
Bipolar Stepper and High-Current DC Motor Driver

FEATURES AND BENEFITS

- 40 V output rating
- 3.2 A DC motor driver
- 1.6 A bipolar stepper driver
- Synchronous rectification
- Internal undervoltage lockout (UVLO)
- · Thermal shutdown circuitry
- Crossover-current protection
- Very thin profile QFN package
- Overcurrent protection
- Low-power sleep mode
- 3.3 and 5 V compatible logic supply

PACKAGE:

36-pin QFN with exposed thermal pad 0.90 mm nominal height (suffix EV)

Not to scale

DESCRIPTION

The A5989 is designed to operate at voltages up to 40 V while driving one bipolar stepper motor at currents up to 1.6 A, and one DC motor at currents up to 3.2 A. The A5989 includes a fixed off-time pulse-width modulation (PWM) regulator for current control. The stepper motor driver features dual 2-bit nonlinear DACs (digital-to-analog converters) that enable control in full, half, and quarter steps. The DC motor is controlled using standard PHASE and ENABLE signals. Fast or slow current decay is selected via the MODE pin. The PWM current regulator uses the Allegro[™] patented mixed decay mode for reduced audible motor noise, increased step accuracy, and reduced power dissipation.

Internal synchronous rectification control circuitry is provided to improve power dissipation during PWM operation.

Protection features include thermal shutdown with hysteresis, undervoltage lockout (UVLO), crossover-current and shortcircuit protection. Special power-up sequencing is not required.

The A5989 is supplied in a leadless 6 mm \times 6 mm \times 0.9 mm, 36-pin QFN package with exposed power tab for enhanced thermal performance. The package is lead (Pb) free, with 100% matte-tin leadframe plating.

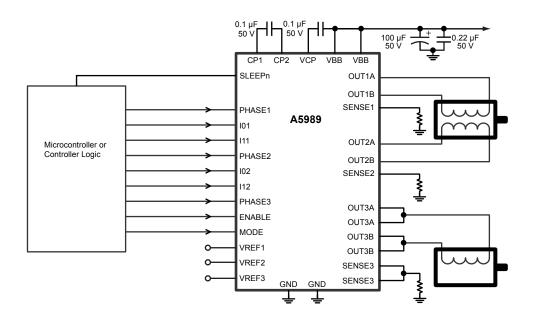
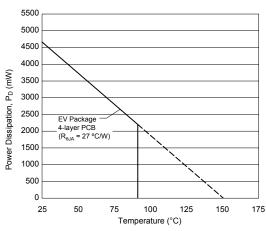


Figure 1: Typical Application Circuit

Bipolar Stepper and High-Current DC Motor Driver

SELECTION GUIDE

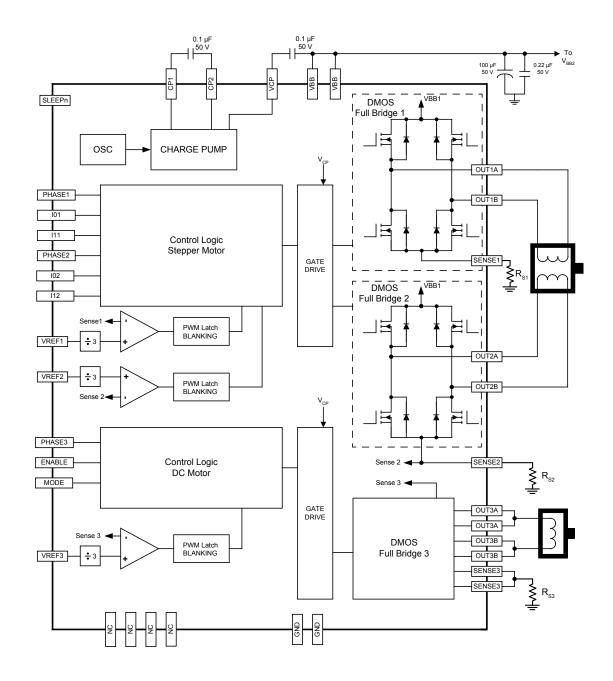
Part Number	Packing
A5989GEVTR-T	1500 pieces per reel


