onsemi

ECOSPARK[®] Ignition IGBT

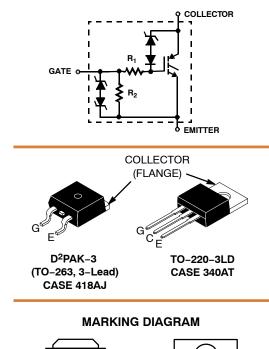
500 mJ, 360 V, N-Channel Ignition IGBT

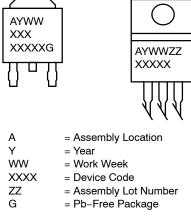
ISL9V5036S3ST, ISL9V5036P3-F085, ISL9V5036S3ST-F085C

General Description

The ISL9V5036S3ST, ISL9V5036S3ST-F085C and ISL9V5036P3-F085 are the next generation IGBTs that offer outstanding SCIS capability in the D²-Pak (TO-263) and TO-220 plastic package. These devices are intended for use in automotive ignition circuits, specifically as coil drivers. Internal diodes provide voltage clamping without the need for external components.

ECOSPARK devices can be custom made to specific clamp voltages. Contact your nearest **onsemi** sales office for more information.


Formerly Developmental Type 49443.


Features

- Industry Standard D²–Pak package
- SCIS Energy = 500 mJ at $T_J = 25^{\circ}C$
- Logic Level Gate Drive
- AEC–Q101 Qualified and PPAP Capable
- These Devices are Pb-Free and are RoHS Compliant

Applications

- Automotive Ignition Coil Driver Circuits
- Coil-On Plug Applications

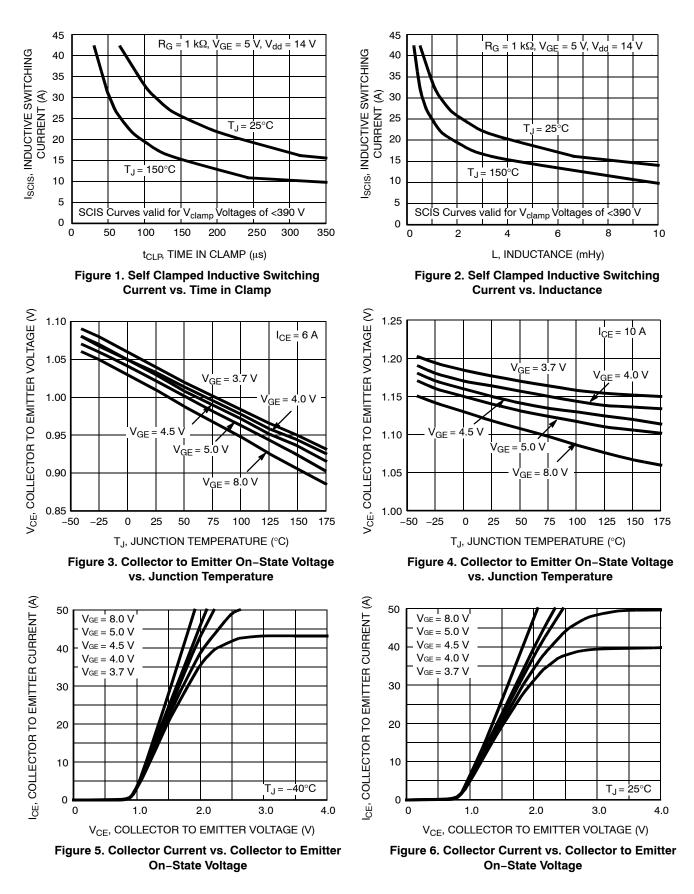
ORDERING INFORMATION

See detailed ordering and shipping information on page 8 of this data sheet.

