

NOT RECOMMENDED FOR NEW DESIGNS RECOMMENDED REPLACEMENT PART ISL8393

DATASHEET

ISI 8394

Low-Voltage, Single and Dual Supply, Quad SPDT, Analog Switches

FN6038 Rev 3.00 March 13, 2006

The Intersil ISL8394 device is a precision, quad SPDT analog switches designed to operate from a single +2V to +12V supply or from a $\pm 2V$ to $\pm 6V$ supply. Targeted applications include battery powered equipment that benefit from the devices' low power consumption (5 μ W), low leakage currents (2.5nA max), and fast switching speeds (toN = 50ns, toFF = 30ns). A 4 Ω maximum RoN flatness ensures signal fidelity, while channel to channel mismatch is guaranteed to be less than 2 Ω .

The ISL8394 is a quad single-pole/double-throw (SPDT) device and can be used as a quad SPDT, a quad 2:1 multiplexer, a single 4:1 multiplexer, or a dual 2-channel differential multiplexer.

Table 1 summarizes the performance of this family. For higher performance, pin compatible versions, see the ISL43240 data sheet.

TABLE 1. FEATURES AT A GLANCE

	ISL8394
Configuration	Quad SPDT
±5V R _{ON}	17Ω
±5V t _{ON} /t _{OFF}	50ns/30ns
5V R _{ON}	25Ω
5V t _{ON} /t _{OFF}	80ns/40ns
3V R _{ON}	75Ω
3V t _{ON} /t _{OFF}	150ns/75ns
Package	20 Ld SOIC

Ordering Information

PART NUMBER	PART MARKING	TEMP. RANGE (°C)	PACKAGE	PKG. DWG.#
ISL8394IB	ISL8394IB	-40 to 85	20 Ld SOIC	M20.3
ISL8394IBZ (See Note)	ISL8394IBZ	-40 to 85	20 Ld SOIC (Pb-free)	M20.3

^{*}Add "-T" suffix for tape and reel.

NOTE: Intersil Pb-free plus anneal products employ special Pb-free material sets; molding compounds/die attach materials and 100% matte tin plate termination finish, which are RoHS compliant and compatible with both SnPb and Pb-free soldering operations. Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.

Features

- Drop-in Replacement for MAX394
- · Four Separately Controlled SPDT Switches
- ON Resistance (R_{ON}) 17 Ω (Typ) 35 Ω (Max)
- R_{ON} Matching Between Channels.....<1Ω
- Low Charge Injection 10pC (Max)
- Low Leakage Current (Max at 85°C) 2.5nA
- Fast Switching Action

 - t_{OFF} 30ns
- · Guaranteed Break-Before-Make
- Minimum 2000V ESD Protection per Method 3015.7
- · TTL, CMOS Compatible
- · Pb-Free Plus Anneal Available (RoHS Compliant)

Applications

- · Battery Powered, Handheld, and Portable Equipment
 - Barcode Scanners
 - Laptops, Notebooks, Palmtops
- · Communications Systems
 - Radios
 - Base Stations
 - RF "Tee" Switches
- · Test Equipment
 - Ultrasound
 - CAT/PET SCAN
 - Electrocardiograph
- · Audio and Video Switching
- General Purpose Circuits
 - +3V/+5V DACs and ADCs
 - Digital Filters
 - Operational Amplifier Gain Switching Networks
 - High Frequency Analog Switching
 - High Speed Multiplexing

Related Literature

- Technical Brief TB363 "Guidelines for Handling and Processing Moisture Sensitive Surface Mount Devices (SMDs)"
- Application Note AN557 "Recommended Test Procedures for Analog Switches"

Pinout (Note 1)

ISL8394 (SOIC) TOP VIEW IN1 20 IN4 NO1 19 NO4 18 COM4 COM1 3 NC1 4 17 NC4 V- 5 16 V+ 15 N.C. GND 6 NC2 7 14 NC3 13 COM3 COM2 8 12 NO3 NO2 9 IN2 10 11 IN3

NOTE:

1. Switches Shown for Logic "0" Input.

Truth Table

LOGIC	ISL8394 NO SW	ISL8394 NC SW
0	OFF	ON
1	ON	OFF

NOTE: Logic "0" \leq 0.8V. Logic "1" \geq 2.4V.

