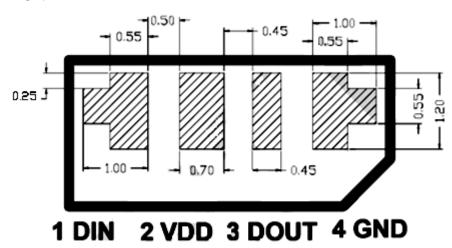


4.0 x 2.0 x 1.6mm RGB with IC Side View SMD LED


PACKAGE OUTLINES

Note:

- 1. All dimensions are in millimeters.
- 2. Tolerance is ± 0.1 mm unless otherwise noted.

PIN CONFIGURATION

No.SymbolFunction Description1DINControl Data Signal Input2VDDPower Supply LED3DOUTControl Data Signal Output4GNDGround

TOP VIEW

4.0 x 2.0 x 1.6mm RGB with IC Side View SMD LED

ABSOLUTE MAXIMUM RATINGS

Ta=25°C/VSS=0V

Parameter	Symbol	Range	Unit
Power Supply Voltage	VDD	+3.7~+5.5	V
Logic Input Voltage	$V_{ m IN}$	-0.5~VDD+5.5	V
Reverse Voltage	VR	12	V
Working Temperature	Topt	-40~+85	°C
Storage Temperature	Tstg	-40~+85	°C
ESD Pressure (DM)	Vesd	200	V
ESD Pressure (HBM)	Vesd	2K	V

OPTICAL CHRACTERISTICS

12mA

Color	Luminance (mcd)	Luminous Flux (lm)	Dominant Wavelength (nm)
Red	240-450	0.7-1.4	620-630
Green	580-1050	2.4-3.8	520-530
Blue	160-320	0.5-1.0	460-470

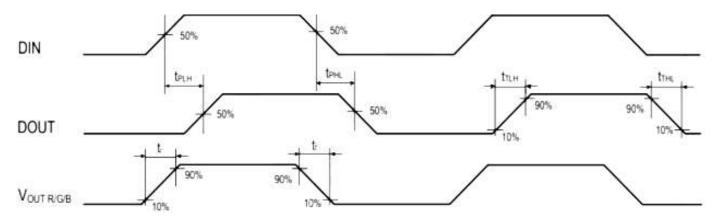
Note: Wavelength will maintain increment of $10\mbox{Nm}$ for all colors.

ELECTRICAL PARAMETERS

Ta=-20-+70°C/VDD=4.5~5.5V/VSS=0V

Parameter	Symbol	Min	Тур	Max	Unit	Conditions
The chip supply voltage	VDD		5.2		V	
The signal input flip threshold	VIH	0.7*VDD			V	VDD=5.0V
The signal input inp uneshold	VIL			0.3*VDD	V	VDD=3.0V
The frequency of PWM	FPWM		1.0		KHZ	
Static power consumption	IDD		0.5		mA	

4.0 x 2.0 x 1.6mm RGB with IC Side View SMD LED


DYNAMIC PARAMETERS

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions
The speed of data transmission	fDIN		800		KHZ	The duty ratio of 67% (data 1)
	TPLH		67		ns	The earth load capacitance of
DOUT transmission delay	TPHL		82		ns	the dout port is 30pf, and the signal transmission delay from DIN to dout
Out R/B Conversion Time	Tr		22		ns	IOUT R / B= 5mA, out R / B port connected with 200 Ω
	Tf		75		ns	resistor to VDD in series, load capacitance to ground
	Tr		18		ns	OUT $g = 5mA$, out g port is
IOUT rise/drop time	Tf		110		ns	connected with 200 Ω resistor to VDD in series, and the load capacitance to ground is 30pf

4.0 x 2.0 x 1.6mm RGB with IC Side View SMD LED

DYNAMIC PARAMETERS

DATA TRASMISSION TIME

Parameter	Description	Min	Standard Value	Max	Unit
T	Code Period	1.20			μs
ТОН	0 code, high level time	0.2	0.3	0.4	μs
TOL	0 code, low level time	0.8		1	μs
T1H	1 code, high level time	0.7	0.9	1.0	μs
T1L	1 code, low level time	0.2			μs
Trst	reset code, low level time	200			μs

The protocol uses a unipolar zeroing code.

Each symbol must have a low level.

Each symbol in this protocol starts with a high level. The high time width determines the "0" or "1" code.

When writing programs, the minimum symbol period is 1.2µs. 3.


The high time of "0" code and "1" code should be in accordance with the stipulated range in the above table.

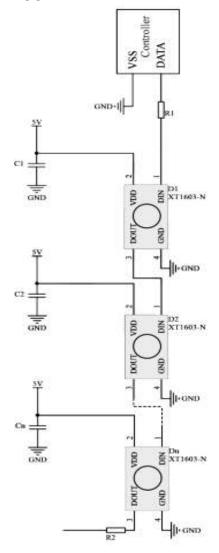
The low time requirement of "0" code and "1" code is less than 20µs.

