

Data Sheet September 7, 2010 FN6123.3

I²C LCD Module Calibrator

The ISL45045 is specifically designed to work in notebook applications where the system's EEPROM is powered up before the rest of the devices on the I^2C bus. This enables data to be downloaded to a graphics card. The ESD protection scheme on the SDA, SCL and SCL_S pins prevent the loading of the I^2C bus during the initialization period prior to full power-up of the notebook.

The VCOM voltage of an LCD panel needs to be adjusted to remove flicker. This part provides a digital interface to control the sink-current output that attaches to an external voltage divider. The increase in output sink current lowers the voltage on the external divider, which is applied to an external VCOM buffer amplifier. The desired VCOM setting is loaded from an external source via a standard two-wire I²C serial interface. At power-up, the part automatically comes up at the last programmed setting in an on-board 7-bit EEPROM.

An external resistor attaches to the SET pin and sets the full-scale sink current that determines the lowest voltage of the external voltage divider.

The ISL45045 is available in an 10 Ld 3mmx3mm TDFN package with a maximum thickness of 0.8mm for ultra thin LCD panel design.

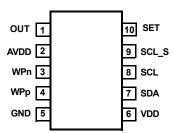
Ordering Information

PART NUMBER (Note)	PART MARKING	TEMP. RANGE (°C)	PACKAGE (Pb-Free)	PKG. DWG. #
ISL45045IRZ	045Z	0 to +85	10 Ld 3x3 TDFN	L10.3x3A
ISL45045IRZ-T*	045Z	0 to +85	10 Ld 3x3 TDFN	L10.3x3A

*Please refer to TB347 for details on reel specifications.

NOTE: These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.

Features

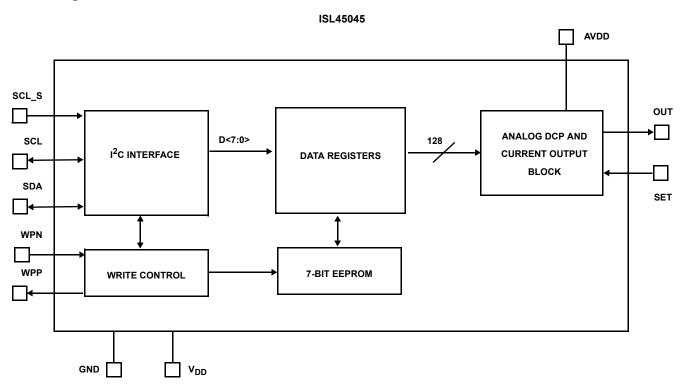

- · 128-Step Adjustable Sink Current Output
- 2.25V to 3.6V Logic Supply Voltage Operating Range (2.6V Minimum Programming Voltage)
- Analog Supply Voltage Range 4.5V to 18V for VDD from 2.6V to 3.6V; 4.5V to 13V for VDD from 2.25V to 3.6V
- SDA, SCL, SCL_S pins tolerant to system power-up sequences (i.e will not alter I²C bus state)
- I²C Interface (Slave and Transmitter) -- Address: 1001111
- · On-board 7-bit EEPROM
- · Output adjustment SET Pin
- · Output Guaranteed Monotonic Over-Temperature
- Thin 10 Ld 3mmx3mm DFN (0.8mm max)
- · Pb-Free (RoHS Compliant)

Applications

· LCD Panels

Pinout

ISL45045 (10 LD TDFN) TOP VIEW


Pin Descriptions

PIN	TYPE	PULL U/D	FUNCTION	EQUIVALENT CIRCUIT
OUT	Output		Adjustable Sink Current Output Pin. The Current sinks into the OUT pin is equal to the DAC setting times the maximum adjustable sink current divided by 128. See SET pin function description for the maximum adjustable sink current setting.	OUT GND
AV _{DD}	Supply		High-Voltage Analog Supply. Bypass to GND with 0.1μF Capacitor.	AV _{DD} ->600kΩ
WPn	Input	Pull-Down	Write Protection Active Low. CMOS Level.	WPn PULL DOWN GND
WPp	Output		Output Pin. Opposite Logic Level of WPn Pin.	WPp WPn
GND	Supply		Ground.	
VDD	Supply		System Power Supply Input. Bypass to GND With 0.1µF Capacitor.	VDD dV/dT TRIGGER GND
SDA	In/Out	Open Drain Output	I ² C Serial Data Input/Output.	SDA GUID GND