Pin Descriptions

PIN	FUNCTION
V+	Positive Power Supply Input
V-	Negative Power Supply Input. Connect to GND for Single Supply Configurations.
GND	Ground Connection
IN	Digital Control Input
COM	Analog Switch Common Pin
NO	Analog Switch Normally Open Pin
NC	Analog Switch Normally Closed Pin
N.C.	No Internal Connection

Absolute Maximum Ratings V+ to V -0.3 to15V V+ to GND -0.3 to15V V- to GND -15 to 0.3V All Other Pins (Note 2) ((V-) - 0.3V) to ((V+) + 0.3V) Continuous Current (Any Terminal) 30mA Peak Current, IN, NO, NC, or COM (Pulsed 1ms, 10% Duty Cycle, Max) 100mA ESD Rating (Per MIL-STD-883 Method 3015) >2kV

Thermal Information

Thermal Resistance (Typical, Note 3)	θ _{JA} (°C/W)
20 Ld SOIC Package	95
Maximum Junction Temperature (Plastic Package)	
Moisture Sensitivity (See Technical Brief TB363)	
SOIC Package	Level 1
Maximum Storage Temperature Range68	5°C to 150°C
Maximum Lead Temperature (Soldering 10s) (Lead Tips Only)	300°C

Operating Conditions

Temperature Range ISL8394IX-40°C to 85°C

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTES:

- 2. Signals on NC, NO, COM, or IN exceeding V+ or V- are clamped by internal diodes. Limit forward diode current to maximum current ratings.
- 3. θ_{JA} is measured with the component mounted on a low effective thermal conductivity test board in free air. See Tech Brief TB379 for details.

Electrical Specifications: ±5V Supply Test Conditions: V_{SUPPLY} = ±4.5V to ±5.5V, GND = 0V, V_{INH} = 2.4V, V_{INL} = 0.8V (Note 4), Unless Otherwise Specified

PARAMETER	TEST CONDITIONS	TEMP (°C)	(NOTE 5) MIN	TYP	(NOTE 5) MAX	UNITS
ANALOG SWITCH CHARACTERIS	BTICS				1	
Analog Signal Range, V _{ANALOG}		Full	V-	-	V+	V
ON Resistance, R _{ON}	V_S = ±4.5V, I_{COM} = 10mA, V_{NO} or V_{NC} = ±3.5V,	25	-	17	35	Ω
	(See Figure 5)	Full	-	-	45	Ω
R _{ON} Matching Between Channels,	$V_S = \pm 5V$, $I_{COM} = 10$ mA, V_{NO} or $V_{NC} = \pm 3V$	25	-	0.5	2	Ω
ΔR_{ON}		Full	-	-	4	Ω
R _{ON} Flatness, R _{FLAT(ON)}	$_{S}$ = ±5V, I _{COM} = 10mA, V _{NO} or V _{NC} = ±3V, 0V,	25	-	-	4	Ω
	(Note 7)	Full	-	-	6	Ω
NO or NC OFF Leakage Current,	$V_S = \pm 5.5 \text{V}, V_{COM} = \pm 4.5 \text{V}, V_{NO} \text{ or } V_{NC} = \pm 4.5 \text{V},$	25	-0.2	-	0.2	nA
I _{NO(OFF)} or I _{NC(OFF)}	(Note 6)	Full	-2.5	-	2.5	nA
COM ON Leakage Current,	$V_S = \pm 5.5V$, $V_{COM} = V_{NO}$ or $V_{NC} = \pm 4.5V$, (Note 6)	25	-0.4	-	0.4	nA
I _{COM(ON)}		Full	-5	-	5	nA
DIGITAL INPUT CHARACTERISTIC	cs					
Input Voltage High, V _{INH}		Full	2.4	-	-	V
Input Voltage Low, V _{INL}		Full	-	-	0.8	V
Input Current, I _{INH} , I _{INL}	$V_S = \pm 5.5 V$, $V_{IN} = 0 V$ or $V +$	Full	-1		1	μА
DYNAMIC CHARACTERISTICS			1			
Turn-ON Time, t _{ON}	V_S = ±4.5V, V_{NQ} or V_{NC} = ±3V, R_L = 300 Ω , C_L = 35pF,	25	-	50	130	ns
	V _{IN} = 0 to 3V, (See Figure 1)	Full	-	-	175	ns
Turn-OFF Time, t _{OFF}	V_S = ±4.5V, V_{NQ} or V_{NC} = ±3V, R_L = 300 Ω , C_L = 35pF,	25	-	30	75	ns
	V _{IN} = 0 to 3V, (See Figure 1)	Full	-	-	100	ns
Break-Before-Make Time Delay, t _D	V_S = ± 5.5 V, V_{NO} or V_{NC} = 3V, R_L = 300 Ω , C_L = 35pF, V_{IN} = 0 to 3V, (See Figure 3)	25	2	10	-	ns
Charge Injection, Q	C_L = 1.0nF, V_G = 0V, R_G = 0 Ω , (See Figure 2)	25	-	5	10	рС
NO OFF Capacitance, COFF	f = 1MHz, V _{NO} or V _{NC} = V _{COM} = 0V, (See Figure 7)	25	-	12	-	pF

