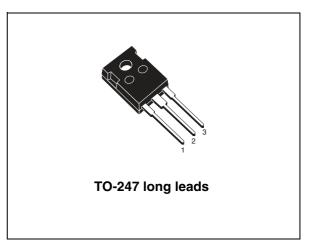


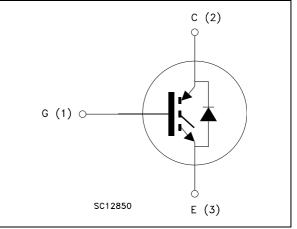
STGWA60NC60WDR

60 A, 600 V, ultrafast IGBT

Features


- Very high frequency operation
- Low C_{RES} / C_{IES} ratio (no cross-conduction susceptibility)
- Very soft ultrafast recovery antiparallel diode

Applications


- Welding
- Power factor correction
- SMPS
- High frequency inverter/converter

Description

This device is an ultrafast IGBT. It utilizes the advanced Power MESH[™] process resulting in an excellent trade-off between switching performance and low on-state behavior.

Figure 1. Internal schematic diagram

Table 1.Device summary

Order code	Marking	Package	Packaging	
STGWA60NC60WDR	GWA60NC60WDR	TO-247 long leads	Tube	

Doc ID 022019 Rev 1

1 Electrical ratings

Table 2.	Absolute	maximum	ratings
	/		. a

Symbol	Parameter	Value	Unit
V _{CES}	Collector-emitter voltage (V _{GE} = 0)	600	V
I _C ⁽¹⁾	Collector current (continuous) at $T_C = 25 \text{ °C}$	130	А
I _C ⁽¹⁾	Collector current (continuous) at $T_C = 100 \ ^{\circ}C$	60	А
I _{CL} ⁽²⁾	Turn-off latching current	250	А
I _{CP} ⁽³⁾	Pulsed collector current	250	А
١ _F	Diode RMS forward current at $T_C = 25 \ ^{\circ}C$	30	А
I _{FSM}	Surge not repetitive forward current (t _p = 10 ms sinusoidal)	120	A
V_{GE}	Gate-emitter voltage	± 20	V
P _{TOT}	Total dissipation at $T_C = 25 \ ^{\circ}C$	340	W
Тj	Operating junction temperature	- 55 to 150	°C

1. Calculated according to the iterative formula:

$$I_{C}(T_{C}) = \frac{T_{JMAX}^{-T}C}{R_{THJ-C} \times V_{CESAT(MAX)}(T_{C}, I_{C})}$$

2. V_{clamp} = 480 V, T_J = 150 °C, R_G = 10 Ω , V_{GE} = 15 V

3. Pulse width limited by max. temperature allowed

Table 3. Thermal resistance

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case IGBT max.	0.35	°C/W
R _{thj-case}	Thermal resistance junction-case diode max.	1.25	°C/W
R _{thj-amb}	Thermal resistance junction-ambient max.	50	°C/W

2 Electrical characteristics

 T_{CASE} = 25 °C unless otherwise specified

Table 4.	Static					
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)CES}	Collector-emitter breakdown voltage (V _{GE} = 0)	I _C = 1 mA	600			V
V _{CE(sat)}	Collector-emitter saturation voltage	$V_{GE} = 15 \text{ V}, I_{C} = 40 \text{ A}$ $V_{GE} = 15 \text{ V}, I_{C} = 40 \text{ A}, T_{C} = 125 \text{ °C}$		2.1 1.9	2.6	V V
V _{GE(th)}	Gate threshold voltage	$V_{CE} = V_{GE}$, $I_C = 250 \ \mu A$	3.75		5.75	V
I _{CES}	Collector cut-off current (V _{GE} = 0)	V _{CE} = 600 V V _{CE} = 600 V,T _C = 125 °C			500 5	μA mA
I _{GES}	Gate-emitter leakage current (V _{CE} = 0)	V _{GE} = ± 20 V			±100	nA
9 _{fs}	Forward transconductance	$V_{CE} = 15 V_{,} I_{C} = 40 A$		25		S

Table 4. Static

Table 5. Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{ies} C _{oes} C _{res}	Input capacitance Output capacitance Reverse transfer capacitance	V _{CE} = 25 V, f = 1 MHz, V _{GE} = 0		4700 410 90		pF pF pF
Q _g Q _{ge} Q _{gc}	Total gate charge Gate-emitter charge Gate-collector charge	V _{CE} = 390 V, I _C = 40 A, V _{GE} = 15 V, <i>Figure 16</i>		195 32 82		nC nC nC

