

P-CHANNEL MOSFET Qualified per MIL-PRF-19500/595

DESCRIPTION

This 2N7236 switching transistor is military qualified up to the JANTXV level for high-reliability applications. This device is also available in a low profile U surface mount package. Microsemi also offers numerous other transistor products to meet higher and lower power ratings with various switching speed requirements in both through-hole and surface-mount packages.

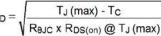
Important: For the latest information, visit our website http://www.microsemi.com.

FEATURES

- JEDEC registered 2N7236 number.
- JAN, JANTX, and JANTXV qualifications are available per MIL-PRF-19500/595. (See <u>part nomenclature</u> for all available options.)
- RoHS compliant by design.

APPLICATIONS / BENEFITS

- Low-profile design.
- Military and other high-reliability applications.


MAXIMUM RATINGS @ $T_A = +25 \ ^{\circ}C$ unless otherwise stated

Parameters / Test Conditions		Symbol	Value	Unit	
Operating & Storage Junction Temperature Range		T _J & T _{stg}	-55 to +150	°C	
Thermal Resistance Junction-to-Case		R _{eJC}	1.0	°C/W	
Total Power Dissipation	@ T _A = +25 °C	Ρτ	4	W	
	@ $T_c = +25 \circ C^{(1)}$	ΓŢ	125	vv	
Gate-Source Voltage, dc		V_{GS}	± 20	V	
Drain Current, dc @ T_{C} = +25 ${}^{\circ}C$ (2)		I _{D1}	-18	Α	
Drain Current, dc @ $T_c = +100 \ {}^{\circ}C^{(2)}$		I _{D2}	-11	Α	
Off-State Current (Peak Total Value) ⁽³⁾		I _{DM}	-72	A (pk)	
Source Current		ls	-18	Α	

NOTES: 1. Derate linearly by 1.0 W/ $^{\circ}$ C for T_C > +25 $^{\circ}$ C.

 $I_{DM} = 4 \times I_{D1}$ as calculated in note 2.

2. The following formula derives the maximum theoretical I_D limit. I_D is limited by package and internal wires and may also be limited by pin diameter:

<u>Qualified Levels</u>: JAN, JANTX, and JANTXV

TO-254AA Package

Also available in:

"U" (SMD-1 or TO-267AB) package (surface mount) 2N7236U

MSC – Lawrence

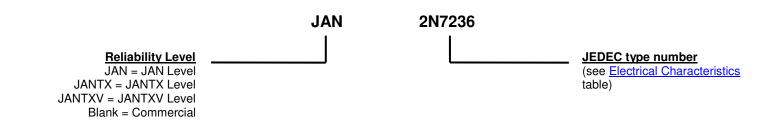
6 Lake Street, Lawrence, MA 01841 Tel: 1-800-446-1158 or (978) 620-2600 Fax: (978) 689-0803

MSC – Ireland

Gort Road Business Park, Ennis, Co. Clare, Ireland Tel: +353 (0) 65 6840044 Fax: +353 (0) 65 6822298

Website:

www.microsemi.com


3.

MECHANICAL and PACKAGING

- CASE: Ceramic and gold over nickel plated steel.
- TERMINALS: Gold over nickel plated tungsten/copper.
- MARKING: Manufacturer's ID, part number, date code, BeO.
- WEIGHT: 6.5 grams.
- See <u>Package Dimensions</u> on last page.

PART NOMENCLATURE

	SYMBOLS & DEFINITIONS					
Symbol	Definition					
di/dt	Rate of change of diode current while in reverse-recovery mode, recorded as maximum value.					
I _F	Forward current					
R _G	Gate drive impedance					
V _{DD}	Drain supply voltage					
V _{DS}	Drain source voltage, dc					
V _{GS}	Gate source voltage, dc					

Parameters / Test Conditions	Symbol	Min.	Max.	Unit
OFF CHARACTERISTICS	·	•	•	
Drain-Source Breakdown Voltage				
$V_{GS} = 0 V, I_{D} = 1.0 mA$	V _{(BR)DSS}	-100		V
Gate-Source Voltage (Threshold) $V_{DS} \ge V_{GS}$, $I_D = -0.25 \text{ mA}$ $V_{DS} \ge V_{GS}$, $I_D = -0.25 \text{ mA}$, $T_J = +125 \text{ °C}$ $V_{DS} \ge V_{GS}$, $I_D = -0.25 \text{ mA}$, $T_J = -55 \text{ °C}$	V _{GS(th)1} V _{GS(th)2} V _{GS(th)3}	-2.0 -1.0	-4.0 -5.0	V
Gate Current $V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$ $V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}, T_J = +125 \text{ °C}$	I _{GSS1} I _{GSS2}		±100 ±200	nA
Drain Current $V_{GS} = 0 V, V_{DS} = -80 V$	I _{DSS1}		-25	μA
Drain Current $V_{GS} = 0 V, V_{DS} = -100 V, T_{J} = +125 $ °C	I _{DSS2}		-1.0	mA
Drain Current $V_{GS} = 0 V, V_{DS} = -80 V, T_{J} = +125 $ °C	I _{DSS3}		-0.25	mA
Static Drain-Source On-State Resistance V_{GS} = 10 V, I_D = -11.0 A pulsed	r _{DS(on)1}		0.20	Ω
Static Drain-Source On-State Resistance V_{GS} = -10 V, I_D = -18.0 A pulsed	r _{DS(on)2}		0.22	Ω
Static Drain-Source On-State Resistance $T_J = +125 \text{ °C}$ $V_{GS} = -10 \text{ V}, I_D = -11.0 \text{ A pulsed}$	r _{DS(on)3}		0.34	Ω
Diode Forward Voltage $V_{GS} = 0 \text{ V}, I_D = -18.0 \text{ A pulsed}$	V _{SD}		-5.0	V

