PWM Controller for Half-Bridge Converters

General Description

The R7521 is a with PWM controller with supervisor function inside. The controller can be applied on half-bridge converter or push-pull converter, which needs two interleaved gate drivers with 180 degree phase shift. Four multiple outputs can be monitored by R7521 and there is a "Power Good" signal to acknowledge the following system. The controller also has remote control pin and fully protection of each output, such as output over voltage, under voltage and over power protection. The DET pin is applied to detect AC line condition. R7521 incorporates over power protection. R7521 also contains FC pin to control Fan's speed by PT voltage variation. The integrated control circuit of R7521 provides complete functions and saves the Fan control external circuit of ATX power.

Features

- Two PWM Driver Outputs for Push-Pull and Half-Bridge Converters
- Built-In Supervisor Saves Cost and Components
- Voltage Mode PWM Controller
- Output Over Voltage and Under Voltage Protections of Each Output
- Remote ON/OFF
- Power Good Indicator with Adaptive Time Sequence
- Input Under Voltage Detector and Warning
- Over Power Protection
- Adjustable Soft-Start
- For ATX Power Application
- Fun Speed Control

Copyright ©2012 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

1

Simplified Application Circuit

Ordering Information

R7521 🖵 📮

└─Package Type N: DIP-16 S: SOP-16 ──Lead Plating System

G : Green (Halogen Free and Pb Free)

Note :

Richtek products are :

- RoHS compliant and compatible with the current requirements of IPC/JEDEC J-STD-020.
- Suitable for use in SnPb or Pb-free soldering processes.

Marking Information

R7521GS

R7521 GSYMDNN R7521GS : Product Number YMDNN : Date Code

R7521GN

RichPower R7521 GNYMDNN R7521GN : Product Number YMDNN : Date Code

Pin Configurations

Functional Pin Description

Pin No.		Din Nomo	Din Eurotion		
SOP-16	DIP-16	Pin Name	PINFUNCTION		
1	1	RT	Reference Current Setting. Connected to an external resistor to set the internal reference current.		
2	2	FC	Fan Control I/O.		
3	3	V12	12V Output Sense Pin.		
4	4	V33	3.3V Output Sense Pin.		
5	5	V5	5V Output Sense Pin.		
6	6	PT	Over Power Sense Pin.		
7	7	DET	V _{AC} Input Detector Input.		
8	8	VDD	Bias of Controller. Source from 5V standby power.		
9	9	C2	PWM Driver Output 2.		
10	10	C1	PWM Driver Output 1.		
11	11	GND	Ground.		
12	12	PG	Power Good Signal Output (open collector type.).		
13	13	PSON	Remote On/Off Control with 24ms De_bounce Time.		
14	14	COMP	Error Amplifier Output.		
15	15	INV	Negative Input of error amplifier.		
16	16	SS	Soft-Start. SS is as the non-inverting input of error amplifier.		

Function Block Diagram

Copyright ©2012 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation. R7521-00 December 2012

3

Operation

The R7521 is a PWM controller with supervisor functions. The PWM signal C1 and C2 drive primary-side switching power transistor by transformer, and the supervisor monitors each output. The R7521 provides fruitful protection functions that protect system from damage. Each output is protected by OVP, UVP, and OPP. The functions description as follow :

Output Over-Voltage Protection

The R7521 has an output Over-Voltage Protection (OVP) function, which monitors the 3.3V, 5V and 12V output voltages, to prevent power system and loads from damages during one or more output OV condition(s). The OVP starts monitoring the voltages on V33, V5 and V12 at the end of the PSONB de-bounce time. When an Over-Voltage (OV) condition appears at one of the monitored pins for more than the 0.6ms (typical) deglitch time, the PG voltage goes low to indicate one of the output voltages is out of regulation. Meanwhile the R7521 disables PWM output and protects the power supply system. The OVP condition is latched until PSON is toggled from low to high or VDD restarts.

