3.3V, LVCMOS Spread Spectrum Peak EMI Reduction Device

Product Description

P3P8163A is a 3.3 V, spread spectrum frequency modulator that generates a 1x, LVCMOS low EMI spread spectrum clock and two reference clock outputs.

The P3P8163A reduces electromagnetic interference (EMI) at the clock source, allowing system wide reduction of EMI of down stream clock and data dependent signals. It allows significant system cost savings by reducing the number of circuit board layers, ferrite beads, shielding, and other passive components that are traditionally required to pass EMI regulations.

The P3P8163A can generate an EMI reduced clock from a fundamental Crystal or from an external reference clock.

P3P8163A has a SEL pin to turn off CLK2 when '1'.

Refer Output Table.

P3P8163A operates over 3.3 V $\pm 5\%$ supply voltage range and is available in 8 pin SOIC package.

Features

- Input Clock: 12 MHz from Fundamental XTAL or External Reference Clock
- Output Clocks: CLK0: 12 MHz ±0.4% CLK1, CLK2: 12 MHz (REFOUT)
- SEL Pin to Turn Off CLK2
- Low Inherent Cycle-to-Cycle Jitter
- Supply Voltage: 3.3 V ±5%
- LVCMOS Input and Output
- Operating Temperature Range: 0°C to 70°C
- 8-pin SOIC Package
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Application

• The P3P8163A is targeted towards EMI management in consumer electronics applications including MFPs.

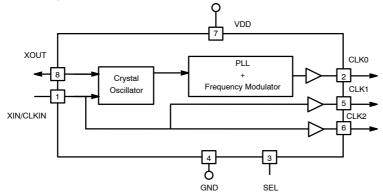
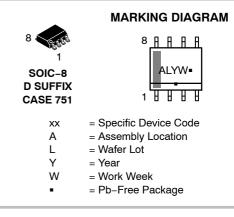
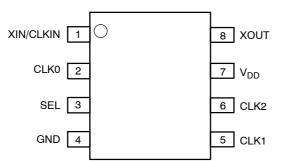
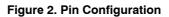



Figure 1. Simplified Block Diagram


ON Semiconductor®


http://onsemi.com

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

Table 1. PIN DESCRIPTION

Pin #	Pin Name	Туре	Description	
1	XIN / CLKIN	Input	Crystal connection or External Clock input.	
2	CLK0	Output	Spread Spectrum Clock output.	
3	SEL	Input	2 level logic input. When '0' CLK2 is enabled. When '1' CLK2 is turned off. Has a Pull-down resistor.	
4	GND	Power	Ground to entire chip.	
5	CLK1	Output	Reference clock Output.	
6	CLK2	Output	Reference clock Output. Has a Pull-down resistor when OFF.	
7	V _{DD}	Power	Power supply for the entire chip	
8	XOUT	Output	Crystal connection. If using an external reference, this pin must be left unconnected.	

Table 2. OUTPUT TABLE

SEL	CLK0	CLK1	CLK2	
0	Spread Spectrum Clock output	Reference clock Output	Reference clock Output	
1	Spread Spectrum Clock output	Reference clock Output	OFF	

Table 3. OPERATING CONDITIONS

Symbol	Description	Min	Max	Unit
V _{DD}	Voltage on any pin with respect to GND	3.135	3.465	V
T _A	Operating temperature	0	+70	°C
CL	Load Capacitance		15	pF
C _{IN}	Input Capacitance		7	pF

Table 4. MAXIMUM RATINGS

Symbol	Parameter	Rating	Unit
V _{DD} , V _{IN}	Voltage on any pin with respect to Ground	-0.5 to +4.6	V
T _{STG}	Storage temperature	-65 to +125	°C
Ts	Max. Soldering Temperature (10 sec)	260	°C
TJ	Junction Temperature	150	°C
T _{DV}	Static Discharge Voltage(As per JEDEC STD 22- A114-B)	2	kV

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

NOTE: These are stress ratings only and are not implied for functional use. Exposure to absolute maximum ratings for prolonged periods of time may affect device reliability.

Table 5. DC ELECTRICAL CHARACTERISTICS

(NOTE – Unless otherwise stated V_DD = 3.3 V \pm 5%, CL = 15 pF and Ambient Temperature range 0°C to +70°C)

Symbol	Parameter			Тур	Max	Unit
V _{DD}	Supply Voltage			3.3	3.465	V
I _{DD}	Dynamic supply current ($C_L = 15 \text{ pF}, V_{DD} = 3.465 \text{ V}, \text{Temp} = +70^{\circ}\text{C}$)				17	mA
VIL	Input low voltage (XIN/CLKIN, SEL Inputs)				0.8	V
V _{IH}	Input high voltage (XIN/CLKIN, SEL Inputs)				V _{DD}	V
V _{OL}	Output low voltage (CLK[0:2])	I _{OL} = 12 mA			0.4	V
V _{OH}	Output high voltage (CLK[0:2]) I _{OH} = -12 mA		2.4			V
C _{IN1}	Input Capacitance (XIN/CLKIN and XOUT)			6		pF
C _{IN2}	Input capacitance (SEL Input)				7	pF
R _{PD}	Internal Pull down Resistor (CLK2)			200		kΩ
Z ₀	Output Impedance			25		Ω