ABSOLUTE MAXIMUM RATINGS

Characteristic	Symbol	Notes	Rating	Units
Load Supply Voltage	V _{BB}		–0.5 to 40	V
Output Output [1]	1	Stepper motor driver, continuous	1.6	А
Output Current ^[1]	IOUT	DC motor driver, continuous	3.2	А
Logic Input Voltage Range	V _{IN}		-0.3 to 7	V
SENSEx Pin Voltage	V _{SENSEx}		0.5	V
		Pulsed t _w < 1 µs	2.5	V
VREF <i>x</i> Pin Voltage	V _{REFx}		2.5	V
Operating Temperature Range	T _A	Range G	-40 to 105	°C
Junction Temperature	T _J (max)		150	°C
Storage Temperature Range	T _{stg}		-55 to 150	°C

^[1] May be limited by duty cycle, ambient temperature, and heat sinking. Under any set of conditions, do not exceed the specified current rating or a Junction Temperature of 150°C.

THERMAL CHARACTERISTICS: May require derating at maximum conditions


C	haracteristic	Symbol	Test Conditions	Min.	Units
Package The	rmal Resistance	$R_{\theta JA}$	EV package, 4-layer PCB based on JEDEC standard JESD51-5	27	°C/W

Power Dissipation versus Ambient Temperature

FUNCTIONAL BLOCK DIAGRAM

ELECTRICAL CHARACTERISTICS [1]: Valid at $T_A = 25^{\circ}C$, $V_{BB} = 40$ V, unless otherwise noted

Characteristics	Symbol	Test Conditions	Min.	Typ. ^[2]	Max.	Units	
Load Supply Voltage Range	V _{BB}	Operating	8	-	40	V	
		Source driver, $I_{OUT} = -1.2 \text{ A}$, $T_{J} = 25^{\circ}\text{C}$	-	250	300	mΩ	
Output On-Resistance (DC Motor Driver)	R _{DS(on)DC}	Sink driver, I _{OUT} = 1.2 A, T _J = 25°C	-	240	300	mΩ	
Output On-Resistance (Stepper Motor		Source driver, $I_{OUT} = -1.2 \text{ A}$, $T_J = 25^{\circ}\text{C}$	-	500	600	mΩ	
Driver)	R _{DS(on)st}	Sink driver, I _{OUT} = 1.2 A, T _J = 25°C	-	480	600	mΩ	
V _f , Outputs		I _{OUT} = 1.2 A	-	_	1.2	V	
Output Leakage	I _{DSS}	Outputs, V_{OUT} = 0 to V_{BB}	-20	_	20	μA	
		I _{OUT} = 0 mA, outputs on, f _{PWM} = 50 kHz, duty cycle = 50%	-	-	23	mA	
VBB Supply Current	I _{BB}	Outputs off	_	12.7	15	mA	
		Sleep mode	-10	< 1	10	μA	
Output Driver Slew Rate	SR _{OUT}	10% to 90%	50	100	150	ns	
Control Logic		·					
	V _{IN(1)}		2	_	_	V	
Logic Input Voltage	V _{IN(0)}		-	_	0.8	V	
Logic Input Current	I _{IN}	V _{IN} = 0 to 5 V	-20	< 1	20	μA	
Input Hysteresis	V _{hys}		150	300	500	mV	
Sleep Rising Threshold	V _{SLEEPn(r)}		2.5	2.7	2.95	V	
Sleep Falling Threshold	V _{SLEEPn(f)}		-	2.4	_	V	
Sleep Hysteresis	V _{SLEEPn(hys)}		250	325	450	mV	
Sleep Input Current	I _{SLEEPn}		-	100	150	μA	
		PWM change to source on	550	700	1000	ns	
		PWM change to source off	35	_	450	ns	
Propagation Delay Times	t _{pd}	PWM change to sink on	550	700	1000	ns	
		PWM change to sink off	35	-	450	ns	
Crossover Delay	t _{CD}		250	425	1000	ns	
Blank Time (DC Motor Driver)	t _{BLANKdc}		2.5	3.2	4	μs	
Blank Time (Stepper Motor Driver)	t _{BLANKst}		0.7	1	1.3	μs	
VREFx Pin Input Voltage Range	V _{REFx}	Operating	0	_	1.5	V	
VREFx Pin Reference Input Current	I _{REF}	V _{REF} = 1.5 V	-	_	±1	μA	
		V _{REF} = 1.5 V, phase current = 100%	-5	_	5	%	
Current Trip-Level Error ^[3]	V _{ERR}	V _{REF} = 1.5 V, phase current = 67%	-5	_	5	%	
		V _{REF} = 1.5 V, phase current = 33%	-15	_	15	%	

Continued on the next page ...

