Triacs

Silicon Bidirectional Thyristors

Designed primarily for full wave ac control applications, such as motor controls, heating controls or dimmers; or wherever full-wave, silicon gate-controlled devices are needed.

Features

- High Commutating di/dt and High Immunity to dV/dt @ 125°C
- Minimizes Snubber Networks for Protection
- Blocking Voltage to 800 Volts
- On-State Current Rating of 16 Amperes RMS
- High Surge Current Capability 150 Amperes
- Industry Standard TO-220 Package for Ease of Design
- Glass Passivated Junctions for Reliability and Uniformity
- Operational in Three Quadrants, Q1, Q2, and Q3
- These Devices are Pb-Free and are RoHS Compliant*

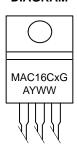
MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
	V _{DRM,} V _{RRM}	600 800	V
On-State RMS Current (Full Cycle Sine Wave 50 to 60 Hz; T _C = 80°C)	I _{T(RMS)}	16	A
Peak Non-Repetitive Surge Current (One Full Cycle, 60 Hz, T _J = 125°C)	I _{TSM}	150	А
Circuit Fusing Consideration (t = 8.33 ms)	l ² t	93	A ² sec
Peak Gate Power (Pulse Width \leq 1.0 μ s, T _C = 80°C)	P _{GM}	20	W
Average Gate Power (t = 8.3 ms, T _C = 80°C)	P _{G(AV)}	0.5	W
Operating Junction Temperature Range	TJ	-40 to +125	°C
Storage Temperature Range	T _{stg}	-40 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

 V_{DRM} and V_{RRM} for all types can be applied on a continuous basis. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the devices are exceeded.

ON Semiconductor®


www.onsemi.com

TRIACS 16 AMPERES RMS 400 thru 800 VOLTS

MARKING DIAGRAM

TO-220 CASE 221A STYLE 4

c = M or N

A = Assembly Location

/ = Year

WW = Work Week

G = Pb-Free Package

PIN ASSIGNMENT			
1	Main Terminal 1		
2	Main Terminal 2		
3	Gate		
4	Main Terminal 2		

ORDERING INFORMATION

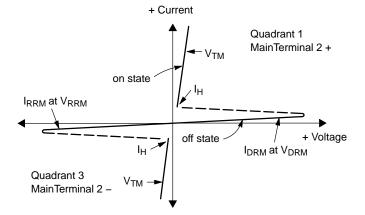
Device	Package	Shipping
MAC16CMG	TO-220 (Pb-Free)	50 Units / Rail
MAC16CNG	TO-220 (Pb-Free)	50 Units / Rail

^{*}For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

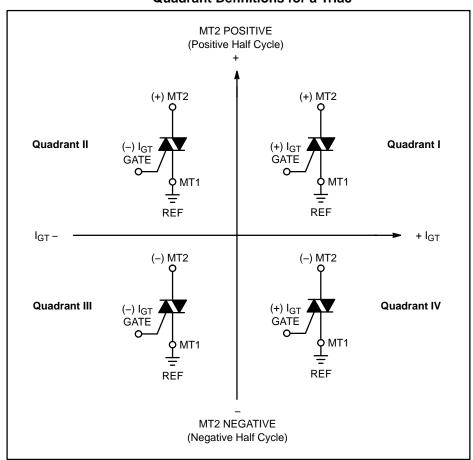
THERMAL CHARACTERISTICS

Characteristic	Symbol	Value	Unit
Thermal Resistance, Junction-to-Case Junction-to-Ambient	$R_{ heta JC} \ R_{ heta JA}$	2.2 62.5	°C/W
Maximum Lead Temperature for Soldering Purposes 1/8" from Case for 10 Seconds	TL	260	°C

ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted: Electricals apply in both directions)


Characteristic Symbol			Min	Тур	Max	Unit	
OFF CHARACTERISTICS							
Peak Repetitive Blocking Current (V_D = Rated V_{DRM} , V_{RRM} Gate Open)	T _J = 25°C T _J = 125°C	I _{DRM,} I _{RRM}	_ _	- -	0.01 2.0	mA	
ON CHARACTERISTICS			•			•	
Peak On-State Voltage (Note 2) (I _{TM} = ±21 A Peak)		V _{TM}	_	1.2	1.6	V	
Gate Trigger Current (Continuous DC) $ (V_D = 12 \text{ V}, \text{ R}_L = 100 \Omega) $ $ \text{MT2(+)}, \text{ G(+)} $ $ \text{MT2(+)}, \text{ G(-)} $ $ \text{MT2(-)}, \text{ G(-)} $		I _{GT}	8.0 8.0 8.0	12 16 20	35 35 35	mA	
Holding Current ($V_D = 12 \text{ V}$, Gate Open, Initiating Current = $\pm 150 \text{ mA}$)		I _H	_	20	50	mA	
Latching Current ($V_D = 12 \text{ V}, I_G = 35 \text{ mA}$) MT2(+), G(+) MT2(+), G(-) MT2(-), G(-)		IL	- -	25 40 24	50 80 50	mA	
Gate Trigger Voltage (Continuous DC) $ (V_D = 12 \text{ V, R}_L = 100 \Omega) $ $ \text{MT2(+), G(+)} $ $ \text{MT2(+), G(-)} $ $ \text{MT2(-), G(-)} $		V _{GT}	0.5 0.5 0.5	0.75 0.72 0.82	1.5 1.5 1.5	V	
DYNAMIC CHARACTERISTICS		•	•			•	
Rate of Change of Commutating Current ($V_D = 400 \text{ V}$, $I_{TM} = 6.0 \text{ A}$, Commutating dV/dt = 24 V/ μ s, $T_J = 125^{\circ}\text{C}$, $f = 250 \text{ Hz}$, $C_L = 10 \mu\text{F}$, $L_L = 40 \text{ mH}$, with Sn		(di/dt) _c	15	_	_	A/ms	
Critical Rate of Rise of Off-State Voltage $(V_D = Rated\ V_{DRM},\ Exponential\ Waveform,\ Gate\ Open,\ T_J = 125^{\circ}C)$		dV/dt	600	_	_	V/µs	
Repetitive Critical Rate of Rise of On-State Current IPK = 50 A; PW = 40 μsec; diG/dt = 200 mA/μsec; f = 60 H	Нz	di/dt	_	-	10	A/μs	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.