Electrical Specifications: ±5V Supply Test Conditions: V_{SUPPLY} = ±4.5V to ±5.5V, GND = 0V, V_{INH} = 2.4V, V_{INL} = 0.8V (Note 4), Unless Otherwise Specified (Continued)

PARAMETER	TEST CONDITIONS	TEMP (°C)	(NOTE 5) MIN	TYP	(NOTE 5) MAX	UNITS
NC OFF Capacitance, COFF	f = 1MHz, V _{NO} or V _{NC} = V _{COM} = 0V, (See Figure 7)	25	-	12	-	pF
COM ON Capacitance, C _{COM(ON)}	f = 1MHz, V _{NO} or V _{NC} = V _{COM} = 0V, (See Figure 7)	25	-	39	-	pF
OFF Isolation	R_L = 50 Ω , C_L = 15pF, f = 1MHz, V_{NO} or V_{NC} = 1 V_{RMS} , (See Figures 4 and 6)	25	-	71	-	dB
Crosstalk, (Note 8)		25	-	-92	-	dB
POWER SUPPLY CHARACTERIST	rics					
Power Supply Range		Full	±2.0	-	±6	V
Positive Supply Current, I+	V_S = ±5.5V, V_{IN} = 0V or V+, Switch On or Off	25	-1	0.01	1	μА
		Full	-1	-	1	μА
Negative Supply Current, I-		25	-1	0.01	1	μА
		Full	-1	-	1	μА

NOTES:

- 4. V_{IN} = Input voltage to perform proper function.
- 5. The algebraic convention, whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
- 6. Leakage parameter is 100% tested at high temp, and guaranteed by correlation at 25°C.
- 7. Flatness is defined as the difference between maximum and minimum value of on-resistance over the specified analog signal range. Flatness specifications are guaranteed only with specified voltages.
- 8. Between any two switches.

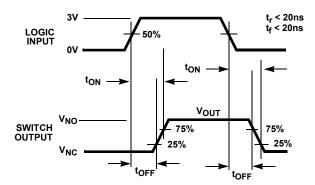
Electrical Specifications: 5V Supply

Test Conditions: V+ = +4.5V to +5.5V, V- = GND = 0V, V_{INH} = 2.4V, V_{INL} = 0.8V (Note 4), Unless Otherwise Specified