Characteristics	Symbol	Test Conditions	Min.	Typ. ^[2]	Max.	Units
Protection Circuits						
VBB UVLO Threshold	V _{UV(VBB)}	V _{BB} rising	7.3	7.6	7.9	V
VBB Hysteresis	V _{UV(VBB)hys}		400	500	600	mV
Overcurrent Protection Threshold	I _{OVP(STEP)}	Stepper driver	1.6	-	_	А
Overcurrent Protection Threshold	I _{OVP(DC)}	DC driver	3.2	-	_	А
Thermal Shutdown Temperature	T _{JTSD}		155	165	175	°C
Thermal Shutdown Hysteresis	T _{JTSDhys}		_	15	_	°C

^[1] For input and output current specifications, negative current is defined as coming out of (sourcing) the specified device pin.

^[2] Typical data are for initial design estimations only, and assume optimum manufacturing and application conditions. Performance may vary for individual units, within the specified maximum and minimum limits.

 $^{[3]}V_{ERR} = [(V_{REF} / 3) - V_{SENSE}] / (V_{REF} / 3).$

DC Control Logic

PHASE	ENABLE	MODE	$3 \times V_S > V_{REF}$	OUTA	OUTB	Function
1	1	1	false	Н	L	Forward (slow decay SR)
1	1	0	false	Н	L	Forward (fast decay SR)
0	1	1	false	L	н	Reverse (slow decay SR)
0	1	0	false	L	Н	Reverse (fast decay SR)
Х	0	1	Х	L	L	Brake (slow decay SR)
1	0	0	Х	L	Н	Fast decay SR*
0	0	0	Х	Н	L	Fast decay SR*
Х	1	1	true	L	L	OCL chop / slow decay SR
1	1	0	true	L	Н	OCL chop / fast decay SR*
0	1	0	true	Н	L	OCL chop / fast decay SR*

* To prevent reversal of current during fast decay SR - the outputs will go to the high-impedance state as the current gets near zero.

FUNCTIONAL DESCRIPTION

Device Operation

The A5989 is designed to operate one DC motor and one bipolar stepper motor. The currents in each of the full bridges, all N-channel DMOS, are regulated with fixed off-time pulse-widthmodulated (PWM) control circuitry. The peak current in each full bridge is set by the value of an external current sense resistor, R_{Sx} , and a reference voltage, V_{REFx} .

Internal PWM Current Control

Each full-bridge is controlled by a fixed off-time PWM current control circuit that limits the load current to a user-specified value, I_{TRIP} . Initially, a diagonal pair of source and sink DMOS outputs are enabled and current flows through the motor winding and R_{Sx} . When the voltage across the current sense resistor equals the voltage on the VREFx pin, the current sense comparator resets the PWM latch, which turns off the source driver.

The maximum value of current limiting is set by the selection of R_S and the voltage at the VREF input with a transconductance function approximated by:

$$I_{TripMax} = V_{REF} / (3 \times R_S)$$

The stepper motor outputs will define each current step as a percentage of the maximum current, $I_{TripMax}$. The actual current at each step I_{Trip} is approximated by:

$$I_{Trip} = (\% I_{TripMax} / 100) I_{TripMax}$$

where % I_{TripMax} is given in the Step Sequencing table.

Note: It is critical to ensure that the maximum rating of $\pm 500 \text{ mV}$ on each SENSEx pin is not exceeded.

Fixed Off-Time

The internal PWM current control circuitry uses a one-shot circuit to control the time the drivers remain off. The one-shot off-time, t_{off} , is internally set to 30 μ s.

Blanking

This function blanks the output of the current sense comparator when the outputs are switched by the internal current control circuitry. The comparator output is blanked to prevent false detections of overcurrent conditions, due to reverse recovery currents of the clamp diodes, or to switching transients related to the capacitance of the load. DC motors require more blank time than stepper motors. The stepper driver blank time, $t_{BLANKst}$, is approximately 1 μ s. The DC driver blank time, $t_{BLANKdc}$, is approximately 3 μ s.

