Creating the first project in

mikroC

= \MikroElektronika

DEVELOPMENT TOOLS | COMPILERS I BOOKS

Copyright © mikroElektronika, January 2012. All rights reserved.

10 OUR VALUED CUSTOMERS

| want to express my thanks to you for being interested in our products and for having

confidence in MikroElektronika.

The primary aim of our company is to design and produce high quality electronic products
and to constantly improve the performance thereof in order to better suit your needs.

Nebojsa Matic
General Manager

Table of Contents

1. Introduction to mikroC PRO for PIC32®ovi e 04
2. Hardware ConNeCHioNo v ottt 05
3.Creatinga New Project 06
Step 1 - Project SettingsS . ..ot 07
Step 2 - Add fileS . .o 10
Step 3-Include Libraries 11
Step 4 - FiNiShiNg ... 12
Blank new project createdt 13
4.00de EXAMPIe . .o 14
5. BUIldINg the SOUMCEo 16
6. Changing Project Settings oot 17

7 WAt S MEXE et 18

1. Introduction to mikroC PRO for PIC32°

mikroC PRO for PIC32® organizes applica-
tions into projects consisting of a single
project file (file with the .mcp32 extension)
and one or more source files (files with the
.c extension). The mikroC PRO for PIC32®
compiler allows you to manage several
projects at a time. Source files can be compiled
only if they are part of the project.

A project file contains:

* Project name and optional description;
* Target device in use;

* Device clock;

e List of the project source files;

¢ Binary files (*.emcl); and

* Other files.

In this reference guide, we will create a new
project, write code, compile it and test the
results. The purpose of this project is to make
microcontroller PORTB LEDs blink, which will
be easy to test.

S Rz : T o
et T iy .
e R RGN S LIS B A AT e o R Il) i
e G g = — TR D 5
¥ 28 i+ Prezpst samar .- 3
Gt
stmra.
Tyemlialg L
Tag
Dctrves.
= ‘weblrks
+ st « | 8
: : 5 _—
Y ravorg 47 : i s
!‘ﬁ"’"‘” g &) Seuem -
- B Loy e
Hame: FIMEFSIA R W, Heater Flst
B tranm
Frogecs vl Dwines.
A L e k | Image Fiy
5 ! B
Froguoscy: | GOT000, Mike - Bl"’::ﬂ
: e o
[SLT e . | = o weid maing) 5 ma
Bl Tyt ADIFCIG = O=TTFF7 afigure AN pies 43 gigital 140 Tw.ﬁ‘wmm-
& Reaes 6D Doty " A D00 e
Dbugosr . TRIF = 01 m—ol
@ Soltman D . TRISE = Gf & I s
[QW [~reer— - . ;‘:" .
[s El wamrn L] # [T Conpse P
- e pa— o 2| % B e sm
[] (] Featac RAM (byte) O Dy RAM (ryseds 11785 Stans BAM Byt O Dene & e
[} M o S04 iyt 560 F2%0] Proe BOM (rtesl: SXETM(R00%) e B (vt 963 0% " e O @
- o, ! eall : ! n £ 3wy
= 3 30 e
' vl eB
T Compied s 0 for sl Deicpmant bytams LVEMK iled =
@ Main Toolbar @ Messages @ Project Manger
@ Code Explorer @ Code Editor @ Library Manager
@ Project Settings @ Image Preview

Page 4

Figure 2-1:
Hardware connection schematics

2. Hardware Connection

Let'smake asimple “"Hello world” example for the selected
microcontroller. First thing embedded programmers
usually write is a simple LED blinking program. So, let's
do that in a few simple lines of C code.

R1
kid K

LED blinking is just turning ON and OFF LEDs that are
connected to desired PORT pins. In order to see the
example in action, it is necessary to connect the target
microcontroller according to schematics shown on Figure
2-1.In the project we are about to write, we will use only

PIC32MX460F512L %

PORTB, so you should connect the LEDs to PORTB only.

