfspeed® and the Wolfstreak logo are registered trademarks and the Wolfspeed logo is a trademark of Wolfspeed, Inc. PATENT: https://www.wolfspeed.com/legal/patents

The information in this document is subject to change without notice.