Control Logic

Stepper motor communication is implemented via industry standard I1, I0, and PHASE interface. This communication logic allows for full-, half-, and quarter-step modes. Each bridge also has an independent V_{REF} input so higher resolution step modes can be programmed by dynamically changing the voltage on the corresponding VREFx pin. The DC motor is controlled using standard PHASE, ENABLE communication. Fast or slow current decay during the off-time is selected via the MODE pin.

Charge Pump (CP1 and CP2)

The charge pump is used to generate a gate supply greater than V_{BB} in order to drive the source-side DMOS gates. A 0.1 μ F ceramic capacitor should be connected between CP1 and CP2 for pumping purposes. A 0.1 μ F ceramic capacitor is required between VCP and VBBx to act as a reservoir to operate the high-side DMOS devices.

Sleep Mode

To minimize power consumption when not in use, the A5989 can be put into Sleep Mode by bringing the SLEEPn pin low. Sleep Mode disables much of the internal circuitry, including the charge pump.

Overcurrent Protection

An overcurrent monitor protects the A5989 from damage due to output shorts. If a short is detected, the A5989 latches the fault and disables the outputs. The latched fault can only be cleared by cycling the power to VBB or by putting the device in Sleep Mode. During OCP events, Absolute Maximum Ratings may be exceeded for a short period of time before outputs are latched off.

Shutdown

In the event of a fault (excessive junction temperature, or low voltage on VCP), the outputs of the device are disabled until the fault condition is removed. At power-up, the undervoltage lock-out (UVLO) circuit disables the drivers.

Synchronous Rectification

When a PWM off cycle is triggered by an internal fixed off-time cycle, load current will recirculate. The A5989 synchronous rectification feature will turn on the appropriate MOSFETs during the current decay. This effectively shorts the body diode with the low $R_{DS(on)}$ driver. This significantly lowers power dissipation. When a zero current level is detected, synchronous rectification is turned off to prevent reversal of the load current.

Mixed Decay Operation

The stepper driver operates in mixed decay mode. Referring to Figure 2, as the trip point is reached, the device goes into fast decay mode for 30.1% of the fixed off-time period. After this fast decay portion, t_{FD} , the device switches to slow decay mode for the remainder of the off-time. The DC driver decay mode is determined by the MODE pin. During transitions from fast decay to slow decay, the drivers are forced off for approximately 600 ns. This feature is added to prevent shoot-through in the bridge. As shown in Figure 2, during this "dead time" portion, synchronous rectification is not active, and the device operates in fast decay and slow decay only.

MODE

Control input MODE is used to toggle between fast decay mode and slow decay mode for the DC driver. A logic high puts the device in slow decay mode. Synchronous rectification is always enabled when ENABLE is low.

Braking

Driving the device in slow decay mode via the MODE pin and applying an ENABLE chop command implements the Braking function. Because it is possible to drive current in both directions through the DMOS switches, this configuration effectively shorts the motor-generated BEMF as long as the ENABLE chop mode is asserted. The maximum current can be approximated by V_{BEMF}/R_L . Care should be taken to ensure that the maximum ratings of the device are not exceeded in worst-case braking situations: high speed and high inertia loads.