Eight LEDs are more then enough for demonstration. You

don't have to connect all 16 PORTB pins. /

Prior to creating a new project, it is necessary to do the following:

Step 1: Install the compiler Step 2: Start up the compiler

Install the mikroC PRO for PIC32® compiler from the Product DVD or Double click on the compiler icon in the Start menu, or on your desktop
download it from the Mikro€Elektronika website: to Start up the mikroC PRO for PIC32® compiler. The mikroC PRO for

PIC32® IDE (Integrated Development Environment) will appear on
http://www.mikroe.com/eng/products/view/623/mikroc-pro-for-pic32/ the screen. Now you are ready to start creating a new project.

Page 5

3. Creating a New Project

The process of creating a new project is ver d
P & proJ y New Project Wizard

simple. Select the New Project option from
the Project menu as shown below. The New
Project Wizard window appears. It can also
be opened by clicking the New Project icon
from the Project toolbar.

Project | Build Run Tools Help
Y, Mew Project.., Shift+Ctrl+ N
5% Open Project... Shift+ Ctrl+ O
E% Open Project Group...

Recent Projects »

The New Project Wizard (Figure 3-1) will
guide you through the process of creating

Welcome to the New Project
Wizard

This wizard helps you:

Create a new project

Select the device for your project
Setup device clock

Add project files

Click Next to continue

a new project. The introductory window of
this application contains a list of actions to

| cancel |

f. Back Mext Eﬁ?

be performed when creating a new project. L

Figure 3-1: Introductory window of the New Project Wizard

@ Click Next.

Step 1 - Project Settings

First thing we have to do is to specify the
general project information. This is done
by selecting the target microcontroller, it's
operating clock frequency, and of course
- naming our project. This is an important
step, because compiler will adjust the
internal settings based on this information.
Default configuration is already suggested
to us at the begining. We will not change
the microcontroller, and we will leave the
default PIC32MX460F512L as the choice
for this project.

-
New Project Wizard

A

Step 1: Project Settings:

MyProject
Ci\Users\PublicA\Documents\Mikroelektronika\mikrot

Project Name:

Project folder:
Device Name: P32MX460F5121 !

Device Clock: 10.000000 MHz

Enter project name, project folder, select device name and enter a device dodk
(for example: 96.235).

Note: Project name and project folder must not be left empty.

Browse

4 pack || Next® |

Cancel

Figure 3-2: You can specify project name, path, device and clock in the first step

Step 1 - Project Settings

If you do not want to use the suggested path
for storing your new project, you can change
the destination folder. In order to do that,
follow a simple procedure:

@ Click the Browse button of the Project
Settings window to open the Browse
for Folder dialog.

@ Select the desired folder to be the
destination path for storing your new
project files.

@ Click the OK button to confirm your
selection and apply the new path.

MNew Project Wizard

Browse For Folder : ?
] i Browse

B Bl My Documents

4 | Public Documents
1. FinalBuilder 7 Projects

L0 Mikroelektronika

1. RAD Studio
|-_., ‘Work:
4 J‘? Music
[W My Music
¥] Puhlic Busic

’MakENewFolder] [oK ‘1[Canicel]

Cancel

L

Figure 3-3: Change the destination folder using Browse For Folder dialog

Step 1 - Project Settings

Once we have selected the destination
project folder, let's do the rest of the project
settings:

o)

@

03)

Enter the name of your project. Since
we are going to blink some LEDs,
it's appropriate to call the project
“LedBlinking”

For this demonstration, we will use the
default 80MHz clock (PLL enabled).
Clock speed depends on your target
hardware, and whether you are
using PLL or not. But however you
configure your hardware, make sure to
specify the exact clock (Fosc) that the
microcontroller is operating at.

Click the OK button to proceed.

MNew Project Wizard

Step 1: Project Settings:

Project Name: [ESEEITa0A0

Project folder: Ct\Users\Public\Documents\Work, Browse

P32ZMX460F512L -

£ 80.000000 MHz

Enter project name, project folder, select device name and enter a device dodk
(for example: 96.235).