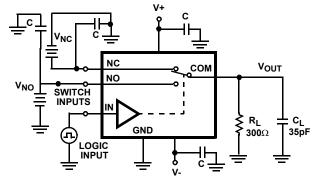
PARAMETER	TEST CONDITIONS	TEMP (°C)	MIN (NOTE 5)	TYP	MAX (NOTE 5)	UNITS
ANALOG SWITCH CHARACTERIS	STICS					
Analog Signal Range, V _{ANALOG}		Full	0	-	V+	V
ON Resistance, R _{ON}	V+ = 5V, I _{COM} = 1.0mA, V _{NO} or V _{NC} = 3.5V,	25	-	25	65	Ω
	(See Figure 5)	Full	-	-	75	Ω
R _{ON} Matching Between Channels,	V+ = 5V, I _{COM} = 1.0mA, V _{NO} or V _{NC} = 3V	25	-	0.5	2	Ω
ΔR_{ON}		Full	-	-	4	Ω
R _{ON} Flatness, R _{FLAT(ON)}	V+ = 5V, I _{COM} = 1.0mA, V _{NO} or V _{NC} = 1V, 2V, 3V,	25	-	-	6	Ω
	(Note 7)	Full	-	-	8	Ω
NO or NC OFF Leakage Current,	V+ = 5.5V, V _{COM} = 1V, 4.5V, V _{NO} or V _{NC} = 4.5V, 1V, (Note 6)	25	-0.2	-	0.2	nA
I _{NO(OFF)} or I _{NC(OFF)}		Full	-2.5	-	2.5	nA
COM ON Leakage Current,	$V+ = 5.5V$, $V_{COM} = V_{NO}$ or $V_{NC} = 4.5V$, (Note 6)	25	-0.4	-	0.4	nA
I _{COM(ON)}		Full	-5	-	5	nA
DIGITAL INPUT CHARACTERISTI	cs		1	I.	"	
Input Voltage High, V _{INH}		Full	2.4	-	-	V
Input Voltage Low, V _{INL}		Full	-	-	0.8	V
Input Current, I _{INH} , I _{INL}	V+ = 5.5V, V _{IN} = 0V or V+	Full	-1	-	1	μΑ
DYNAMIC CHARACTERISTICS			1	I.	"	
Turn-ON Time, t _{ON}	V+ = 4.5V, V_{NO} or V_{NC} = 3V, R_L = 300 Ω , C_L = 35pF,	25	-	80	250	ns
	V _{IN} = 0 to 3V, (See Figure 1)	Full	-	-	300	ns

Electrical Specifications: 5V Supply

Test Conditions: V+ = +4.5V to +5.5V, V- = GND = 0V, V_{INH} = 2.4V, V_{INL} = 0.8V (Note 4), Unless Otherwise Specified (Continued)


PARAMETER	TEST CONDITIONS	TEMP (°C)	MIN (NOTE 5)	TYP	MAX (NOTE 5)	UNITS
Turn-OFF Time, t _{OFF}	$V+ = 4.5V$, V_{NO} or $V_{NC} = 3V$, $R_L = 300\Omega$, $C_L = 35pF$,	25	-	40	125	ns
	V _{IN} = 0 to 3V, (See Figure 1)	Full	-	-	175	ns
Break-Before-Make Time Delay, t _D	V+ = 5.5V, V_{NO} or V_{NC} = 3V, R_L = 300 Ω , C_L = 35pF, V_{IN} = 0 to 3V, (See Figure 3)	25	5	20	-	ns
Charge Injection, Q	C_L = 1.0nF, V_G = 0V, R_G = 0 Ω , (See Figure 2)	25	-	3	5	рС
POWER SUPPLY CHARACTERIST	rics	•				
Power Supply Range		Full	2	-	12	V
Positive Supply Current, I+	V+ = 5.5V, V- = 0V, V _{IN} = 0V or V+, Switch On or Off	25	-1	0.01	1	μА
		Full	-1	-	1	μА
Negative Supply Current, I-		25	-1	0.01	1	μА
		Full	-1	-	1	μΑ

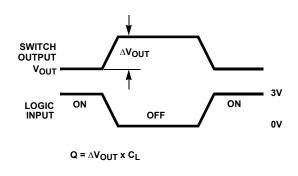
Electrical Specifications: 3.3V Supply


Test Conditions: V+ = +3.0V to +3.6V, V- = GND = 0V, V_{INH} = 2.4V, V_{INL} = 0.8V (Note 4), Unless Otherwise Specified