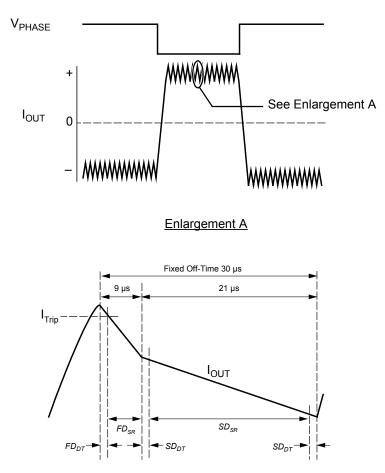
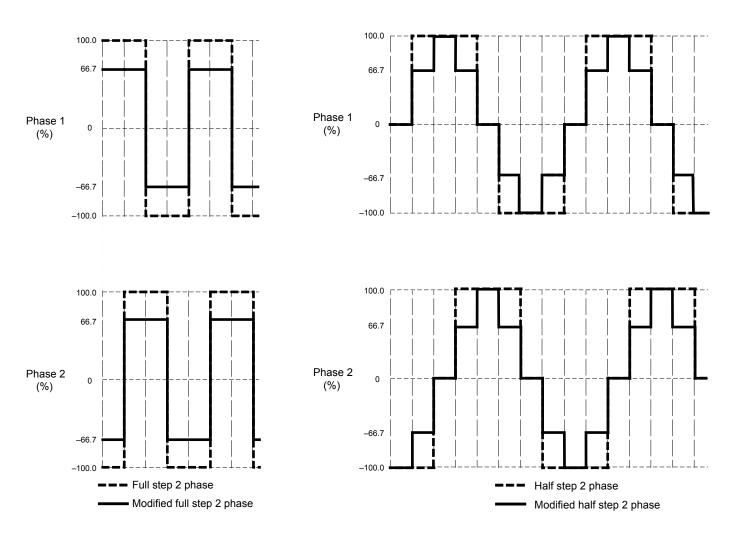



Figure 2: Mixed Decay Mode Operation

STEP SEQUENCING DIAGRAMS

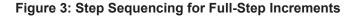
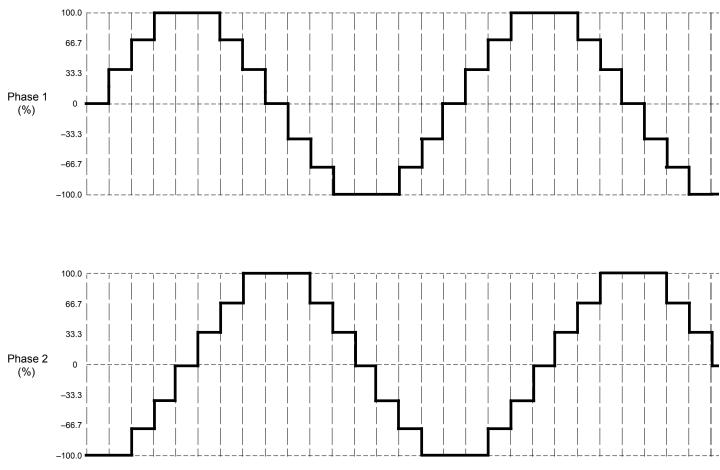
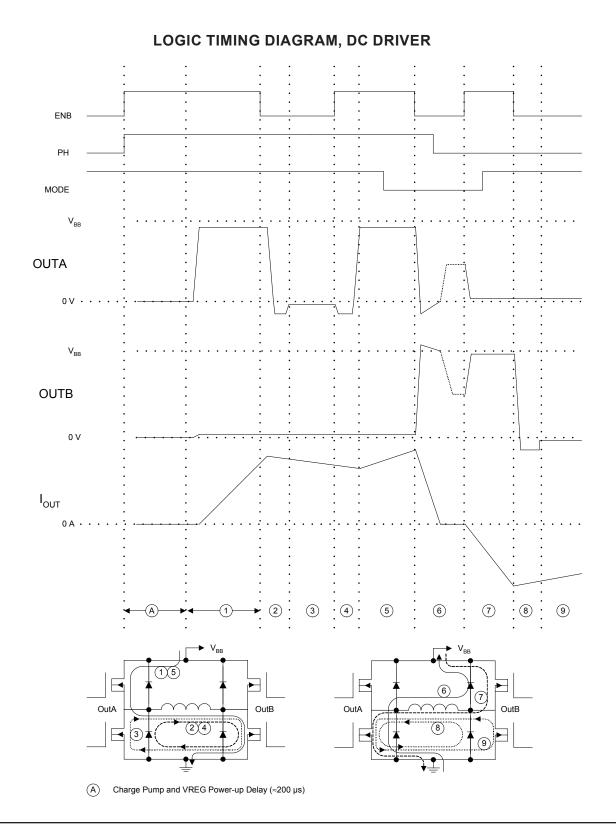