Device Name:

Device Clock:

Note: Project name and project folder must not be left empty.

@ Back Next ﬂ?

LS

Cancel

Figure 3-4: Enter project name and change device clock speed if necessary

Step 2 - Add files

This step allows you to include additional files
that you need in your project: some headers
or source files that you already wrote, and
that you might need in further development.
Since we are building a simple application, we
won't be adding any files at this moment.

@ Click Next.

-
New Project Wizard

LS

Step 2: Select files you want to add to project.
Add File To Project:
Add
Remove
File Name
Remove All
4 Back || Next l#i | Cancel

Figure 3-5: Add existing headers, sources or other files if necessary

Step 3 - Include Libraries

Following step allows you to quickly set
whether you want to include all libraries in
your project, or not. Even if all libraries are
included, they will not consume any memory
unless they are explicitely used from within
your code. The main advantage of including
all libraries is that you will have over 500
functions available for use in your code
right away, and visible from Code Assistant
[CTRL+Space]. We will leave this in default
configuration:

@ Make sure to leave “Include All”
selected.

@ Click Next.

F Y
Mew Project Wizard ﬁ

Step 3: Select initial state for library manager:

Indude Libraries
@) Indude Al (Default)

' Indude None {Advanced)

Selecting all libraries is recommended for beginners.

Selecting libraries manually using Library Manager -
({recommended for advanced users) results in faster compilation. Library Manager Help

@ Back ﬂex't

f' Cancel
A

Figure 3-6: Include all libraries in the project, which is a default configuration.

Step 4 - Finishing

After all configuration is done, final step
allows you to do just a bit more.

@ There is a check-box called “Open Edit
Project window to set Configuration
bits” at the final step. Edit Project is
a specialized window which allows you
to do all the necessary oscillator and
PLL settings, as well as to set other
configuration bits. We made sure that
everything is described in plain English,
so you will be able to do the settings
without having to open the datasheet.
Anyway, since we are only building a
simple application, we will leave it at
default configuration (HS oscillator with
PLL enabled). Therefore, leave the
checkbox unchecked.

@ Click Finish.

-
MNew Project Wizard

i

Step 4: You have successfully created a new project. Click "Finish"” to close a wizard.

‘,- ;) ?
- B
w Open Edit Project window to set Configuration bits

Checking "Open Edit Project window™ will open "Edit project form™ after
dosing this wizard. This enables you to set device configurations bits,

4 Back || Firiish?

Cancel

LS

Figure 3-7: Choose whether to open Edit Project window after dialog closes.

Blank new project created

New project is finally created. A new source
file called “LedBlinking.c” is created and it
contains the void main () function, which
will hold the program. You may notice that
project is configured according to the settings
done in the New Project Wizard.

Name: P32M<4B0F5120

=4Es MCU Clack

Frequency: 80.000000) MHz

id/ Debugaer Type

b R (]

|

Tools Help
e 0GRS
H 1 T_void main() {

by

S8 ad

1

i

Figure 3-8: New blank project is created with your configuration

Page 13

4. Code Example

Time has come to do some coding. First thing
we need to do is to disable analog function of
PORTB pins, so they act as digital only:

// Configure AN pins as digital I/0
AD1PCFG = OxFFFF;

Now we have to initialize PORTB to act as
digital output. TRISB register, associated with
PORTB, is used to set whether each pin acts
as input or output.

// set PORTB to be digital output
TRISB = 0;

LATB register is used instead of PORTB for
digital output. We can now initialize it with
logic zeros on every pin:

// Turn OFF LEDs on
LATB = 0;

PORTB

Finally, in a while() loop we will toggle the
PORTB value, and put a 1000 ms delay, so
the blinking is not too fast (see Figure 4-1).