Pin Descriptions (Continued)

PIN	TYPE	PULL U/D	FUNCTION	EQUIVALENT CIRCUIT
SCL	In/Out	Open Drain Output	Serial Clock Input for Internal and Inter-IC Use.	SCL D CONTROL OF THE SCHOOL OF
SCL_S	Input		Serial Clock Input.	SCL_S GND
SET	Analog		Maximum Sink Current Adjustment Point. Connect a resistor from SET to GND to set the maximum adjustable sink current of the OUT pin. The maximum adjustable sink current is equal to (AV _{DD} /20) divided by RSET.	SET D dV/dT TRIGGER

Block Diagram

Absolute Maximum Ratings

V _{DD} to Ground	+4V
SET	0.3V to +4V
AVDD	-0.3V to +20V
Output Voltages to GND	
OUT	-0.3V to +20V
ESD Rating	
Human Body Model	2kV

Operating Conditions

Temperature Range	0°C to +85°C
- 1	

Thermal Information

Thermal Resistance (Typical, Note 1)	θ _{JA} (°C/W)
10 Ld TDFN Package	90
Moisture Sensitivity (see Technical Brief TB363)	
All Packages	
Maximum Junction Temperature (Plastic Package)	+150°C
Maximum Storage Temperature Range65	°C to +150°C
Pb-free Reflow Profile	ee link below
http://www.intersil.com/pbfree/Pb-FreeReflow.asp	
Erase/Write Cycles	10,000
Data Retention	ars @ +85°C

CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and result in failures not covered by warranty.

1. θ_{JA} is measured in free air with the component mounted on a high effective thermal conductivity test board with "direct attach" features. See Tech Brief TB379.

Electrical Specifications

Test Conditions: V_{DD} = 3V, AVDD = 10V, OUT = 5V, R_{SET} = 24.9k Ω ; Unless Otherwise Specified. Typicals are at T_A = +25°C

PARAMETER	SYMBOL	TEST CONDITIONS	TEMP (°C)	MIN (Note 7)	TYP	MAX (Note 7)	UNITS
DC CHARACTERISTICS			•				
V _{DD} Supply Range Operating	V _{DD}		Full	2.25	-	3.6	V
V _{DD} Supply Range EEPROM Programming	V _{DD}		Full	2.6	-	3.6	V
V _{DD} Supply Current	I _{DD}	(Note 4)	Full	-	-	50	μA
AVDD Supply Range	AVDD	VDD range 2.6V to 3.6V	Full	4.5	-	18	V
		VDD range 2.25V to 3.6V		4.5	-	13	V
AVDD Supply Current	IAVDD	(Note 2)	Full	-	-	25	μΑ
SET Voltage Resolution	SET _{VR}		Full		7	1	Bits
SET Differential Nonlinearity	SET _{DN}	Monotonic Over-Temperature	Full	-	-	±1	LSB
SET Zero-Scale Error	SETZSE		Full	-	-	±2	LSB
SET Full-Scale Error	SET _{FSE}		Full	-	-	±8	LSB
SET Current	ISET	Through R _{SET} (Note 5)	Full	-	20	-	μA
SET External Resistance	SETER	To GND, AVDD = 20V	Full	10	-	200	kΩ
		To GND, AVDD = 4.5V	Full	2.25	-	45	kΩ
AVDD to SET Voltage AVDD to (Nattenuation SET		(Note 3)	Full	-	1:20	-	V/V
OUT Settling Time	OUT _{ST}	to ±0.5 LSB Error Band (Note 3)	Full	-	8	-	μs
OUT Voltage Range	V _{OUT}		Full	VSET + 0.5V	-	13	V
SET Voltage Drift	SET _{VD}	(Note 3)	25 to 55	-	<10	-	mV
SDA, SCL, SCL_S, WPn Input Logic High	VIH		Full	0.7*VDD	-	-	V
SDA, SCL, SCL_S, WPn Input Logic Low	VIL		Full	-	-	0.3*VDD	V
SDA, SCL, SCL_S, WPn Hysteresis		(Note 3)	Full	-	0.22*VDD	-	V

intersil FN6123.3 September 7, 2010

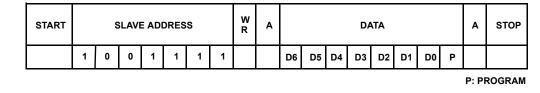
Electrical Specifications

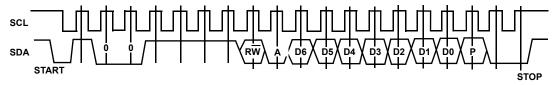
Test Conditions: V_{DD} = 3V, AVDD = 10V, OUT = 5V, R_{SET} = 24.9k Ω ; Unless Otherwise Specified. Typicals are at T_A = +25°C **(Continued)**