MAXIMUM RATINGS (T_A = 25° C unless otherwise noted)

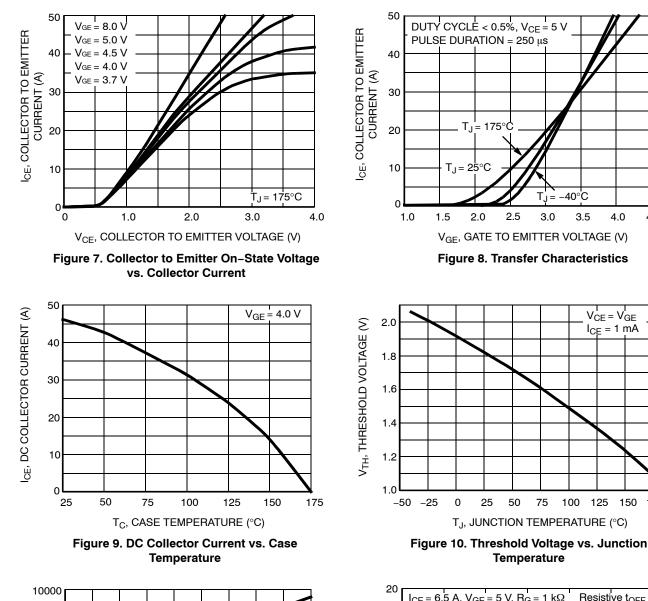
Parameter	Symbol	Value	Unit
Collector to Emitter Breakdown Voltage (I _C = 1 mA)	BV _{CER}	390	V
Emitter to Collector Voltage – Reverse Battery Condition (I _C = 10 mA)	BV _{ECS}	24	V
At Starting T _J = 25°C, I _{SCIS} = 38.5A, L = 670 μ Hy	E _{SCIS25}	500	mJ
At Starting T _J = 150°C, I _{SCIS} = 30A, L = 670 μ Hy	E _{SCIS150}	300	mJ
Collector Current Continuous, at T_C = 25°C, See Figure 9	I _{C25}	46	А
Collector Current Continuous, at T _C = 110°C, See Figure 9	I _{C110}	31	А
Gate to Emitter Voltage Continuous	V _{GEM}	±10	V
Power Dissipation Total $T_C = 25^{\circ}C$	PD	250	W
Power Dissipation Derating $T_C > 25^{\circ}C$		1.67	W/°C
Operating Junction Temperature Range	TJ	-40 to 175	°C
Storage Junction Temperature Range	T _{STG}	-40 to 175	°C
Max Lead Temp for Soldering (Leads at 1.6 mm from Case for 10 s)	TL	300	°C
Max Lead Temp for Soldering (Package Body for 10s)	T _{pkg}	260	°C
Electrostatic Discharge Voltage at100 pF, 1500 Ω	ESD	4	kV

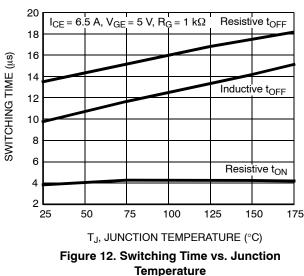
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


THERMAL CHARACTERISTICS

Characteristic	Symbol	Value	Unit
Thermal Resistance Junction-Case	$R_{\theta JC}$	0.6	°C/W

ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise noted)