2. Pulse Test: Pulse Width ≤ 2.0 ms, Duty Cycle ≤ 2%.

Voltage Current Characteristic of Triacs (Bidirectional Device)

Symbol	Parameter
V _{DRM}	Peak Repetitive Forward Off State Voltage
I _{DRM}	Peak Forward Blocking Current
V _{RRM}	Peak Repetitive Reverse Off State Voltage
I _{RRM}	Peak Reverse Blocking Current
V _{TM}	Maximum On State Voltage
I _H	Holding Current

Quadrant Definitions for a Triac

All polarities are referenced to MT1.

 $\dot{\text{With}}$ in–phase signals (using standard AC lines) quadrants I and III are used.

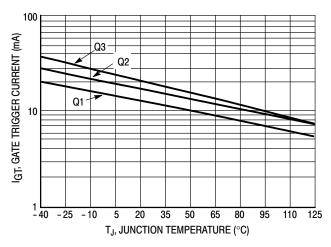


Figure 1. Typical Gate Trigger Current versus Junction Temperature

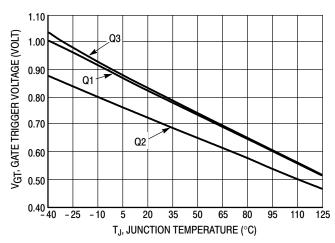


Figure 2. Typical Gate Trigger Voltage versus Junction Temperature

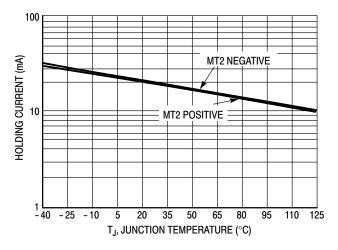


Figure 3. Typical Holding Current versus Junction Temperature

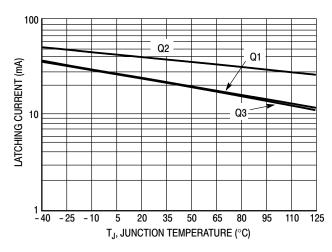


Figure 4. Typical Latching Current versus Junction Temperature

Figure 5. Typical RMS Current Derating

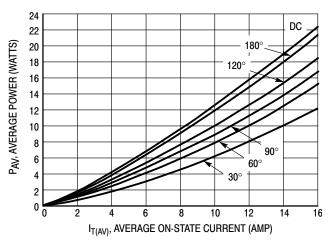


Figure 6. On-State Power Dissipation

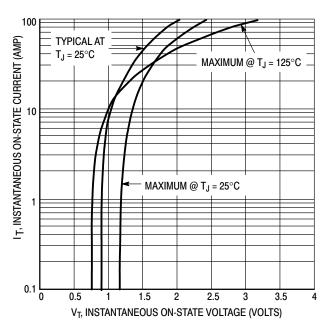


Figure 7. On-State Characteristics

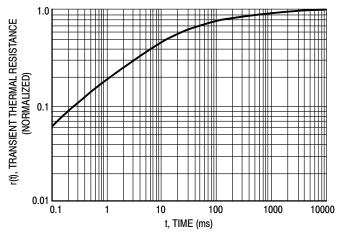
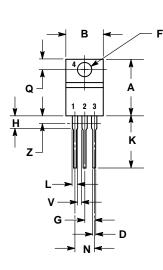
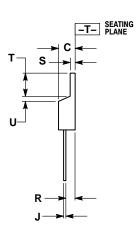




Figure 8. Typical Thermal Response

PACKAGE DIMENSIONS

TO-220 CASE 221A-09 **ISSUE AH**

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. CONTROLLING DIMENSION: INCH.
- DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE

	INC	HES	MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
Α	0.570	0.620	14.48	15.75
В	0.380	0.415	9.66	10.53
С	0.160	0.190	4.07	4.83
D	0.025	0.038	0.64	0.96
F	0.142	0.161	3.61	4.09
G	0.095	0.105	2.42	2.66
Н	0.110	0.161	2.80	4.10
J	0.014	0.024	0.36	0.61
K	0.500	0.562	12.70	14.27
L	0.045	0.060	1.15	1.52
N	0.190	0.210	4.83	5.33
Q	0.100	0.120	2.54	3.04
R	0.080	0.110	2.04	2.79
S	0.045	0.055	1.15	1.39
T	0.235	0.255	5.97	6.47
U	0.000	0.050	0.00	1.27
٧	0.045		1.15	
Z		0.080		2.04

PIN 1. MAIN TERMINAL 1

- MAIN TERMINAL 2 2.
- 3. GATE
- MAIN TERMINAL 2

ON Semiconductor and the 👊 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surprical implant into the body or other applications in which are polications or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada

Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada

Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center

Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative