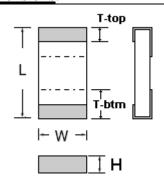


CPA Series (2512)

Construction:

- High Purity Alumina ceramic
- Nickel alloy thin-film resistive element
- Epoxy-resin overcoat
- Pre-tinned (Sn100, matte) terminations over Ni barrier is standard (RoHS and Pb Free)
- Halogen Free

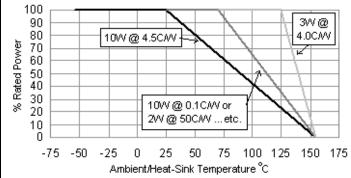

Features:

- TCR's to ± 25 ppm/°C
- Tolerances less than \pm 1% available
- Standard and custom sizes & terminations available (Sn60Pb40 option)
- High volume production, suitable for commercial and special applications
- Competitive pricing

Description:

These power resistors are designed to tolerate high current and establish a low thermal resistance interface with the circuit board. A lower thermal resistance more efficiently sinks heat to the board, enabling a larger effective area for heat dissipation. As a result, much lower surface temperatures are achievable in comparison to standard chip resistors for the same chip size and applied power.

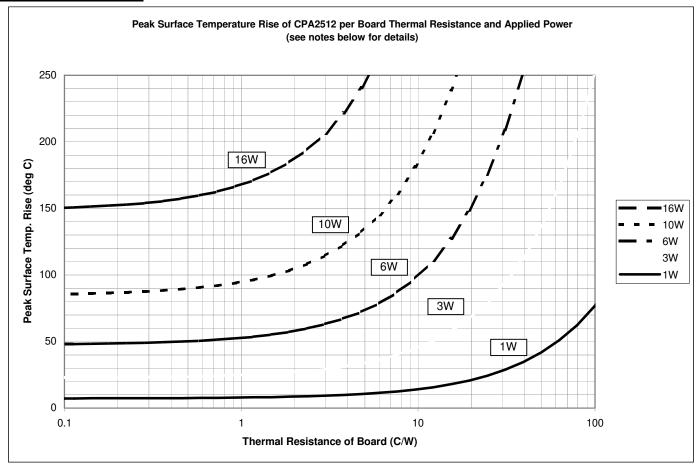
Dimensions:


Size		Standard Dimensions (mm)					
Inch	Metric	L	W	Н	T-top	T-btm	
2512	6332	6.3 ± 0.2	3.2 ± 0.2	0.7 ± 0.1	0.9 ± 0.2	2.0 ± 0.2	
C 11 C	.1	1/ /	1				

Call for other sizes and/or termination styles

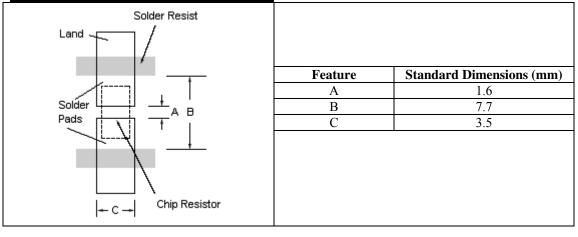
Electrical Specifications:

Size: Inch (Metric)	2512 (6332)			
Rated Power ^{1,2}	Up to 16W ^{1, 2}			
Rated Voltage	$\sqrt{(PxR)}$			
Resistance Tolerance	± 1%			
Standard Resistance Values (E12)	3.3 to 120 Ω Call for other values			
TCR (ppm/°C) ³	± 25 (E)	22 thru 120 Ω		
	$\pm 50 (Q)$	3.3 thru $20~\Omega$		
Operating Temperature Range ⁴	-55 to 155°C			
Insulation Resistance (100V, 1min) ⁵	> 1GΩ			


CPA2512 Derating Curve Examples: ⁶

Notes:

- 1. Dependent on effective thermal conductivity/resistance of board construction/land design and size of board greater power capability for board/land with lower thermal resistance. For relatively high thermal resistance mountings, the power resistors are capable of generating sufficient heat to reflow solder bonds without device damage.
- 2. Refer to Thermal Performance Plot below.
- 3. Per MIL-PRF-55342 (-55/25/125°C).
- 4. Per MIL-PRF-55342.
- 5. Per IEC 60115-1.
- 6. Derating curves are derived from the thermal performance plots.


Thermal Performance:

Notes:

- Plots produced by characterization of thermal coefficients determined from experimental measurements (by thermal imaging camera) at thermal equilibrium with parts mounted to various boards (with homogeneous thermal conductivity to minimize uncertainty) per recommended solder pad dimensions and with boards pressed against a Cu carrier/heat-sink (not ideal) with a thermal compound interface in a static environment (no air flow).
- Heat flow primarily through thickness of board with virtually zero lateral heat transfer in board.
- Thermal resistance of test boards were calculated based on material manufacturer specified thermal conductivity (20°C) via the following: Thermal Resistance (°C/W) = L / (k A), where Thermal Conductivity, k (W/m•K) = (L / (A Δ T)) Δ Q/ Δ t, L = Thickness of board in meters and A = area of chip resistor in meters (2512 size = 6.3x3.2mm)
- The relationships between peak surface temperature rise, power, and board thermal resistance are linear, but the x-axis is plotted in log-scale to offer greater resolution at lower board thermal resistances.

Recommended Solder Pad Dimensions:

Environmental Performance Specifications:

Test	Reference	Conditions of Test	Requirement
Life ⁴	MIL-PRF-55342, MIL-STD-202 Method 108A	70°C, 2000h, rated power ³ , 1.5h on, 0.5h off	$\pm 0.5\% + 0.01\Omega$
Thermal Shock	MIL-PRF-55342, MIL-STD-202 Method 107G	Condition F-3, -65°C/0.25h to 155°C/0.25h, 100 cycles	$\pm 0.1\% + 0.01\Omega$
High Temperature Exposure	MIL-PRF-55342	155°C, 100h	$\pm 0.1\% + 0.01\Omega$
Short Time Overload	MIL-PRF-55342	2.5 x rated voltage ³ , 5 sec.	$\pm 0.1\% + 0.01\Omega$
Moisture Load Life	JEDEC 22-A101	85°C / 85%RH, 2,000 hours 24h/cycle, with and without bias, bias = 1.5h on, 0.5h off @ 1/10 th rated power ³	$\pm 0.5\% + 0.01\Omega$
Resistance to Soldering Heat ¹	MIL-PRF-55342, MIL-STD-202 Method 210F	260°C for 15 sec., over 220°C for 60 sec., 3 cycles	$\pm 0.1\% + 0.01\Omega$
Solderability ²	MIL-PRF-55342, MIL-STD-202 Method 208H	Precondition E: 150°C dry bake for 16h, Method 1 "Dip and Look Test", 245°C, 5 sec., Pb- free (SnAgCu) Solder	Min 95% coverage of critical area
Board Flex	IEC 60115-1 / JIS C 5202	Bend amount of 3mm, measurements during and after bend	$\pm 0.1\% + 0.01\Omega$, No mech. damage
Terminal Strength	MIL-PRF-55342	Force of 3kg for 30 sec.	No mech. damage

Notes:

- 1. Test conditions modified to represent the high temperature Pb-free reflow conditions and an extra cycle is added.
- 2. JESD22-B102D adds test conditions for Pb-free and is aligned with J-STD-002B referenced in MIL-STD-202 Method 208H. JESD22-B102D procedure comes from EIA-638, "Surface Mount Solderability Test".
- 3. Parts mounted to boards in accordance with NEMA grade FR-4 of IPC-4101 (62mils thick) with no Cu carrier/heat-sink at a rated power of 2W (Board Therm. Res. ~ 72C/W).
- 4. Due to the complexity of managing the heat load of hundreds of pieces during qualification, long-term reliability testing for the 16W power rating had been conducted in terms of the equivalent current density via much thinner/narrower resistor patterns to limit the heat load. Full power testing was conducted on a smaller scale.

Marking:

Marking shall include:

- Material Designator (A = Alumina)
- The 4-digit Resistance Value (MIL-STD-1285D)

Ex. $A27R0 = 27.0\Omega$ Resistance with Alumina Material

Part Numbering: (Ex. CPA2512E27R0FS-T10)

	CP	A	2512		Е	27R0	F	S	-T10
	Product	Material	Size, Inch	TCR	Resistance	Tolerance	Custom	Packaging	
	Designator	Designator	Size, Ilicii		Value		Designator	Tape & Reel	
	CP A=	A - Alumina	mina Refer to table above	E =	± 25 ppm/°C	Ex. 27R0	F = ± 1%	Standard = S	-T10 = 1000
		A – Alumina		Q =	\pm 50 ppm/°C	$=27.0 \Omega$		Custom = TBD	-T50 = 5000

Note: When requesting quotes or ordering parts, it is not necessary to add the T&R package quantity (-T##) to the end of the part number. This will be added by us based on the quantity ordered.