Parameter	Symbol	Test Cond	ition	Min	Тур	Max	Unit
OFF STATE CHARACTERISTICS	•			•	•	•	
Collector to Emitter Breakdown Voltage	BV _{CER}	$\label{eq:GE} \begin{split} I_C &= 2 \text{ mA}, \ V_{GE} = 0 \ \text{V}, \\ R_G &= 1 \ \text{k}\Omega, \ \text{See Figure 15} \\ T_J &= -40 \ \text{to 150}^\circ\text{C} \end{split}$		330	360	390	V
Collector to Emitter Breakdown Voltage	BV _{CES}	$\begin{split} I_C &= 10 \text{ mA}, \text{ V}_{GE} = 0 \text{ V}, \\ R_G &= 0, \text{ See Figure 15} \\ T_J &= -40 \text{ to } 150^\circ\text{C} \end{split}$		360	390	420	V
Emitter to Collector Breakdown Voltage	BV _{ECS}	I_{C} = -75 mA, V_{GE} = 0 V, T _J = 25°C		30	-	-	V
Gate to Emitter Breakdown Voltage	BV _{GES}	$I_{GES} = \pm 2 \text{ mA}$	$I_{GES} = \pm 2 \text{ mA}$		±14	-	V
Collector to Emitter Leakage Current	I _{CER}	V _{CER} = 250 V,	$T_{\rm C} = 25^{\circ}{\rm C}$	-	-	25	μA
		R _G = 1 kΩ, See Figure 11	T _C = 150°C	-	-	1	mA
Emitter to Collector Leakage Current	I _{ECS}	V _{EC} = 24 V, See Figure 11	$T_{\rm C} = 25^{\circ}{\rm C}$	-	-	1	mA
			T _C = 150°C	-	-	40	1
Series Gate Resistance	R ₁			-	75	-	Ω
Gate to Emitter Resistance	R ₂			10	-	30	kΩ
ON STATE CHARACTERISTICS							
Collector to Emitter Saturation Voltage	V _{CE(SAT)}	I_{C} = 10 A, V_{GE} = 4.0 V	T _C = 25°C See Figure 4	-	1.17	1.60	V
Collector to Emitter Saturation Voltage	V _{CE(SAT)}	I_{C} = 15 A, V_{GE} = 4.5 V	T _C = 150°C	-	1.50	1.80	V
DYNAMIC CHARACTERISTICS	•						
Gate Charge	Q _{G(ON)}	I_{C} = 10 A, V_{CE} = 12 V, V_{GE} = 5 V, See Figure 14		-	32	-	nC
Gate to Emitter Threshold Voltage	V _{GE(TH)}	I_{CE} = 1.0 mA, V_{CE} = V_{GE} , See Figure 10	$T_C = 25^{\circ}C$	1.3	-	2.2	V
			T _C = 150°C	0.75	-	1.8	
Gate to Emitter Plateau Voltage	V _{GEP}	I _C = 10 A, V _{CE} = 12 V		-	3.0	-	V
SWITCHING CHARACTERISTICS							
Current Turn-On Delay Time-Resistive	t _{d(ON)} R	V _{CE} = 14 V, R _L = 1 Ω V _{GE} = 5 V, R _G = 1 kΩ T _J = 25°C, See Figure 12		-	0.7	4	μs
Current Rise Time-Resistive	t _{rR}			-	2.1	7	
Current Turn-Off Delay Time-Inductive	t _{d(OFF)L}	$V_{CE} = 300 \text{ V}, \text{ L} = 2 \text{ mH},$ $V_{GE} = 5 \text{ V}, \text{ R}_{G} = 1 \text{ k}\Omega$ $T_{J} = 25^{\circ}\text{C}, \text{ See Figure 12}$		-	10.8	15	1
Current Fall Time-Inductive	t _{fL}			-	2.8	15	
Self Clamped Inductive Switching	SCIS	$T_J = 25^{\circ}C, L = 670 \ \mu\text{H}, \\ R_G = 1 \ k\Omega, \ V_{GE} = 5 \ \text{V}, \\ \text{See Figures 1, 2}$		-	-	500	mJ


Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS (continued)

25

50

75

Temperature

175

2.5

-40°℃ $T_{1=}$

3.0

3.5

100 125

150 175

4.0

 $V_{CE} = V_{GE}$

 $I_{CE} = 1 \text{ mA}$

4.5

Figure 11. Leakage Current vs. Junction Temperature

75

100

50

T.J., JUNCTION TEMPERATURE (°C)

V_{ECS} = 24

V_{CES}

= 300 V

V_{CES} = 250 V

150 175

125

LEAKAGE CURRENT (MA)

1000

100

10

0.1

-25 -50

0 25

V_{GE}, GATE TO EMITTER VOLTAGE (V) $I_{G(REF)} = 1 \text{ mA}, R_{L} = 0.6 \Omega, T_{J} = 25^{\circ}C$ FREQUENCY = 1 MHz C, CAPACITANCE (pF) V_{CE} = 12 V CIES З CRES COES CF V_{CE}, COLLECTOR TO EMITTER VOLTAGE (V) Q_G, GATE CHARGE (nC) Figure 13. Capacitance vs. Collector to Emitter Figure 14. Gate Charge Voltage T_J = −40°C I_{CER} = 10 mA BV_{CER}, BREAKDOWN VOLTAGE (V) $T_J = 175^{\circ}C$ $T_J = 25^{\circ}C$ **L** 10

TYPICAL CHARACTERISTICS (continued)

Figure 15. Breakdown Voltage vs. Series Gate Resistance

R_G, SERIES GATE RESISTANCE (kΩ)

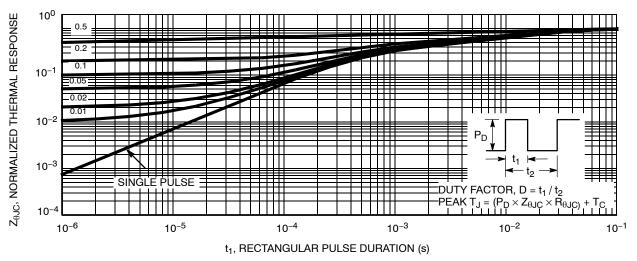


Figure 16. IGBT Normalized Transient Thermal Impedance, Junction to Case

TEST CIRCUITS AND WAVEFORMS

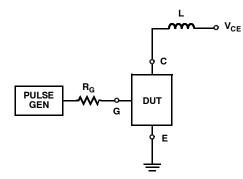


Figure 17. Inductive Switching Test Circuit

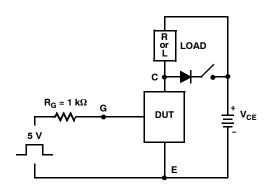


Figure 18. t_{ON} and t_{OFF} Switching Test Circuit

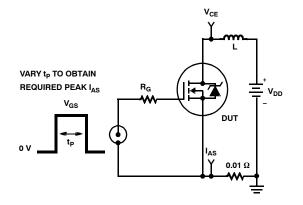


Figure 19. Energy Test Circuit

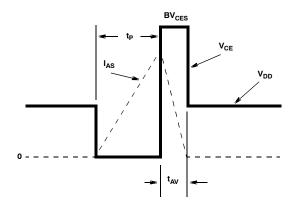
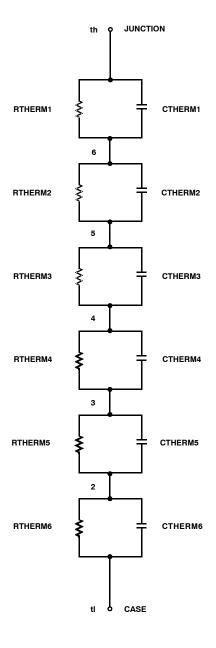


Figure 20. Energy Waveforms

SPICE THERMAL MODEL

ISL9V5036S3ST / ISL9V5036P3-F085 / ISL9V5036 S3ST-F085C

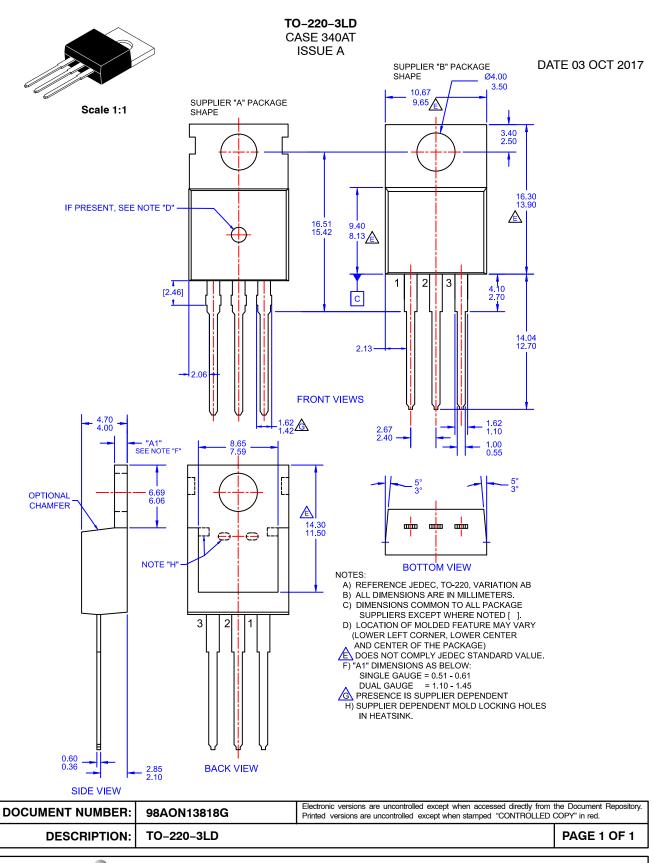

CTHERM1 th 6 4.0e2 CTHERM2 6 5 3.6e-3 CTHERM3 5 4 4.9e-2 CTHERM4 4 3 3.2e-1 CTHERM5 3 2 3.0e-1 CTHERM6 2 tl 1.6e-2 RTHERM1 th 6 1.0e-2 RTHERM2 6 5 1.4e-1 RTHERM3 5 4 1.0e-1 RTHERM4 4 3 9.0e-2 RTHERM5 3 2 9.4e-2