Output Under-Voltage Protection

The R7521 provides under voltage protection for the 3.3V, 5V and 12V outputs. The UVP continuously monitors the voltage on V33, V5 and V12. When an Under Voltage (UV) protection condition appears at either one of the monitored pins for more than 2ms (typical) deglitch time, the PG voltage goes low to indicate one of the output voltages is out of regulation. Meanwhile, the R7521 disables the PWM output and protects the power supply system. The UVP condition is latched until PSON is toggled from low to high or VDD restarts.

Output Over-Power Protection

The R7521 has an output over-power protection (OPP) function, which monitors total output power. The PT pin of R7521 senses primary-side switching current by current transformer (CT). When over power or output short condition appears, the OPP exceeds the trigger voltage (1.9V) for 6ms (typical), the R7521 disables PWM output and protects the power supply system. In addition, the PT can monitor –12V output voltage, and the OPP condition is latched until PSON is toggled from low to high or VDD restarts.

PG Outputs

In general, the PG voltage pulled high by an external resistor connected to the 5V output, indicates the status of the outputs. The PG keeps at low state when VDD voltage < UVLO threshold, PSON = H, PGI voltage < 1.2V or one of the faults, including UVP, OVP and OPP, occurs.

PSON De-bounce

The R7521 provides a remote ON/OFF control input pin (PSON) for PC power supply applications. A built-in 24ms (typical) de-bounce circuit performs rising and falling edge noise de-bounce functions to identify valid PSON input signals. The PSON also has a TTL logic-compliant input voltage threshold and a hysteresis design against input noise.

Soft-Start

The SS offers an internal 8μ A (typical) constant current. Connect a capacitor between the SS and GND pins to set the soft-start time. Therefore, the soft-start time is $t_{SS} =$ $8\mu \times C_{SS}$. During soft-start period, the UVP and OPP protection is disabled to prevent wrong UVP, OPP protection.

Absolute Maximum Ratings (Note 1)

Supply Input Voltage, VDD	5V
• I _{DD}	30mA
• Power Dissipation, $P_D @ T_A = 25^{\circ}C$	
SOP-16	0.92W
DIP-16	1.68W
Package Thermal Resistance (Note 2)	
SOP-16, θ _{JA}	108.6°C/W
DIP-16, θ _{JA}	59.6°C/W
• Lead Temperature (Soldering, 10 sec.)	260°C
Junction Temperature	150°C
Storage Temperature Range	$-65^{\circ}C$ to $150^{\circ}C$
• ESD Susceptibility (Note 3)	
HBM (Human Body Model)	2kV
MM (Machine Model)	200V

Recommended Operating Conditions (Note 4)

Supply Input Voltage, VDD	4V to 6V
Frequency	60kHz
Junction Temperature Range	-40° C to 125° C
Ambient Temperature Range	–40°C to 85°C

Electrical Characteristics

(V_DD = 5V, R_T = 62k\Omega, T_A = 25°C, unless otherwise specified)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit		
POR Section								
DC Supply Voltage	V _{DD}		4		6	V		
On Threshold Voltage	V _{TH_ON}			3.65		V		
Off Threshold Voltage	V _{TH_OFF}			3.4		V		
Operating Supply Current	I _{DD_OP}	$V_{DD} = 5V, V_{COMP} = 2.5V$			10	mA		
Oscillator Section								
Normal PWM Frequency	f _{OSC}	$R_{T} = 62k\Omega$	55	60	65	kHz		
Maximum Duty Cycle	DCY _{MAX}	Both for C1 and C2		46		%		
Frequency Variation Versus VDD Deviation	f _{DV}	$V_{DD} = 5V$			2	%		
Frequency Variation Versus Temperature Deviation	f _{DT}	$T_A = -20^{\circ}C$ to $85^{\circ}C$			5	%		
Ramp of Oscillator	V _P			2		V		
Zero Duty Offset	VOFFSET			0.5		V		
RT Reference Voltage	V _{REF_RT}	f _{OSC} = 35kHz to 70kHz	0.98	1	1.02	V		