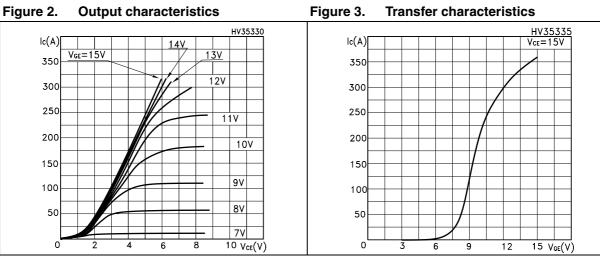
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit		
t _{d(on)} t _r (di/dt) _{on}	Turn-on delay time Current rise time Turn-on current slope	$V_{CC} = 390 \text{ V}, \text{ I}_{C} = 40 \text{ A}$ $R_{G} = 10 \Omega, \text{ V}_{GE} = 15 \text{ V},$ <i>Figure 17, Figure 15</i>		40 30 1039		ns ns A/µs		
t _{d(on)} t _r (di/dt) _{on}	Turn-on delay time Current rise time Turn-on current slope	$V_{CC} = 390 \text{ V}, I_C = 40 \text{ A}$ $R_G = 10 \Omega, V_{GE} = 15 \text{ V},$ $T_C = 125 \text{ °C}$ <i>Figure 17, Figure 15</i>		37 32 990		ns ns A/µs		
t _{r(Voff)} t _{d(Voff)} t _f	Off voltage rise time Turn-off delay time Current fall time	$V_{CC} = 390 \text{ V}, \text{ I}_{C} = 40 \text{ A}$ $R_{G} = 10 \Omega, \text{ V}_{GE} = 15 \text{ V},$ <i>Figure 17, Figure 15</i>		31 240 35		ns ns ns		
t _{r(Voff)} t _{d(Voff)} t _f	Off voltage rise time Turn-off delay time Current fall time	$V_{CC} = 390 \text{ V}, \text{ I}_{C} = 40 \text{ A}$ $R_{G} = 10 \Omega, \text{ V}_{GE} = 15 \text{ V},$ $T_{C} = 125 ^{\circ}\text{C}$ <i>Figure 17, Figure 15</i>		59 280 63		ns ns ns		

Table 6. Switching on/off (inductive load)

 Table 7.
 Switching energy (inductive load)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
E _{on} ⁽¹⁾ E _{off} ⁽²⁾ E _{ts}	Turn-on switching losses Turn-off switching losses Total switching losses	$V_{CC} = 390 \text{ V}, I_{C} = 40 \text{ A}$ $R_{G} = 10 \Omega, V_{GE} = 15 \text{ V},$ <i>Figure 15</i>		743 560 925		μJ μJ μJ
$\begin{array}{c} E_{\mathrm{on}}^{(1)}\\ E_{\mathrm{off}}^{(2)}\\ E_{\mathrm{ts}}\end{array}$	Turn-on switching losses Turn-off switching losses Total switching losses	$V_{CC} = 390 \text{ V}, I_C = 40 \text{ A}$ $R_G = 10 \Omega, V_{GE} = 15 \text{ V},$ $T_C = 125 \text{ °C}$ <i>Figure 15</i>		917 910 1545		μJ μJ μJ

 Eon is the tun-on losses when a typical diode is used in the test circuit in *Figure 18* If the IGBT is offered in a package with a co-pak diode, the co-pack diode is used as external diode. IGBTs & Diode are at the same temperature (25°C and 125°C)


2. Turn-off losses include also the tail of the collector current

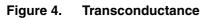

Symbol **Test conditions** Min. Max. Unit Parameter Тур. $I_{F} = 40 \text{ A}$ V 3.2 Forward on-voltage V_{F} I_F = 40 A, T_C = 125 °C 2.2 V $I_{F} = 40 \text{ A}, V_{R} = 50 \text{ V},$ Reverse recovery time 42 ns t_{rr} $di/dt = 100 \text{ A}/\mu \text{s}$ Q_{rr} Reverse recovery charge 55 nC Reverse recovery current Figure 18 2.6 А I_{rrm} $I_{F} = 40 \text{ A}, V_{R} = 50 \text{ V},$ 141 Reverse recovery time t_{rr} ns Q_{rr} Reverse recovery charge T_C =125 °C, 324 nC Reverse recovery current di/dt = 100 A/µs (Figure 18) 4.6 А I_{rrm}

Table 8.Collector-emitter diode

2.1 Electrical characteristics (curves)

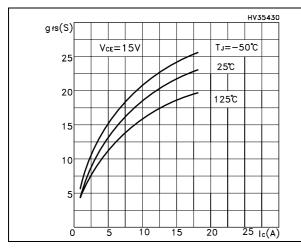
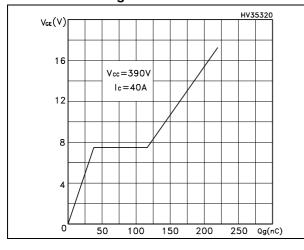



Figure 6. Gate charge vs. gate-source voltage

57

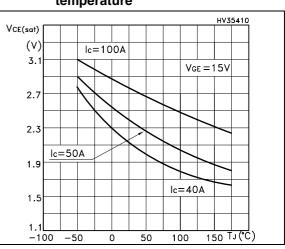
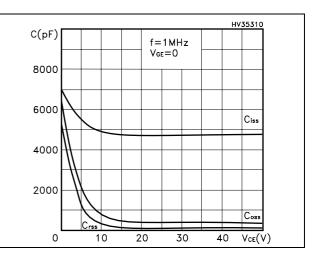
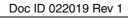
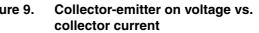