LedBlinking.c - source code

1 wvoid main() {

2 // Configure analog pins as digital I/0O
3 AD1PCFG = OxFFFF;

4

5 // set PORTB to be digital output
6 TRISB = 0;

7

8 // Turn OFF LEDs on PORTB

9 LATB = 0;
10
11 while (1) {
12 // Toggle LEDs on PORTB
13 LATB = ~LATB;
14
15 // Delay 1000 ms
16 Delay ms (1000);
17 }
18 }

Figure 4-1: Complete source code of the PORTB LED blinking

E mikroC PRQ for PIC32 v.2.1.0 - CA\Users\Public\Doc

LedBlinki 37

File Edit View Project Build Run Tools Help

iR B MRS i 2 Ha RS iR W s a0 g Dl

T8 Code Explorer 2 \EI,M‘ Project Manager [1/1] - LedBlinking.mc... 5 [23 |
|1 20 Bvoid main() (BEE S0 ad | %
oz Iimclluns // Configure analog pins as digital I/C X Leﬂﬂu; ing.mcp32 1
AD1PCFG = OXFFFF; = |
Globals £} [Sources
Externs LedBirking.c
TypeDef - // set PORTB to be digital output) Header Fies
Tags | IRISE = '0; (=) Binaries
Includes Project Level Defines
Directives // T OFF LEDs on PORTE [Image Fies
web Links LATE = 07 [) EEPROM Files
Image Links 10 |) Active Comments Files
Active Camments © B while(1) { | Bl [OutputFiles
& orol Semg"" =) i // Toggle LEDs or PORTE " &7 Other Files
B Devics 2 ibrary Manager | 42 project Explorer
| | o
Hame: PERMR4EOFS1EL 3 s 4 il | et | E 0 | \
) i Delay ms{1000): || & mikroE -
17 } - [apc
2148 MEU Clock S) & [7] BitReverseComplex
. Button
i ® [can_ser
Fi : 80.00000D) g p: =
Tequency MHz B 5 b i |
=S Compact_Flash_FAT16 3
Conversions
= Build/ Debugger T |
=)Build/ Debugger Type &[] c_Math
Build T H . H
Tl) Figure 4-2: This is how the code looks c_stdb
Release) 100 Debug C_String
R written in compiler code editor window cTyee
o5, = EPSON_S1D13700
@ Software @ mikilCD: :
4 B @
L & [¥] FirRadi
Messages [Quick Converter | FLASH
5 &[] Gled
Warnings B
‘ [¥] Gled_Fonts
Line Message No. Message Text Unit 1c
[¥] trRadix
B [7] Keypadix4
B[] Led
[¥] Led_Constants
Manchester
Matrices
< i MemManager -|
17:18 Tnsert C:\Users\Public\Doc: WorkiL

Page 15

5. Building the Source

Build | Run Tools Help

When we are done writing our first

LedBlinking code, we can now build |'5, Build Ctrl=F9 |

the project and create a .HEX file
which can be loaded into our target
microcontroller, so we can test the
program on real hardware. “Building”

Rebuild All Sources Alt+F9

Stop Build All Ctrl+F12

. — e Build + Program Ctrl+F11
includes compilation, linking and =

optimization which are done automatically. Build your code by clicking
on the % icon in the main toolbar, or simply go to Build menu and
click Build [CTRL+F9]. Message window will report the details of the
building process (Figure 5-2). Compiler automatically creates necessary
output files. LedBlinking.hex (Figure 5-1) is among them.

Name Date modified Type Size

|| LedBlinking.asm 1/21/201211:26 PM ASM File 1KB
| LedBlinking.brk 1/21/201211:34 PM BRK File 1KE
[LedBlinking.c /2172012 1119 PM mikroC PRO for d... 1KB
% | LedBlinking.c 1/21/201211:34 PM Configuration sett... 1KB
|_| LedBlinking.cfg 1/21/201211:26 PM - CFG File 1KB
|| LedBlinking.cp 1/1/2001211:26PM CP File 1Ke
| LedBlinking.dbg 1/21/201211:26 PM DBG File 310 KB
|£ LedBlinking 1/21/201211:26 PM Adobe [lustrator 5., 166 KB
| LedBlinking.dlt 1/21/201211:26 PM DLT File 4KB
|| LedBlinking.emcl 1/21/201211:26 PM EMCL File 2KB
|| LedBlinking.hex 1/21/2001211:26 PM HEX File 2KB
|| LedBlinking 1/A7201211:26 PM - Text Document 3KB
| LedBlinking.lst 1/21/201211:26 PM LST File BKB
LedBlinking.mecp32 1/21/201211:34 PM mikroC PRO for PL.. 2KB
2 LedBlinking.mcp32_callerta... 1/21/201211:26 PM Text Document 1KB
| LedBlinking.user 1/1/201211:26 PM Text Document 0 KB