ELECTRICAL CHARACTERISTICS @ $T_A = +25$ °C, unless otherwise noted

DYNAMIC CHARACTERISTICS

Parameters / Test Conditions	Symbol	Min.	Max.	Unit
Gate Charge:				
On-State Gate Charge V_{GS} = -10 V, I _D = -18.0 A, V _{DS} = -50 V	$Q_{g(on)}$		60	nC
Gate to Source Charge V_{GS} = -10 V, I_D = -18.0 A, V_{DS} = -50 V	Q _{gs}		13	nC
Gate to Drain Charge V_{GS} = -10 V, I _D = -18.0 A, V _{DS} = -50 V	Q _{gd}		35.2	nC

SWITCHING CHARACTERISTICS

Parameters / Test Conditions	Symbol	Min.	Max.	Unit
Turn-on delay time I_D = -11.0 A, V_{GS} = -10 V, R_G = 9.1 Ω , V_{DD} = -50 V	t _{d(on)}		35	ns
Rinse time I_D = -11.0 A, V_{GS} = -10 V, R_G = 9.1 Ω, V_{DD} = -50 V	t _r		85	ns
Turn-off delay time $I_D = -11.0 \text{ A}, V_{GS} = -10 \text{ V}, R_G = 9.1 \Omega, V_{DD} = -50 \text{ V}$	t _{d(off)}		85	ns
Fall time $I_D = -11.0 \text{ A}, \text{ V}_{GS} = -10 \text{ V}, \text{ R}_G = 9.1 \Omega, \text{ V}_{DD} = -50 \text{ V}$	t _f		65	ns
Diode Reverse Recovery Time di/dt \leq 100 A/µs, V _{DD} \leq 30 V, I _F = -18.0 A	t _{rr}		280	ns

GRAPHS

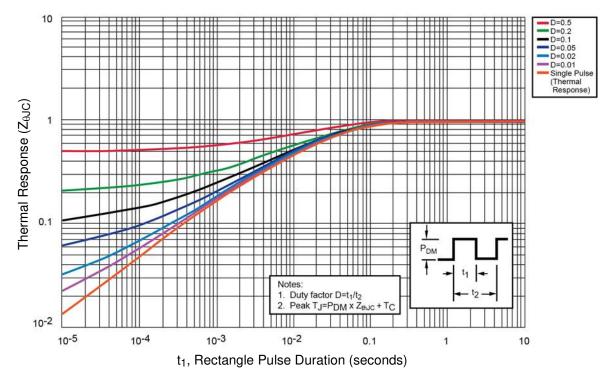


FIGURE 1 Thermal Impedance Curves

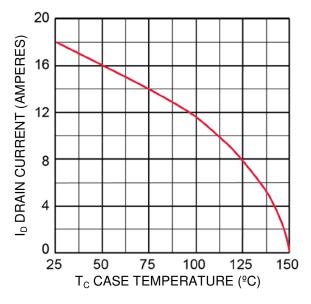
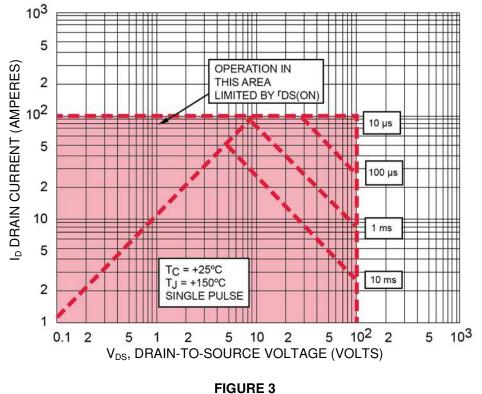
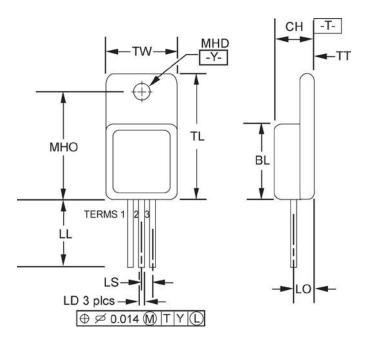



FIGURE 2 Maximum Drain Current vs Case Temperature Graphs


GRAPHS (continued)

Maximum Safe Operating Area

PACKAGE DIMENSIONS

NOTES:

- 1. Dimensions are in inches.
- 2. Millimeters are given for general information only.
- 3. Protrusion thickness of ceramic eyelets included in dimension LL.
- 4. All terminals are isolated from case.
- 5. In accordance with ASME Y14.5M, diameters are equivalent to Φx symbology.

	Dimensions				
Ltr	Inch		Millim	Notes	
	Min	Max	Min	Max	
BL	.535	.545	13.59	13.84	
СН	.249	.260	6.32	6.60	
LD	.035	.045	0.89	1.14	
LL	.510	.570	12.95	14.48	3
LO	.150	.150 BSC		3.81 BSC	
LS	.150 BSC		3.81 BSC		
MHD	.139	.149	3.53	3.78	
МНО	.665	.685	16.89	17.40	
TL	.790	.800	20.07	20.32	4
TT	.040	.050	1.02	1.27	4
TW	.535	.545	13.59	13.84	
Term 1	Drain				
Term 2	Source				
Term 3	Gate				