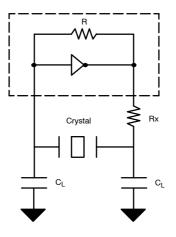
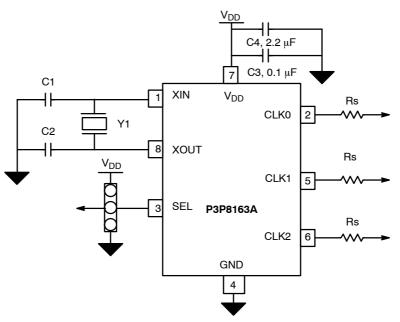

NOTE: The voltage on any input or I/O pin cannot exceed the power pin during power up.

Table 6. AC ELECTRICAL CHARACTERISTICS

(NOTE – Unless otherwise stated V_{DD} = 3.3 V \pm 5%, C_L = 15 pF and Ambient Temperature range 0°C to +70°C)

Symbol	Parameter	Min	Тур	Max	Unit
f _{IN}	Input Clock frequency		12		MHz
fout	CLK0, Modulated output Clock, ±0.4%		12		MHz
	CLK1, CLK2 Reference clock output		12		
t _{LH,} t _{HL} (Notes 1 and 2)	CLK0, Rise and Fall time (Measured between 20% to 80%)		1.25	2.0	ns
t _{LH,} t _{HL} (Notes 1 and 2)	CLK1, CLK2, Rise and Fall time (Measured between 20% to 80%)		1.25	2.0	ns
TDCOUT (Notes 1 and 2)	Output Clock Duty Cycle	45	50	55	%
T _{JC} (Note 2)	Cycle-Cycle Jitter, Peak (1000 cycles) (For CLK0)		150		pS
T _{JP} (Note 2)	Period Jitter, Peak (10000 cycles) (For CLK1, CLK2)		125		pS
t _{ON} (Notes 1 and 2)	Power Up Time (Stable power supply, valid input clock to valid clock on CLK0).			4	ms
f _{dvar}	Frequency Deviation (CLK0)		±0.4	±0.52	%

Parameters are specified with 15 pF loaded outputs.
Parameter is guaranteed by design and characterization. Not 100% tested in production


$$\label{eq:CL} \begin{split} C_L &= 2^{\star}(C_P - C_S), \\ Where \quad C_P &= Load \ capacitance \ of \ crystal \ specified \ in \ a \end{split}$$
Crystal Datasheet

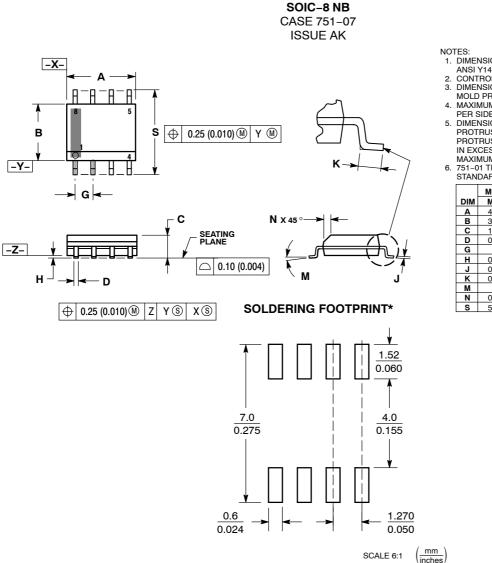
CS = Stray capacitance due to CIN, PCB, Trace etc

C_L =Load capacitance to be used

Rx is used to reduce power dissipation in the Crystal

Figure 3. Typical Crystal Interface Circuit

Rs = Trace Impedance of PCB – Output Impedance of Device (Z0)


Figure 4. Typical Application Schematic

ORDERING INFORMATION

Device	Top Marking	Temperature	Package	Shipping [†]
P3P8163AG-08SR	CUL	0°C to +70°C	SOIC-8 (Pb-Free)	2500 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and use registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the failure of the SCILLC product create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death agosociated with such unintended or unauthorized use persons, and reasonable attorney fees andigen in assign or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

- 1. DIMENSIONING AND TOLERANCING PER
- ANSI V14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
- MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)
- PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR
- DIMENSION D DOES NOT INCLODE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.
- 751–01 THRU 751–06 ARE OBSOLETE. NEW STANDARD IS 751–07.

	MILLIN	IETERS	INCHES				
DIM	MIN	MAX	MIN	MAX			
Α	4.80	5.00	0.189	0.197			
в	3.80	4.00	0.150	0.157			
С	1.35	1.75	0.053	0.069			
D	0.33	0.51	0.013	0.020			
G	1.27 BSC		0.050 BSC				
н	0.10	0.25	0.004	0.010			
J	0.19	0.25	0.007	0.010			
к	0.40	1.27	0.016	0.050			
м	0 °	8 °	0 °	8 °			
Ν	0.25	0.50	0.010	0.020			
S	5.80	6.20	0.228	0.244			