Figure 4: Step Sequencing for Half-Step Increments




Figure 5: Decay Modes for Quarter-Step Increments

Full	1/2	1/4	Phase 1 (%I _{TripMax})	10x	l1x	PHASE	Phase 2 (%I _{TripMax})	10x	l1x	PHASE
	1	1	0	Н	Н	Х	100	L	L	0
		2	33	L	Н	1	100	L	L	0
1	2	3	100/66*	L/H*	L	1	100/66*	L/H*	L	0
		4	100	L	L	1	33	L	Н	0
	3	5	100	L	L	1	0	Н	Н	Х
		6	100	L	L	1	33	L	Н	1
2	4	7	100/66*	L/H*	L	1	100/66*	L/H*	L	1
		8	33	L	Н	1	100	L	L	1
	5	9	0	Н	Н	Х	100	L	L	1
		10	33	L	Н	0	100	L	L	1
3	6	11	100/66*	L/H*	L	0	100/66*	L/H*	L	1
		12	100	L	L	0	33	L	Н	1
	7	13	100	L	L	0	0	Н	Н	Х
		14	100	L	L	0	33	L	Н	0
4	8	15	100/66*	L/H*	L	0	100/66*	L/H*	L	0
		16	33	L	Н	0	100	L	L	0

Step Sequencing Settings

*Denotes modified step mode

APPLICATIONS INFORMATION

Motor Configurations

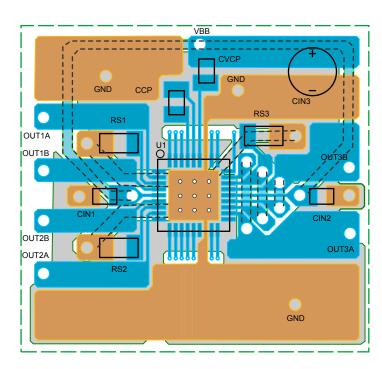
For applications that require either dual DC or dual stepper motors, Allegro offers the A5988 and A5995. Both devices are offered in a 36 pin QFN package. Refer to the Allegro website for datasheets and further information for the devices.

Layout

The printed circuit board should use a heavy groundplane. For optimum electrical and thermal performance, the A5989 must be soldered directly onto the board. On the underside of the A5989 package is an exposed pad, which provides a path for enhanced thermal dissipation. The thermal pad should be soldered directly to an exposed surface on the PCB. Thermal vias are used to transfer heat to other layers of the PCB.

Grounding

In order to minimize the effects of ground bounce and offset issues, it is important to have a low-impedance single-point ground, known as a *star ground*, located very close to the device. By making the connection between the exposed thermal pad and the groundplane directly under the A5989, that area becomes an ideal location for a star ground point.


A low-impedance ground will prevent ground bounce during high-current operation and ensure that the supply voltage remains stable at the input terminal. The recommended PCB layout shown in the diagram below, illustrates how to create a star ground under the device, to serve both as low-impedance ground point and thermal path.

The two input capacitors should be placed in parallel, and as close to the device supply pins as possible. The ceramic capacitor should be closer to the pins than the bulk capacitor. This is necessary because the ceramic capacitor will be responsible for delivering the high-frequency current components.

Sense Pins

The sense resistors, RS*x*, should have a very low-impedance path to ground, because they must carry a large current while supporting very accurate voltage measurements by the current sense comparators. Long ground traces will cause additional voltage drops, adversely affecting the ability of the comparators to accurately measure the current in the windings. As shown in the layout below, the SENSE*x* pins have very short traces to the RS*x* resistors and very thick, low-impedance traces directly to the star ground underneath the device. If possible, there should be no other components on the sense circuits.

Note: When selecting a value for the sense resistors, be sure not to exceed the maximum voltage on the SENSEx pins of ± 500 mV.