R7521

R	C	H	T	E	K
-					-

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Protection Section			1			
OVP of 3.3V Output	V _{OVP_V33}		3.9	4.1	4.3	V
OVP of 5V Output	V _{OVP_V5}		5.8	6.1	6.5	V
OVP of 12V Output	V _{OVP_V12}	(Note 5)		2.5		V
UVP of 3.3V Output	V _{UVP_V33}		2	2.6	2.8	V
UVP of 5V Output	V _{UVP_V5}		3	3.6	3.9	V
UVP of 12V Output	V _{UVP_V12}	(Note 5)		1.25		V
UVS of 3.3V Output	V _{UVS_V33}		2.5	2.8	3	V
UVS of 5V Output	V _{UVS_V5}		4	4.3	4.5	V
UVS of 12V Output	V _{UVS_V12}	(Note 5)		1.75		V
Time Delay of OVP	T _{OVP}		0.37	0.6	1.35	ms
Time Delay of UVP	T _{UVP}		1.2	2	4.2	ms
Time Delay of UVS	TUVS		0.9	1.4	2.2	ms
Over Power Protection	V _{PT}		1.7	1.9	2.1	V
PT Delay				6		ms
PT Cycle Limit			2.9	3.2	3.5	V
Power Good Section						
Power Good Time Delay	T _{PG}			254		ms
DET Voltage Sense for PG	V _{DET}		0.45	0.5	0.55	V
PG Output Saturation Level	V _{OL}	I _{PG} = 5mA			5	V
PG Leakage Current	I _{LK}	V _{PG} = 5V			1	μA
Error Amplifier Section						
Reference Voltage	V _{REF2}		2.45	2.5	2.55	V
Open Loop Gain	Avol		50	60		dB
Unit Gain Bandwidth	BW		0.3	1		MHz
Power Supply Rejection Ratio	PSRR		50			dB
Remote On/Off Section						-
PSON Threshold Voltage	V _{TH}		1	1.4	2	V
PSON Sourcing Current	I _{PSON}				0.5	mA
PSON Do, bounco Timo	Tara	ON		24		me
	I DEB	OFF		8		1115
Delay Time Between PSON = 1 and PG = 0	T _{PSOFF}	(m.o + D-FF)	1.5	2	4	ms
Soft-Start Section						
SS Charging Current	Iss		6.7	8	9.3	μA

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Fan Control Section						
Sourcing Current of FC	I _{FC}		6			mA
Voltage Range of FC	V _{FC}		0.2		4	V
PWM Output Section						
Rising Time	T _R	$V_{DD} = 5V, C_L = 1.8nF$		20	55	ns
Falling Time	T _F	$V_{DD} = 5V, C_{L} = 1.8nF$		15	50	ns
R_{DS_ON} of Top and Bottom Leg	R _{DS_ON}	$V_{DD} = 5V$			4.4	Ω

Note 1. Stresses beyond those listed "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may affect device reliability.

Note 2. θ_{JA} is measured at $T_A = 25^{\circ}C$ on a high effective thermal conductivity four-layer test board per JEDEC 51-7.

Note 3. Devices are ESD sensitive. Handling precaution is recommended.

Note 4. The device is not guaranteed to function outside its operating conditions.

Note 5. The V12 pin must to use divider resistor. Propose setting the ratio is 1/6.

Typical Application Circuit

Typical Operating Characteristics

Copyright ©2012 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

9

Application Information

Fan Control

In order to effectively utilize the fan to disperse heat and reduce acoustic noise, the R7521 provides FC pin to control Fan's speed. Figure 1 shows the relationship between FC voltage and load in ATX 300W power supply application.

Over Power Protection

When ATX power is over power or in output short condition, the R7521 will shut down the controller. As shown in Figure 2, if the over power condition appears, PT voltage exceeds the trigger voltage (1.9V) and exists for 6ms (typical), the PWM output will be latched.

Beside, the R7521 has fine over power protection. As Figure 3, total power limit is constant, and won't follow Vin variation. Set the ratio of OPP resistive divider to decide the total limit.