RTHERM6 2 tl 1.9e-2

SABER THERMAL MODEL

SABER thermal model ISL9V5036S3ST / ISL9V5036P3-F085 / ISL9V5036 S3ST-F085C

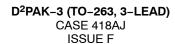
template thermal model th tl thermal_c th, tl { ctherm.ctherm1 th 6 = 4.0e2 ctherm.ctherm2 6 5 = 3.6e-3 ctherm.ctherm3 5 4 = 4.9e-2ctherm.ctherm4 4 3 = 3.2e-1 ctherm.ctherm5 3 2 = 3.0e-1 ctherm.ctherm6 2 tl = 1.6e-2rtherm.rtherm1 th 6 = 1.0e-2rtherm.rtherm2 6 5 = 1.4e-1rtherm.rtherm3 5 4 = 1.0e-1rtherm.rtherm4 4 3 = 9.0e-2rtherm.rtherm5 3 2 = 9.4e-2rtherm.rtherm6 2 tl = 1.9e-2}

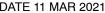

PACKAGE MARKING AND ORDERING INFORMATION

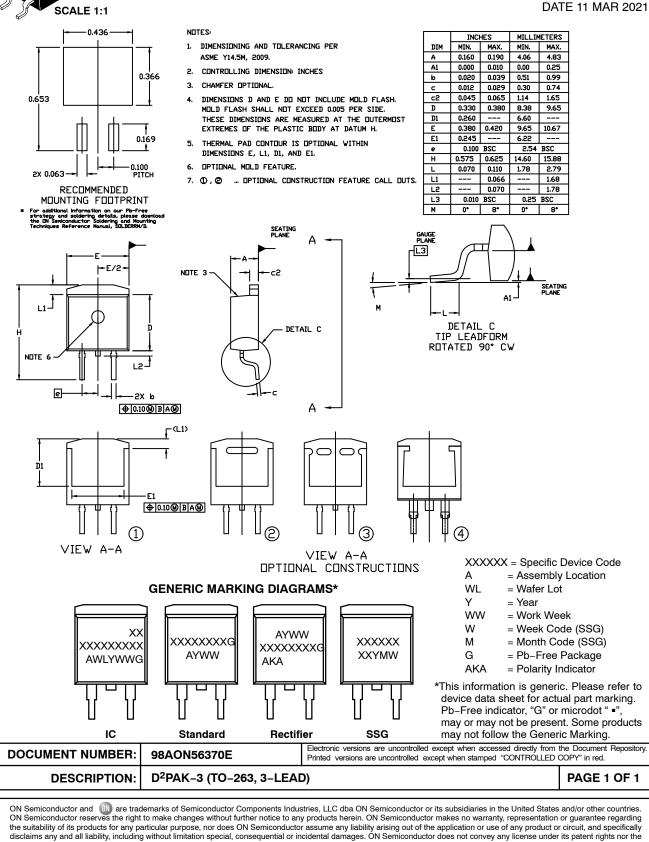
Device	Device Marking	Package	Shipping [†]
ISL9V5036S3ST	V5036S	D2PAK-3 (TO-263, 3-Lead) (Pb-Free)	800 / Tape & Reel
ISL9V5036S3ST-F085C	V5036SC	D2PAK-3 (TO-263, 3-Lead) (Pb-Free)	800 / Tape & Reel
ISL9V5036P3-F085	V5036P	TO-220-3LD (Pb-Free)	50 Units / Tube

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, <u>BRD8011/D</u>.

ECOSPARK is a registered trademark of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries.






ON Semiconductor and unarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights or the rights of others.

MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS

© Semiconductor Components Industries, LLC, 2018

rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales