

Features

- ESD protection for one line with bi-direction
- Provide transient protection for the protected line to

IEC 61000-4-2 (ESD) ±15kV (air) / ±12kV (contact) IEC 61000-4-5 (Lightning) 6.5A (8/20µs)

- Ultra-low capacitance: 0.2pF typical
- For low operating voltage applications: 2.0V
 and below
- 0402 small DFN package saves board space
- Fast turn-on and low clamping voltage
- Solid-state silicon-avalanche and active circuit triggering technology
- Green part

Applications

- 2.5G/5G/10GbE
- Thunderbolt interface
- USB3.1 and USB3.0 interfaces
- USB Type-C interface
- DisplayPort interface
- Hand held portable applications

Description

AZ522S-01F is a design which includes a bi-directional ESD rated clamping cell to protect high-speed data interfaces in an electronic system. The AZ522S-01F has been specifically designed to protect sensitive components which are connected to data and transmission lines from over-voltage caused by Electrostatic Discharging (ESD), Lightning, and Cable Discharge Event (CDE).

AZ522S-01F is a unique design which includes proprietary clamping cell with ultra-low capacitance in a small package. During transient conditions, the proprietary clamping cell prevents over-voltage on the control lines, or data lines, protecting any downstream components.

AZ522S-01F is bi-directional and may be used on lines where the signal swings above and below ground.

AZ522S-01F may be used to meet the ESD immunity requirements of IEC 61000-4-2, Level 4 (±15kV air, ±8kV contact discharge).

Circuit Diagram / Pin Configuration

Specifications

Absolute Maximum Ratings (T _A = 25°C, unless otherwise specified)				
Parameter	Symbol	Rating	Unit	
Peak Pulse Current (t _p =8/20μs)	I _{PP} (Note 1)	6.5	Α	
Operating Voltage	V_{DC}	±2.2	V	
ESD per IEC 61000-4-2 (Air)	V_{ESD-1}	±15	LA	
ESD per IEC 61000-4-2 (Contact)	V_{ESD-2}	±12	kV	
Lead Soldering Temperature	T _{SOL}	260 (10 sec.)	°C	
Operating Temperature	T _{OP}	-55 to +125	°C	
Storage Temperature	T _{STO}	-55 to +150	°C	

Electrical Characteristics						
Parameter	Symbol	Condition	Min	Тур	Max	Unit
Reverse Stand-Off	V_{RWM}	T=25 °C.	-2		2	V
Voltage						
Reverse Leakage	I _{Leak}	$V_{\text{BWM}} = \pm 2V, T=25 ^{\circ}\text{C}.$			500	nA
Current	' Leak	V _{RWM} = ±2 v , 1=23 O .			300	ш
Reverse			5.5		10	V
Breakdown Voltage	V_{BV}	$I_{BV} = 1$ mA, T=25 °C.				
Surge Clamping	$V_{CL ext{-surge}}$	$I_{PP} = 6.5A, t_{D} = 8/20\mu s, T=25^{\circ}C.$		5		٧
Voltage (Note 1)	● CL-surge	199 - 0.07 (, τ _β - 0.20μο, 1 - 20 0.				•
ESD Clamping	M	IEC 61000-4-2 +8kV (I _{TLP} = 16A),		0.5		V
Voltage (Note 2)	$V_{\text{CL-ESD}}$	contact mode, T=25 °C.		6.5		V
ESD Dynamic Turn	D	IEC 61000-4-2 0~+8kV,	0.25			
on Resistance	$R_{dynamic}$	contact mode, T=25 °C.				Ω
Channel Input	C _{IN}	V _B = 2V, f = 1MHz, T=25 °C.		0.20		пE
Capacitance	OIN	$V_R = ZV$, $I = IIVIITZ$, $I = ZU$ U .		0.20		pF

Note 1: The Peak Pulse Current measured conditions: t_p = 8/20 μ s, 2 Ω source impedance.

Note 2: ESD Clamping Voltage was measured by Transmission Line Pulsing (TLP) System.

TLP conditions: $Z_0 = 50\Omega$, $t_p = 100$ ns, $t_r = 1$ ns.

Typical Characteristics

Application Information

The AZ522S-01F is designed to protect one line against system ESD pulse by clamping it to an acceptable reference. It provides bi-directional protection.

The usage of the AZ522S-01F is shown in Fig. 1. Protected line, such as data line, control line, or power line, is connected at pin 1. The pin 2 is connected to a ground plane on the board. In order to minimize parasitic inductance in the board traces, all path lengths connected to the pins of AZ522S-01F should be kept as short as possible.

In order to obtain enough suppression of ESD induced transient, a good circuit board is critical. Thus, the following guidelines are recommended:

- Minimize the path length between the protected lines and the AZ522S-01F.
- Place the AZ522S-01F near the input terminals or connectors to restrict transient coupling.
- The ESD current return path to ground should be kept as short as possible.
- Use ground planes whenever possible.
- NEVER route critical signals near board edges and near the lines which the ESD transient easily injects to.

Fig. 1

Mechanical Details

DFN1006P2E PACKAGE DIAGRAMS

Cumbal	Millimeters			
Symbol	Min.	Max.		
E	0.95	1.05		
D	0.55	0.65		
Α	0.45	0.55		
е	0.45	BSC		
L	0.20	0.30		
С	0.45	0.55		

Land Layout

Notes:

This LAND LAYOUT is for reference purposes only. Please consult your manufacturing partners to ensure your company's PCB design guidelines are met.

Marking Code

Top View

Z = Device Code

Part Number	Marking Code	
AZ522S-01F.R7GR (Green Part)	Z	

Note. Green means Pb-free, RoHS, and Halogen free compliant.

Ordering Information

PN#	Material	Type	Reel size	MOQ	MOQ/internal box	MOQ/carton
AZ522S-01F.R7GR	Green	T/R	7 inch	12,000/reel	4 reels= 48,000/box	6 boxes =288,000/carton

Revision History

Revision	Modification Description
Revision 2020/03/31	Formal Release.