Figure 5-1: Listing of project files after building is done

Messages |@ Quick Converter |

| Errors Warnings Hints

Line Message Mo, Message Text Unit o
o 1144 Static RAM (bytes): 64 Dynamic RAM (bytes): 32765 Static RAM (bytes): 64 Dyn

i 1144 Used ROM (bytes): 484 (0%) Free ROM (bytes): 523804 (100%) Used ROM (bytes): 484 (0%

1] 125 Project Linked Successfully LedBlinking.mcp32

1] 128 Linked in 1139 ms 2
1] 129 Project 'LedBlinking. mcp32' completed: 1638 ms i
a 103 Finished successfully: 21 Jan 2012, 23:26:30 LedBlinking.mcp32 o
€| 111 | 3
17:18 Insert Compiled C:\Users\Public\Documents\Work\LedBlinking.c

Figure 5-2: After the successful compilation and linking, the message window should look something like this

)

If you need to change the target microcontroller or clock speed, you don't have to go through the new project wizard all over again. This can be
done quickly in the Edit Project window. You can open it using Project->€Edit Project [CTRL+SHIFT+E] menu option.

@

r B
Edit Project =
PLL Input Divider 2 MCU and Oscllator
{2(Divider [] ']
PLL Multiplier MCU Name P32MX460F512L i
[20% Multiplier v . -
Osdillator Frequency [MHz]
USB PLL Input Divider O 2
12« Divider -
Interrupt Control:
LS Eriie = () Single Vector Base Address
[Disabld and Bypassed z) |use SRS EBASE: Ox 9FCD 1000
System PLL Output Clock Divider =
{Muwd& by 1 v] @) Multi Vector
= = Vector Spadng (VS}_:] SRS Priority Level:
Dscltitng SclerTioe fits v 32 [sRS Priority 7
[anafy Osc wPLL (XT+,HS+,EC+PLL) VJ =
dary Enable Load Scheme
-Build Type Heap
[Enabled - & ® -
@ Release @ () ICD Debug Size =@ Save Scheme
Internal/External Switch Over
[End:ded 'J Configuration Registers
Primary Oscillator Configuration DEVCFGZ :$1FCOZFF4 : 0x00008751 Default
{xT osc mode v] DEVCFGL -$1FCOZFFS - 0x00148533
DEVCFGO ~ :$1FCOZFFC : Ox110FFO0B
CLKO Output Signal Active on the 05SCO Pin
[Enabled -
Peripheral Clock Divisor Cancel
Pb_Clkis Sys_ /L = General Output Settings ... i

Figure 6-1: Edit Project Window

@ To change your MCU, just select the
desired microcontroller from the
dropdown list.

@ To change your settings enter the

oscillator value and adjust configu-

ration register bits using drop-down
boxes.

Several most commonly used settings
can be loaded using the provided
oscillator “schemes”. Load the desired
scheme by clicking the Load Scheme
button.

Select whether to build a Debug
HEX, which is necessary for hardware
debugging, or a final Release HEX.

7. What's next?

More examples

mikroC PRO for PIC32® comes with 80 examples which demonstrate a variety of features.
They represent the best starting point when developing a new project. You will find projects
written for mikroElektronika development boards, additional boards, internal MCU modules
and other examples. This way you always have a starting point, and don't have to start
from scratch. In most cases, you can combine different simple projects to create a more
complex one. For example, if you want to build a temperature datalogger, you can combine
temperature sensor example with MMC/SD example and do the job in much less time. All
projects are delivered with a working .HEX files, so you don't have to buy a compiler license
in order to test them. You can load them into your development board right away without
the need for building them.