PARAMETER	SYMBOL	TEST CONDITIONS	TEMP (°C)	MIN (Note 7)	TYP	MAX (Note 7)	UNITS
WPn IL	IL _{WPN}		Full	15	25	35	μΑ
SDA, SCL Output Logic High	VOHS	@ 3mA	Full	0.4	-	-	V
SDA, SCL Output Logic Low	VOLS	@ 3mA	Full	-	-	0.4	V
WPp Output Logic High	VOH _{WPP}	@ 3mA	Full	VDD - 0.4	-	-	V
WPp Output Logic Low	VOLWPP	@ 3mA	Full	0.4	-	-	V
WPp Delay	t _{DWPP}		Full	-	-	100	ns
SCL_S to SCL On Resistance			Full	-	-	75	Ω
Delay From SCL_S to SCL	ts		Full	-	-	60	ns
I ² C							
SCL Clock Frequency	F _{SCL}		Full	0	-	400	kHz
I ² C Clock High Time	tsch		Full	0.6	-	-	μs
I ² C Clock Low Time	t _{SCL}		Full	1.3	-	-	μs
I ² C Spike Rejection Filter Pulse Width	t _{DSP}		Full	0	-	50	ns
I ² C Data Set-up Time	t _{SDS}		Full	100	-	-	ns
I ² C Data Hold Time	t _{SDH}		Full	0	-	900	ns
I ² C SDA, SCL Input Rise Time	t _{ICR}	Dependent on Load (Note 6)	Full	-	20 + 0.1*Cb	1000	ns
I ² C SDA, SCL Input Fall Time	t _{ICF}	(Note 6)	Full	-	20 + 0.1*Cb	300	ns
I ² C Bus Free Time Between Stop and Start	t _{BUF}		Full	1.3	-	-	μs
I ² C Repeated Start Condition Set-up	t _{STS}		Full	0.6	-	-	μs
I ² C Repeated Start Condition Hold	t _{STH}		Full	0.6	-	-	μs
I ² C Stop Condition Set-up	t _{SPS}		Full	0.6	-	ı	μs
I ² C Bus Capacitive Load	Cb		Full	-	-	400	pF
Capacitance on SDA	C _{SDA}		Full	-	-	10	pF
Capacitance on SCL, SCL_S	C _S	WPn = 0	Full	-	-	10	pF
		WPn = 1		-	-	22	pF
Write Cycle Time	t _W		Full	-	-	100	ms

NOTES:

- 2. Tested at AVDD = 18V.
- 3. Simulated and Determined via Design and NOT Directly Tested.
- 4. Simulated Maximum Current Draw when Programming EEPROM is 23mA, should be considered when designing Power Supply.
- 5. A Typical Current of 20μ A is Calculated using the AVDD = 10V and $R_{SET} = 24.9k\Omega$. The maximum suggested SET Current should be 120μ A.
- 6. Simulated and Designed According to I²C Specifications.
- 7. Parameters with MIN and/or MAX limits are 100% tested at +25°C, unless otherwise specified. Temperature limits established by characterization and are not production tested.


Truth Tables


TABLE 1. DVR WRITE PROTECTION TRUTH TABLE

	INPUT		ОИТРИТ			
WPn	SCL_S	SCL	WPp	REGISTER	EEPROM	
LOW	UNUSED	INPUT	HIGH	Write Protect	Write Protect	
HIGH	CONNECTED TO SCL	CONNECTED TO SCL_S	LOW	Writeable	Writeable	
HIGH to LOW	DISCONECTS FROM SCL	DISCONECTS FROM SCL_S	LOW to HIGH	EEPROM is Read into Register	EEPROM is Read into Register	
FLOAT (Pull-Down Resistor Included)	UNUSED	INPUT	HIGH	Write Protect	Write Protect	

NOTE: When the device is not write-protected SCL_S and SCL signals should not be driven at the same time. When SCL_S signal is "Unused" should be left floating.