Figure 7. Capacitance variations

Figure 8. Normalized gate threshold voltage Figure 9. vs. temperature

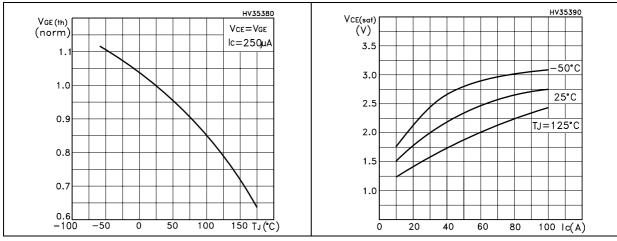


Figure 10. Normalized breakdown voltage vs. Figure 11. Switching losses vs. I_C temperature

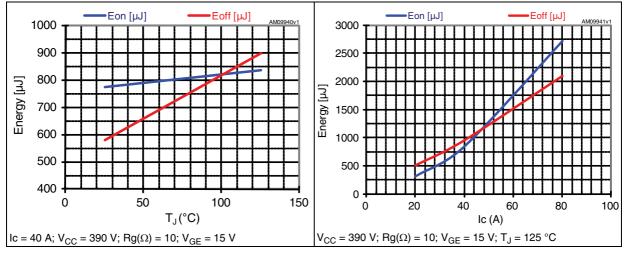
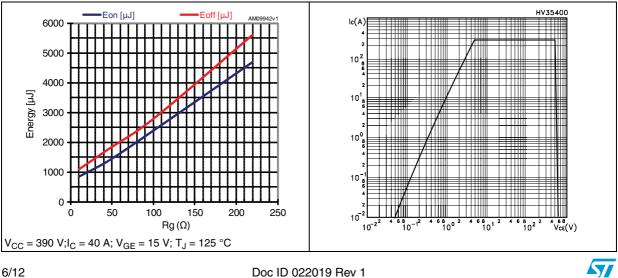
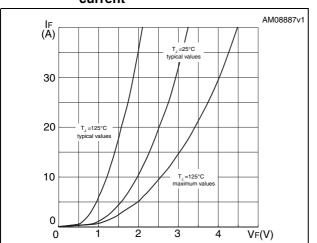
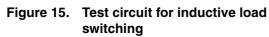




Figure 12. Switching losses vs. gate resistance

Figure 13. Turn-off SOA

Doc ID 022019 Rev 1

Figure 14. Forward voltage drop vs. forward current


.₀^Vcc

1ΚΩ

V 6

AM01505v1

3 Test circuit

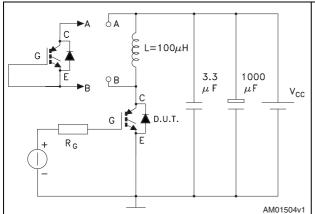


Figure 16. Gate charge test circuit

12V

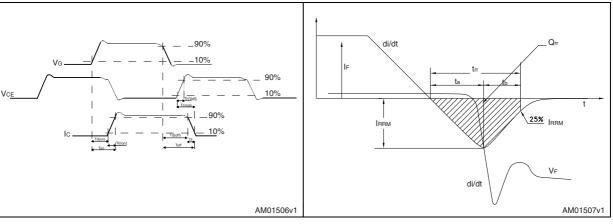
 $V_i = 20V = V_{GMAX}$

2200 μF

1KΩ

I_G=CONST

2.7ΚΩ


47Κ Ω

<u>1ΚΩ</u>

=100nF

С. и.т.

. Ρw

4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

Dim		mm	
Dim.	Min.	Тур.	Max.
А	4.90		5.15
D	1.85		2.10
E	0.55		0.67
F	1.07		1.32
F1	1.90		2.38
F2	2.87		3.38
G		10.90 BSC	
Н	15.77		16.02
L	20.82		21.07
L1	4.16		4.47
L2	5.49		5.74
L3	20.05		20.30
L4	3.68		3.93
L5	6.04		6.29
М	2.27		2.52
V		10°	
V1		3°	
V3		20°	
Dia.	3.55		3.66

Table 9. TO-247 long leads mechanical data

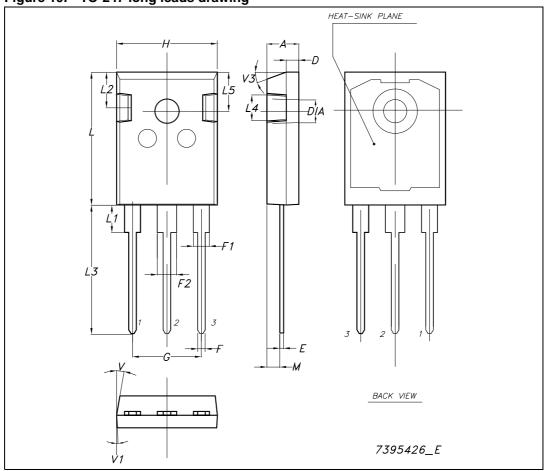


Figure 19. TO-247 long leads drawing

5 Revision history

Table 10. Document revision history

Date	Revision	Changes
20-Jul-2011	1	Initial release.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2011 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

Doc ID 022019 Rev 1

