

1D14B Series

1W Single/Dual Output - Fixed Input - Isolated & Unregulated DIP PACKAGE

DC-DC Converter

1 Watt

- High Efficiency up to 81%
- To DIP Package
- **⊕** Industry Standard Pinout
- ⊕ UL94-V0 Package
- **⊕** 1.5KVDC Isolation
- ← Short circuit protection (SCP)
- Temperature Range: -40°C~+105°C
- No External Component Required
- **RoHS Compliance**

The 1D14B series is specially designed for applications where an isolated voltage is required in a distributed power supply system.

These products apply to:

- 1) Where the voltage of the input power supply is fixed (voltage variation $\leq \pm 10\%$)
- 2) Where isolation is necessary between input and output (isolation voltage =1500VDC)
- 3) Where do not has high requirement of line regulation and load regulation

Such as: pure digital circuits, low frequency analog circuits, relay-driven circuits and data switching circuits.

UL-60950-1 Certified

1 second
25°C TYP
Free air convection
-40°C – +105°C
-55°C – +125°C
300°C (1.5mm from case for 10 sec.)
< 95%
Plastic [UL94-V0]
>3,500,000 hours
2.4g

Input specifications					
Item	Test condition Min		Тур	Max	Units
Input current (No load/full load)	5V input12V input15V input24V input		25/256 15/106 10/84 7/54		mA mA mA mA
Surge voltage (1S max)	5V input12V input15V input24V input	-0.7 -0.7 -0.7 -0.7		9 18 21 30	VDC VDC VDC VDC
Reflected ripple current			15		mA
Filter	Capacitor				

Isolation specification	S				
Item	Test condition	Min	Тур	Max	Units
Isolation voltage	Tested for 1 minute and 1mA max	1500			VDC
Isolation resistance	Test at 500VDC	1000			$M\Omega$
Isolation Capacitance	Input/output, 100KHz/0.1V		20		pF

Output specifications	3				
Item	Test condition	Min	Тур	Max	Units
Output power		0.1		1	W
Line regulation	For Vin change of 1%			±1.2	%
Load regulation	10% to 100% full load • 5V Output • 9V Output • 12V Output • 15V Output • 24V Output		12 9 8 7 6		% % % %
Output voltage accuracy	See tolerance envelope g	graph			
Temperature drift	100% full load			±0.03	%/°C
Ripple & Noise*	20MHz Bandwidth		60		mVp-p
Switching frequency	Full load, nominal input		100	300	KHz

- Ripple and noise tested with "parallel cable" method, please see DC-DC Converter Application Notes for specific operation methods.
- ** Supply voltage must be discontinued at the end of short circuit duration for 1D14B series of 24V input.

Model selection:

WCTP**_xxyyN##0

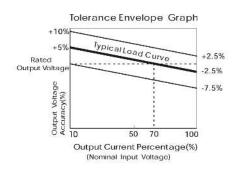
W=Watt; C= Case; T=Type; P=Pinning; **= Voltage Variation (omitted ± 10%); xx= Vin; yy= Vout; N= Numbers of Output; ##= Isolation (kVDC); **0**= output regulation

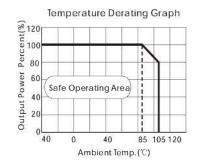
Example: 1D14B_0505D1U

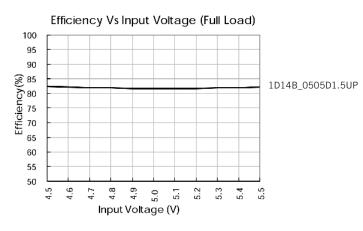
1= 1Watt; D14= DIP14; A= Pinning; 5Vin; 5Vout; D= Dual Output; 1= 1kVDC; U= Unregulated Output; P= Short Circuit Protection (SCP)

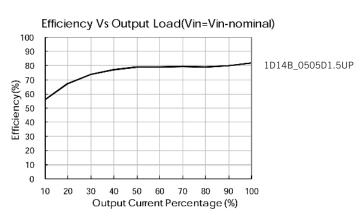
Note:

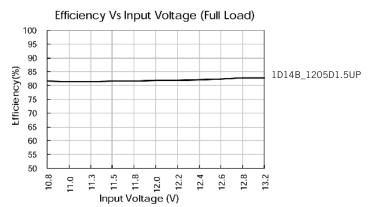
- 1. Operation under minimum load will not damage the converter; However, they may not meet all specification listed, and that will reduce the life of product.
- 2. All specifications measured at Ta=25°C, humidity<75%, nominal input voltage and rated output load unless otherwise specified.
- 3. In this datasheet, all the test methods of indications are based on corporate
- 4. Only typical models listed, other models may be different, please contact our technical person for more details.