Figure 3. Over Power Limit and $V_{\mbox{\scriptsize IN}}$ Relation Curve

VAC Detecting Protection

DET is connected to secondary winding through a resistive divider for V_{AC} input detecting. When V_{AC} fails, the voltage of DET is lower than 0.5V, and PG signal will be pulled low to indicate V_{AC} power-down. Set the ratio of resistive divider to decide the DET weight. The bypass capacitor is used to filter the switching noise.

Thermal Considerations

For continuous operation, do not exceed absolute maximum junction temperature. The maximum power dissipation depends on the thermal resistance of the IC package, PCB layout, rate of surrounding airflow, and difference between junction and ambient temperature. The maximum power dissipation can be calculated by the following formula :

 $\mathsf{P}_{\mathsf{D}(\mathsf{MAX})} = \left(\mathsf{T}_{\mathsf{J}(\mathsf{MAX})} - \mathsf{T}_{\mathsf{A}}\right) / \theta_{\mathsf{JA}}$

where $T_{J(MAX)}$ is the maximum junction temperature, T_A is the ambient temperature, and θ_{JA} is the junction to ambient thermal resistance.

For recommended operating condition specifications, the maximum junction temperature is 125°C. The junction to ambient thermal resistance, θ_{JA} , is layout dependent. For SOP-16 package, the thermal resistance, θ_{JA} , is 108.6°C/W on a standard JEDEC 51-7 four-layer thermal test board. For DIP-16 package, the thermal resistance, θ_{JA} , is 59.6°C/W on a standard JEDEC 51-7 four-layer thermal test board. The maximum power dissipation at $T_A = 25$ °C can be calculated by the following formula :

 $P_{D(MAX)}$ = (125°C - 25°C) / (108.6°C/W) = 0.92W for SOP-16 package

 $P_{D(MAX)}$ = (125°C - 25°C) / (59.6°C/W) = 1.68W for DIP-16 package

The maximum power dissipation depends on the operating ambient temperature for fixed $T_{J(MAX)}$ and thermal resistance, θ_{JA} . The derating curve in Figure 5 allows the designer to see the effect of rising ambient temperature on the maximum power dissipation.

Figure 5. Derating Curve of Maximum Power Dissipation

Outline Dimension

Symbol	Dimensions I	n Millimeters	Dimensions In Inches		
Symbol	Min	Max	Min	Max	
А	9.804	10.008	0.386	0.394	
В	3.810	3.988	0.150	0.157	
С	1.346	1.753	0.053	0.069	
D	0.330	0.508	0.013	0.020	
F	1.194	1.346	0.047	0.053	
Н	0.178	0.254	0.007	0.010	
I	0.102	0.254	0.004	0.010	
J	5.791	6.198	0.228	0.244	
М	0.406	1.270	0.016	0.050	

16-Lead SOP Plastic Package

Symbol	Dimensions I	n Millimeters	Dimensions In Inches		
Symbol	Min	Max	Min	Max	
А	3.700	4.320	0.146	0.170	
A1	0.381	0.710	0.015	0.028	
A2	3.200	3.600	0.126	0.142	
b	0.360	0.560	0.014	0.022	
b1	1.143	1.778	0.045	0.070	
D	18.800	19.300	0.740	0.760	
Е	6.200	6.600	0.244	0.260	
E1	7.620	8.255	0.300	0.325	
е	2.540		0.1	00	
L	3.000	3.600	0.118	0.142	

16-Lead DIP Plastic Package

Richtek Technology Corporation

5F, No. 20, Taiyuen Street, Chupei City Hsinchu, Taiwan, R.O.C. Tel: (8863)5526789

Richtek products are sold by description only. Richtek reserves the right to change the circuitry and/or specifications without notice at any time. Customers should obtain the latest relevant information and data sheets before placing orders and should verify that such information is current and complete. Richtek cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Richtek product. Information furnished by Richtek is believed to be accurate and reliable. However, no responsibility is assumed by Richtek or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Richtek or its subsidiaries.

R7521-00 December 2012