PARAMETER	TEST CONDITIONS	TEMP (°C)	MIN (NOTE 5)	TYP	MAX (NOTE 5)	UNITS
ANALOG SWITCH CHARACTERIS	STICS		1			1
Analog Signal Range, V _{ANALOG}		Full	0	-	V+	V
ON Resistance, R _{ON}	V+ = 3V, I _{COM} = 1.0mA, V _{NO} or V _{NC} = 1.5V	25	-	75	185	Ω
		Full	-	-	250	Ω
NO or NC OFF Leakage Current,	V+ = 3.6V, V _{COM} = 0V, 4.5V, V _{NO} or V _{NC} = 3V, 1V,	25	-0.2	-	0.2	nA
I _{NO(OFF)} or I _{NC(OFF)}	(Note 6)	Full	-2.5	-	2.5	nA
COM ON Leakage Current,	$V+ = 3.6V$, $V_{COM} = V_{NO}$ or $V_{NC} = 3V$, (Note 6)	25	-0.4	-	0.4	nA
ICOM(ON)		Full	-5	-	5	nA
DIGITAL INPUT CHARACTERISTI	cs		1			
Input Voltage High, V _{INH}		Full	2.4	-	-	V
Input Voltage Low, V _{INL}		Full	-	-	0.8	V
Input Current, I _{INH} , I _{INL}	V+ = 3.6V, V _{IN} = 0V or V+	Full	-1	-	1	μА
DYNAMIC CHARACTERISTICS						
Turn-ON Time, t _{ON}	V+ = 3.0V, V_{NO} or V_{NC} = 1.5V, R_L = 300 Ω , C_L = 35pF, V_{IN} = 0 to 3V, (See Figure 1)	25	-	150	400	ns
Turn-OFF Time, t _{OFF}	V+ = 3.0V, V_{NO} or V_{NC} = 1.5V, R_L = 300 Ω , C_L = 35pF, V_{IN} = 0 to 3V, (See Figure 1)	25	-	75	150	ns
Break-Before-Make Time Delay, t _D	V+ = 3.6V, V_{NO} or V_{NC} = 1.5V, R_L = 300 Ω , C_L = 35pF, V_{IN} = 0 to 3V, (See Figure 3)	25	5	20	-	ns
Charge Injection, Q	C_L = 1.0nF, V_G = 0V, R_G = 0 Ω , (See Figure 2)	25	-	1	5	рС
POWER SUPPLY CHARACTERIST	rics		1			
Power Supply Range		Full	2	-	12	V
Positive Supply Current, I+	V+ = 3.6V, V- = 0V, V _{IN} = 0V or V+, Switch On or Off	25	-1	0.01	1	μА
		Full	-1	-	1	μА
Negative Supply Current, I-		25	-1	0.01	1	μА
		Full	-1	-	1	μА

Test Circuits and Waveforms

Logic input waveform is inverted for switches that have the opposite logic sense.


Repeat test for all switches. C_L includes fixture and stray capacitance.

$$V_{OUT} = V_{(NO \text{ or NC})} \frac{R_L}{R_L + R_{(ON)}}$$

FIGURE 1B. TEST CIRCUIT

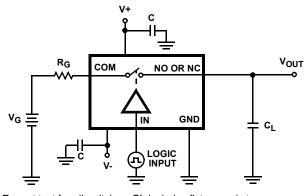
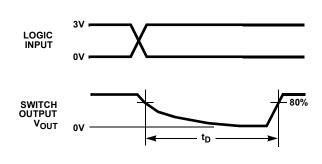
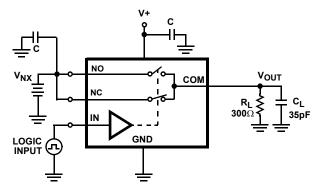

FIGURE 1A. MEASUREMENT POINTS

FIGURE 1. SWITCHING TIMES

Logic input waveform is inverted for switches that have the opposite logic sense.


FIGURE 2A. MEASUREMENT POINTS



Repeat test for all switches. CL includes fixture and stray capacitance.

FIGURE 2B. TEST CIRCUIT

FIGURE 2. CHARGE INJECTION

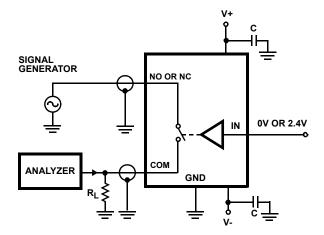

Repeat test for all switches. C_L includes fixture and stray capacitance.