Community

If you want to find answers to your questions on many interesting topics we invite you to visit
our forum at http://www.mikroe.com/forum and browse through more than 150 thousand
posts. You are likely to find just the right information for you.

On the other hand, if you want to download more free projects and libraries, or share your own
code, please visit the Libstock website http://www.libstock.com. With user profiles, you can
get to know other programmers, and subscribe to receive notifications on their code.

- rrrrrrEEE

(=2 Library Manager 42 Project Explarer

| i C.:.'IJ..Jsers\.Pl..lbiidbommentsiJv‘I-ikroelekt.ronil-i J
, Development Systems
LW32MX vi
.. Button
| Caleulator (TFT)
| CAN
|, EEFROM (13C)

. Joystick
J, LCD (COG 2x16)

., Led Blinking
- f3g LedBlinking. mcp32
-§P Led_Curtain.mep32

»

| Mapping (TFT)
- MMC =
[|, Serial Flash
[|, Simple Maze (TFT)
] | Temperature Sensor (ADC)
E-) TET
@) UART1
&) UART2
B [UsB

) mikroMMEB for PIC32
H . PIC32MX4_MMB
@ | PIC32VX7_MMB
@ . Digital Signal Processing
r+ | . Extra Boards =,

Figure 7-1: Project explorer window
enables you to easily access provided
examples and load them quickly

DISCLAIMER

All the products owned by MikroElektronika are protected by copyright law and international copyright treaty. Therefore, this manual is to be treated as any other
copyright material. No part of this manual, including product and software described herein, may be reproduced, stored in a retrieval system, translated or transmit-
ted in any form or by any means, without the prior written permission of MikroElektronika. The manual PDF edition can be printed for private or local use, but not for
distribution. Any modification of this manual is prohibited.

MikroElektronika provides this manual ‘as is’ without warranty of any kind, either expressed or implied, including, but not limited to, the implied warranties or conditions
of merchantability or fitness for a particular purpose.

MikroElektronika shall assume no responsibility or liability for any errors, omissions and inaccuracies that may appear in this manual. In no event shall MikroElektronika,
its directors, officers, employees or distributors be liable for any indirect, specific, incidental or consequential damages (including damages for loss of business profits
and business information, business interruption or any other pecuniary loss) arising out of the use of this manual or product, even if MikroElektronika has been advised
of the possibility of such damages. MikroElektronika reserves the right to change information contained in this manual at any time without prior notice, if necessary.

HIGH RISK ACTIVITIES

The products of MikroElektronika are not fault - tolerant nor designed, manufactured or intended for use or resale as on - line control equipment in hazardous
environments requiring fail - safe performance, such as in the operation of nuclear facilities, aircraft navigation or communication systems, air traffic control, di-
rect life support machines or weapons systems in which the failure of Software could lead directly to death, personal injury or severe physical or environmental
damage (‘High Risk Activities’). MikroElektronika and its suppliers specifically disclaim any expressed or implied warranty of fitness for High Risk Activities.

TRADEMARKS

The MikroElektronika name and logo, the MikroElektronika logo, mikroC™, mikroBasic™, mikroPascal™, mikroProg™, LV-32MX v6™, mikromedia for PIC32™, multimedia
for PIC32MX7™ and MMB for PIC32MX4™ are trademarks of MikroElektronika. All other trademarks mentioned herein are property of their respective companies.

All other product and corporate names appearing in this manual may or may not be registered trademarks or copyrights of their respective companies, and are only used
for identification or explanation and to the owners’ benefit, with no intent to infringe.

Copyright © MikroElektronika, 2012, All Rights Reserved.

www.mikroe.com.

www.mikroe.com/esupport

office@mikroe.com

Mikro€Elektronika,

Creating the first project in
mikroC PRO for PIC32 ver. 1.00

0"100000 " 020524