I²C Bus Format

Application Information

This device provides the ability to reduce the flicker of an LCD panel by adjustment of the VCOM voltage during production test and alignment. A 128-step resolution is provided under digital control, which adjusts the sink current of the output. The output is connected to an external voltage divider, so that the device will have the capability to reduce the voltage on the output by increasing the output sink current.

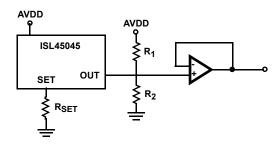


FIGURE 1. OUTPUT CONNECTION CIRCUIT EXAMPLE

6

When Read Operation, don't care P.

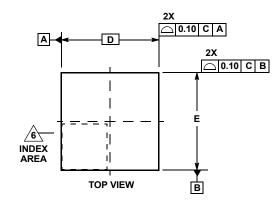
P = 1: Register Writing P = 0: EEPROM Writing (Program)

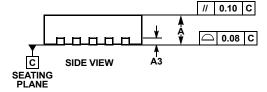
The adjustment of the output is provided by the two-wire I²C serial interface.

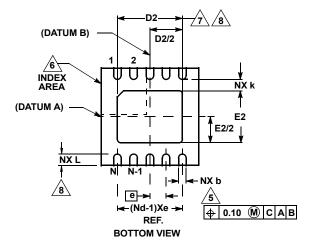
Adjustable Sink Current Output

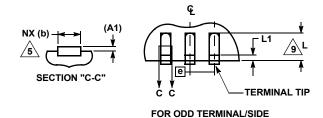
The device provides an output sink current which lowers the voltage on the external voltage divider. Equations 1 and 2 control the output. See Figure 1.

$$I_{OUT} = \frac{Setting}{128} X \frac{AVDD}{20(R_{SET})}$$
 (EQ. 1)


$$V_{OUT} = \left(\frac{R2}{R1 + R2}\right) VAVDD \left(1 - \frac{Setting}{128} X \frac{R1}{20(R_{SET})}\right) \qquad \text{(EQ. 2)}$$


Note: Where (Setting) is indicated, must be an integer between 1 and 128.


Ramp-up of the VDD Power Supply


It is required that the ramp-up from 10% VDD to 90% VDD achieved in less than or equal to 10ms to assure that the EEPROM and Power-on-reset circuits are synchronized and the correct value is read from the EEPROM Memory.

Thin Dual Flat No-Lead Plastic Package (TDFN)

10 LEAD THIN DUAL FLAT NO-LEAD PLASTIC PACKAGE

	ı				
SYMBOL	MIN	NOMINAL	MAX	NOTES	
Α	0.70	0.75	0.80	-	
A1	-	-	0.05	-	
A3		0.20 REF		-	
b	0.20	0.25	0.30	5, 8	
D	2.95	3.0	3.05	-	
D2	2.25	2.30	2.35	7, 8	
Е	2.95	3.0	3.05	-	
E2	1.45	1.50	1.55	7, 8	
е		0.50 BSC			
k	0.25	-	-	-	
L	0.25	0.30	0.35	8	
N		2			
Nd		3			

Rev. 3 3/06

NOTES:

- 1. Dimensioning and tolerancing conform to ASME Y14.5-1994.
- 2. N is the number of terminals.
- 3. Nd refers to the number of terminals on D.
- 4. All dimensions are in millimeters. Angles are in degrees.
- 5. Dimension b applies to the metallized terminal and is measured between 0.15mm and 0.30mm from the terminal tip.
- 6. The configuration of the pin #1 identifier is optional, but must be located within the zone indicated. The pin #1 identifier may be either a mold or mark feature.
- 7. Dimensions D2 and E2 are for the exposed pads which provide improved electrical and thermal performance.
- 8. Nominal dimensions are provided to assist with PCB Land Pattern Design efforts, see Intersil Technical Brief TB389.
- 9. Compliant to JEDEC MO-229-WEED-3 except for D2 dimensions.

All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems. Intersil Corporation's quality certifications can be viewed at www.intersil.com/design/quality

Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see www.intersil.com