FIGURE 3A. MEASUREMENT POINTS

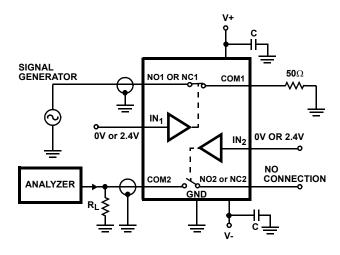
FIGURE 3B. TEST CIRCUIT

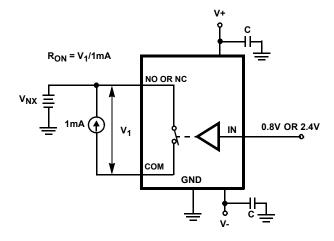
FIGURE 3. BREAK-BEFORE-MAKE TIME

Test Circuits and Waveforms (Continued)

Repeat test for all switches.

FIGURE 4. OFF ISOLATION TEST CIRCUIT




FIGURE 6. CROSSTALK TEST CIRCUIT

Detailed Description

The ISL8394 quad analog switches offer precise switching capability from a bipolar $\pm 2\text{V}$ to $\pm 6\text{V}$ or a single 2V to 12V supply with low on-resistance (17 Ω) and high speed operation (toN = 50ns, toFF = 30ns). The devices are especially well suited to portable battery powered equipment thanks to the low operating supply voltage (2V), low power consumption (5 μ W), low leakage currents (2.5nA max). High frequency applications also benefit from the wide bandwidth, and the very high off isolation and crosstalk rejection.

Supply Sequencing And Overvoltage Protection

With any CMOS device, proper power supply sequencing is required to protect the device from excessive input currents which might permanently damage the IC. All I/O pins contain ESD protection diodes from the pin to V+ and to V- (see

Repeat test for all switches.

FIGURE 5. RON TEST CIRCUIT

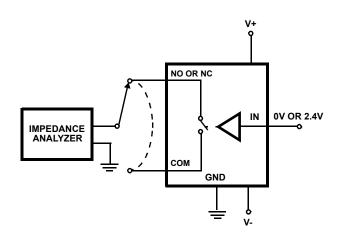


FIGURE 7. CAPACITANCE TEST CIRCUIT

Figure 8). To prevent forward biasing these diodes, V+ and V- must be applied before any input signals, and input signal voltages must remain between V+ and V-. If these conditions cannot be guaranteed, then one of the following two protection methods should be employed.

Logic inputs can easily be protected by adding a $1k\Omega$ resistor in series with the input (see Figure 8). The resistor limits the input current below the threshold that produces permanent damage, and the sub-microamp input current produces an insignificant voltage drop during normal operation.

Adding a series resistor to the switch input defeats the purpose of using a low R_{ON} switch, so two small signal diodes can be added in series with the supply pins to provide overvoltage protection for all pins (see Figure 8). These additional diodes limit the analog signal from 1V below V+ to

1V above V-. The low leakage current performance is unaffected by this approach, but the switch resistance may increase, especially at low supply voltages.

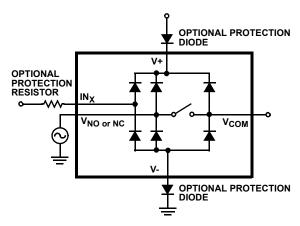


FIGURE 8. OVERVOLTAGE PROTECTION

Power-Supply Considerations

The ISL8394 construction is typical of most CMOS analog switches, in that they have three supply pins: V+, V-, and GND. V+ and V- drive the internal CMOS switches and set their analog voltage limits, so there are no connections between the analog signal path and GND. Unlike switches with a 13V maximum supply voltage, the ISL8394 15V maximum supply voltage provides plenty of room for the 10% tolerance of 12V supplies (\pm 6V or 12V single supply), as well as room for overshoot and noise spikes.

This family of switches performs equally well when operated with bipolar or single voltage supplies. The minimum recommended supply voltage is 2V or ±2V. It is important to note that the input signal range, switching times, and on-resistance degrade at lower supply voltages. Refer to the electrical specification tables and *Typical Performance* curves for details.

V+ and GND power the internal logic (thus setting the digital switching point) and level shifters. The level shifters convert the logic levels to switched V+ and V- signals to drive the analog switch gate terminals.