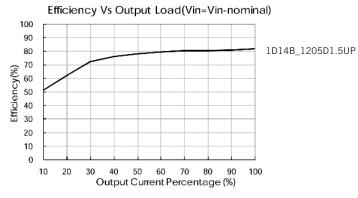

EMC specifications					
EMI	CE	CISPR22/EN55022	CLASS B	(External Circuit Refer to EMC recommended circuit)	
EMI	RE	CISPR22/EN55022	CLASS B	(External Circuit Refer to EMC recommended circuit)	
EMS	ESD	IEC/EN61000-4-2	Contact ±6KV	perf. Criteria B	


1D14B Series


1W Output Dual Output - Fixed Input - Isolated & Unregulated DIP PACKAGE


Part Number	Input Voltage [V]	Output Voltage [VDC]	Current [mA]	Efficiency [%, typ]	Capacitive load [µF, max]
1D14B_0505D1.5UP	5	±5	±100	80	100
1D14B_0509D1.5UP	5	±9	±56	80	100
1D14B_0512D1.5UP	5	±12	±42	81	100
1D14B_0515D1.5UP	5	±15	±34	81	100
1D14B_0524D1.5UP	5	±24	±21	81	100
1D14B_1205D1.5UP	12	±5	±100	80	100
1D14B_1209D1.5UP	12	±9	±56	80	100
1D14B_1212D1.5UP	12	±12	±42	81	100
1D14B_1215D1.5UP	12	±15	±34	81	100
1D14B_1224D1.5UP	12	±24	±21	81	100
1D14B_2405D1.5UP	24	±5	±100	80	100
1D14B_2409D1.5UP	24	±9	±56	80	100
1D14B_2412D1.5UP	24	±12	±42	81	100
1D14B_2415D1.5UP	24	±15	±34	81	100
1D14B_2424D1.5UP	24	±24	±21	81	100


Typical characteristics



1D14B Series

1W Output Dual Output - Fixed Input - Isolated & Unregulated DIP PACKAGE

Application note

1) Typical application

If it is required to further reduce input and output ripple, a filter capacitor can be connected to the input and output terminals, see Fig.1. Moreover, choosing suitable filter capacitor is very important, start-up problems may be caused by too large capacitance. To ensured the modules running well, the recommended capacitive load values as shown in Table 1.

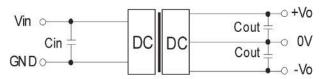


Figure 1

Vin (VDC)	Cin (uF)	Dual Vout (VDC)	Cout (uF)
5	4.7	±5	4.7
12	2.2	±9/ ±12	1
15	2.2	±15/±24	0.47
24	1		

2) EMC typical recommended circuit (CLASS B)

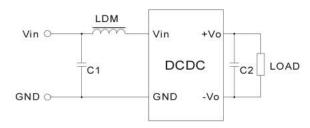
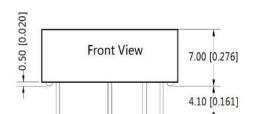
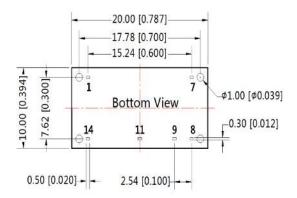


Figure 2

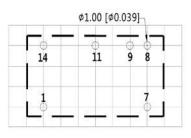

Input vol	tage (V)	5/12/15/24
EMI	C1	4.7μF/50V
EMI	C2	Refer to the Cout in Fig. 1
EMI	LDM	6.8µH


3) Output load requirements

To ensure the module work efficiently and reliably, during the operation, the min. output load should be no less than 10% of the full load. If the actual output power is low, please connect a resister to the output terminal in parallel, with a recommenced resistance which is 10% of the rated power, and derating is required during operation.

Table 1

Mechanical dimensions and footprint



Note: Unit:mm[inch]

Pin section tolerances :±0.10[±0.004] General tolerances:±0.25[±0.010]

THIRD ANGLE PROJECTION (

Note: Grid 2.54*2.54mm

Pin-Out		
Pin	Dual	
1	GND	
7	NC	
8	0V	
9	+Vo	
11	-Vo	
14	Vin	

NC:No connection