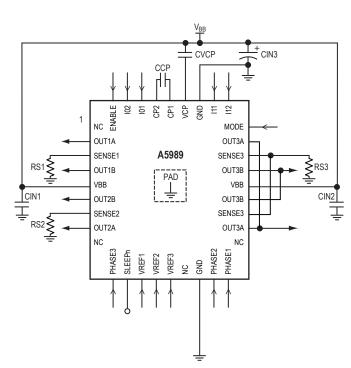
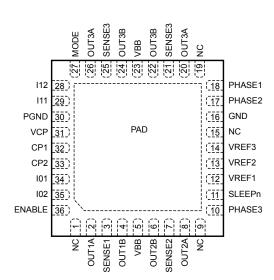
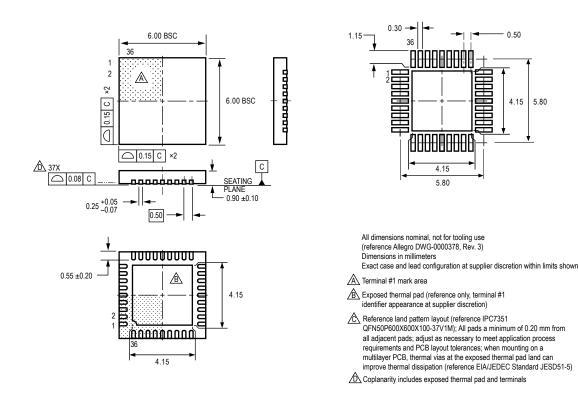



Figure 6: Printed circuit board layout with typical application circuit, shown at right. The copper area directly under the A5989 (U1) is soldered to the exposed thermal pad on the underside of the device. The thermal vias serve also as electrical vias, connecting it to the ground plane on the other side of the PCB, so the two copper areas together form the star ground.

Pinout Diagram


Terminal List Table

Number	Name Description					
1	NC	No Connect				
2	OUT1A	DMOS Full Bridge 1 Output A				
3	SENSE1	Sense Resistor Terminal for Bridge 1				
4	OUT1B	DMOS Full Bridge 1 Output B				
5	VBB	Load Supply Voltage				
6	OUT2B	DMOS Full Bridge 2 Output B				
7	SENSE2	Sense Resistor Terminal for Bridge 2				
8	OUT2A	DMOS Full Bridge 2 Output A				
9	NC	No Connect				
10	PHASE3	Control Input				
11	SLEEPn	Active-Low Sleep Mode Input				
12	VREF1	Analog Input				
13	VREF2	Analog Input				
14	VREF3	Analog Input				
15	NC	No Connect				
16	PGND	Power Ground				
17	PHASE2	Control Input				
18	PHASE1	Control Input				
19	NC	No Connect				
20	OUT3A	DMOS Full Bridge 3 Output A				
21	SENSE3	Sense Resistor Terminal for Bridge 3				
22	OUT3B	DMOS Full Bridge 3 Output B				
23	VBB	Load Supply Voltage				
24	OUT3B	DMOS Full Bridge 3 Output A				
25	SENSE3	Sense Resistor Terminal for Bridge 3				
26	OUT3A	DMOS Full Bridge 3 Output B				
27	MODE	Control Input				
28	l12	Control Input				
29	l11	Control Input				
30	GND	Ground				
31	VCP	P Reservoir Capacitor Terminal				
32	CP1	Charge Pump Capacitor Terminal				
33	CP2	Charge Pump Capacitor Terminal				
34	I01	Control Input				
35	102	Control Input				
36	ENABLE	Control Input				
_	PAD	Exposed pad for enhanced thermal perfor- mance. Should be soldered to the PCB				

0.50

4.15 5.80

PACKAGE OUTLINE DRAWING

EV Package, 36-Pin QFN with Exposed Thermal Pad

Bipolar Stepper and High-Current DC Motor Driver

Revision History

Number	Date	Description			
-	June 20, 2016	Initial release			
1	July 29, 2016	Updated Selection Guide table			
2	November 29, 2017	Updated Step Sequences Settings table (page 9)			
3	January 29, 2019	Minor editorial updates			
4	February 20, 2020	Minor editorial updates			
5	February 28, 2022	Updated package drawing (page 13)			

Copyright 2022, Allegro MicroSystems.

Allegro MicroSystems reserves the right to make, from time to time, such departures from the detail specifications as may be required to permit improvements in the performance, reliability, or manufacturability of its products. Before placing an order, the user is cautioned to verify that the information being relied upon is current.

Allegro's products are not to be used in any devices or systems, including but not limited to life support devices or systems, in which a failure of Allegro's product can reasonably be expected to cause bodily harm.

The information included herein is believed to be accurate and reliable. However, Allegro MicroSystems assumes no responsibility for its use; nor for any infringement of patents or other rights of third parties which may result from its use.

Copies of this document are considered uncontrolled documents.

For the latest version of this document, visit our website: www.allegromicro.com