Logic-Level Thresholds

V+ and GND power the internal logic stages, so V- has no affect on logic thresholds. This switch family is TTL compatible (0.8V and 2.4V) over a V+ supply range of 2.7V to 10V. At 12V the V_{IH} level is about 2.5V. This is still below the TTL guaranteed high output minimum level of 2.8V, but noise margin is reduced. For best results with a 12V supply, use a logic family that provides a V_{OH} greater than 3V.

The digital input stages draw supply current whenever the digital input voltage is not at one of the supply rails. Driving the digital input signals from GND to V+ with a fast transition time minimizes power dissipation.

High-Frequency Performance

In 50Ω systems, signal response is reasonably flat even past 200MHz (see Figure 15), with a small signal -3dB bandwidth in excess of 300MHz, and a large signal bandwidth exceeding 300MHz.

An off switch acts like a capacitor and passes higher frequencies with less attenuation, resulting in signal feedthrough from a switch's input to its output. Off Isolation is the resistance to this feedthrough, while Crosstalk indicates the amount of feedthrough from one switch to another. Figure 16 details the high Off Isolation and Crosstalk rejection provided by this switch. At 10MHz, off isolation is about 50dB in 50Ω systems, decreasing approximately 20dB per decade as frequency increases. Higher load impedances decrease Off Isolation and Crosstalk rejection due to the voltage divider action of the switch OFF impedance and the load impedance.

Leakage Considerations

Reverse ESD protection diodes are internally connected between each analog-signal pin and both V+ and V-. One of these diodes conducts if any analog signal exceeds V+ or V-.

Virtually all the analog leakage current comes from the ESD diodes to V+ or V-. Although the ESD diodes on a given signal pin are identical and therefore fairly well balanced, they are reverse biased differently. Each is biased by either V+ or V- and the analog signal. This means their leakages will vary as the signal varies. The difference in the two diode leakages to the V+ and V- pins constitutes the analog-signal-path leakage current. All analog leakage current flows between each pin and one of the supply terminals, not to the other switch terminal. This is why both sides of a given switch can show leakage currents of the same or opposite polarity. There is no connection between the analog signal paths and GND.

Typical Performance Curves TA = 25°C, Unless Otherwise Specified

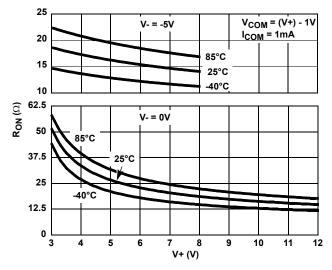


FIGURE 9. ON RESISTANCE vs SUPPLY VOLTAGE

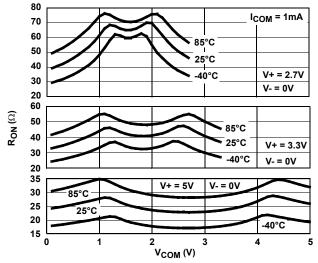


FIGURE 10. ON RESISTANCE vs SWITCH VOLTAGE

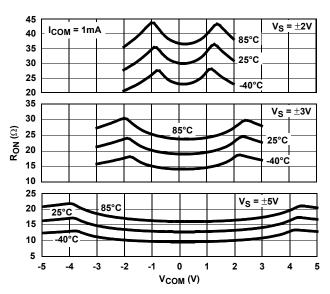


FIGURE 11. ON RESISTANCE vs SWITCH VOLTAGE

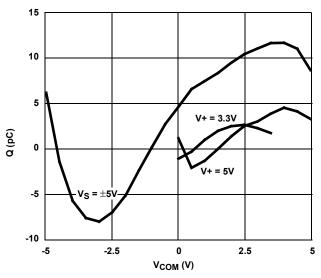


FIGURE 12. CHARGE INJECTION vs SWITCH VOLTAGE

Typical Performance Curves T_A = 25°C, Unless Otherwise Specified (Continued)

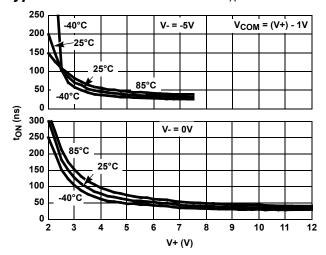


FIGURE 13. TURN - ON TIME vs SUPPLY VOLTAGE

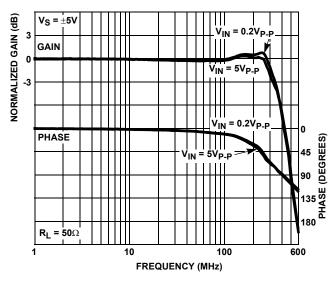


FIGURE 15. FREQUENCY RESPONSE

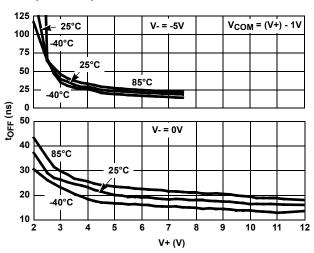


FIGURE 14. TURN - OFF TIME vs SUPPLY VOLTAGE

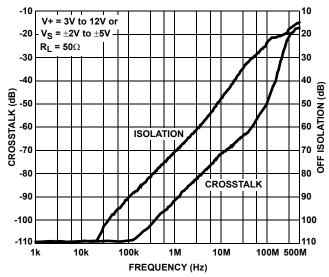
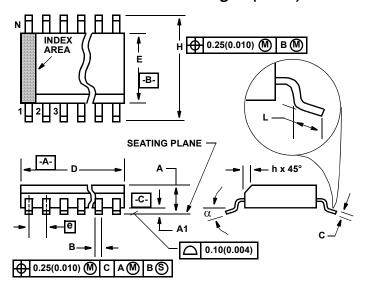


FIGURE 16. CROSSTALK AND OFF ISOLATION

Die Characteristics

SUBSTRATE POTENTIAL (POWERED UP):

V-


TRANSISTOR COUNT:

ISL8394: 418

PROCESS:

Si Gate CMOS

Small Outline Plastic Packages (SOIC)

NOTES:

- Symbols are defined in the "MO Series Symbol List" in Section 2.2 of Publication Number 95.
- 2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
- Dimension "D" does not include mold flash, protrusions or gate burrs. Mold flash, protrusion and gate burrs shall not exceed 0.15mm (0.006 inch) per side.
- Dimension "E" does not include interlead flash or protrusions. Interlead flash and protrusions shall not exceed 0.25mm (0.010 inch) per side.
- 5. The chamfer on the body is optional. If it is not present, a visual index feature must be located within the crosshatched area.
- 6. "L" is the length of terminal for soldering to a substrate.
- 7. "N" is the number of terminal positions.
- 8. Terminal numbers are shown for reference only.
- The lead width "B", as measured 0.36mm (0.014 inch) or greater above the seating plane, shall not exceed a maximum value of 0.61mm (0.024 inch)
- Controlling dimension: MILLIMETER. Converted inch dimensions are not necessarily exact.

M20.3 (JEDEC MS-013-AC ISSUE C)
20 LEAD WIDE BODY SMALL OUTLINE PLASTIC PACKAGE

	INC	HES	MILLIN		
SYMBOL	MIN	MAX	MIN	MAX	NOTES
Α	0.0926	0.1043	2.35	2.65	-
A1	0.0040	0.0118	0.10	0.30	-
В	0.014	0.019	0.35	0.49	9
С	0.0091	0.0125	0.23	0.32	-
D	0.4961	0.5118	12.60	13.00	3
Е	0.2914	0.2992	7.40	7.60	4
е	0.050	BSC	1.27	BSC	-
Н	0.394	0.419	10.00	10.65	-
h	0.010	0.029	0.25	0.75	5
L	0.016	0.050	0.40	1.27	6
N	2	0	20		7
α	0°	8°	0°	8°	-

Rev. 2 6/05

© Copyright Intersil Americas LLC 2003-2006. All Rights Reserved. All trademarks and registered trademarks are the property of their respective owners.

For additional products, see www.intersil.com/en/products.html

Intersil products are manufactured, assembled and tested utilizing ISO9001 quality systems as noted in the quality certifications found at www.intersil.com/en/support/qualandreliability.html

Intersil products are sold by description only. Intersil may modify the circuit design and/or specifications of products at any time without notice, provided that such modification does not, in Intersil's sole judgment, affect the form, fit or function of the product. Accordingly, the reader is cautioned to verify that datasheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see www.intersil.com