4.0 x 2.0 x 1.6mm RGB with IC Side View SMD LED

TIMING WAVEFORM (Ta=25°C)

CONNECTION METHOD

Connection method:


24BIT DATA STRUCTURE (Ta=25°C)

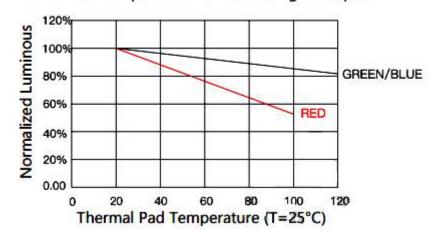
G7	G6	G5	G4	G3	G2	G1	G0	R7	R6	R5	R4
R3	R2	R1	R0	В7	В6	B5	В4	В3	B2	В1	В0

4.0 x 2.0 x 1.6mm RGB with IC Side View SMD LED

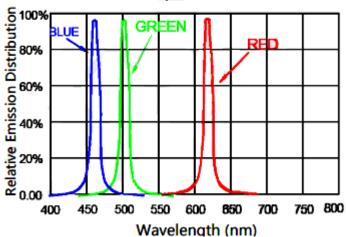
TYPICAL APPLICATION CIRCUIT

Note:

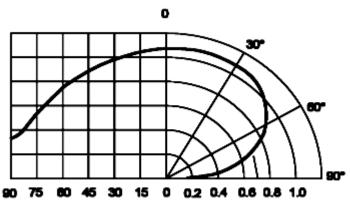
- In the application circuit, in order to prevent the instantaneous high voltage caused by the hot plug of the product during the test from damaging the internal signal input and output pins of the IC, the protection resistor should be connected in series at the signal input and output terminals.
- In addition, in order to make the IC chips work more stably, the decoupling capacitance between the beads is essential; Application 1: for flexible or rigid LED strip, the transmission distance between the lamp beads is short, it is recommended to connect the protection resistance at the input and output end in series, i.e. R1=R2, about 500 ohm.
- Application for module or general special- shaped products, lamp beads transmission distance is long, because of different wire and transmission distance, in the signal in time clock at both ends of the line on



4.0 x 2.0 x 1.6mm RGB with IC Side View SMD LED


grounding protection resistance will be slightly different.

CHARACTERISTIC CURVES


Thermal Pad Temperature vs. Relative Light Output

Wavelength Characteristics

Typical Radiation Pattern 120°

Radiation Angle

Version 1.1 Date: 01/12/2022

American Opto Plus LED Corp. 1206 E. Lexington Ave., Pomona CA 91/66 Tel: 909-465-0080 Fax: 909-465-0130 www.aopled.com

4.0 x 2.0 x 1.6mm RGB with IC Side View SMD LED

RELIABILITY TEST

Test Item	Test Condition	Reference
Temperature Cycle	-40°C~25°C~100°C~25°C 30min~5min~30min~5min 100 cycles	JEITA ED-4701 100 105
High Temp. Storage	Ta= +100°C 1000hrs	MIL-STD-883:1008 JIS C 7021: B-
Low Temp. Storage	Ta= -40°C 1000hrs	JIS C 7021: B-12
High Temp. High Humidity Storage	Ta=60°C RH=90% 1000hrs	MIL-STD-202:103B JIS C 7021: B-
Thermal Shock	100 ± 5°C ~ -40°C ± 5°C 15min~15min 100cycles	MIL-STD-202G
Solder Resistance Test	Tsld = 260° C , 10 sec. 2 times	JEITA ED-4701 300 301
Normal Temp. Life Test	25°C, IF: Typical current, 1000hrs	JESD22-A 108D

CRITERIA FOR JUDING THE DAMAGE

Project	Symbol Test Conditions		Min	Max
Luminous Intensity	IV	DC=5V, Typical Current	Initial Data x 0.7	
Resistance to Soldering Heat		DC=5V, Typical Current	No dead LEDs or obvious dar	

4.0 x 2.0 x 1.6mm RGB with IC Side View SMD LED

CAUTIONS

Dust & Cleaning:

- The surface of LED is packaged with silicone adhesive.
- Silicone resin plays a good protective role in the optical system and anti-aging properties of LED. However, silicon resin is soft and easy to stick to dust, so it is necessary to keep the working environment clean. Of course, there is a certain limit of dust on the LED surface, which will not affect the luminous intensity, but we should still avoid dust falling on the LED surface.
- Opening the bag is a priority, and components installed with LED should be stored in clean containers.
- When the surface of LED needs to be cleaned, if the solution such as trichloroethylene or acetone is used, the surface of LED will be dissolved and so on.
- Do not use soluble solution to clean the LED.
- Make sure whether it dissolves the LED before using any cleaning solution.
- Do not clean the LEDs by the ultrasonic. When it is absolutely necessary, the influence as ultrasonic cleaning on the LEDs depends on factors such as ultrasonic power.
- Before cleaning, a pre-test should be done to confirm whether any damage to the LEDs will occur.

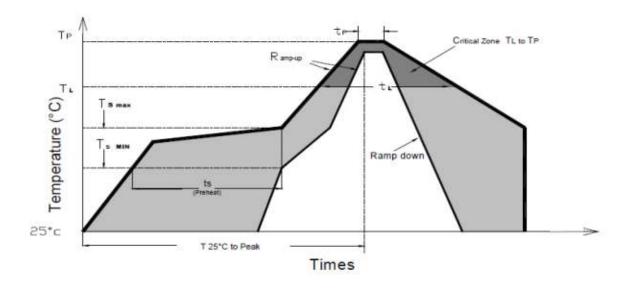
Shipping and Storage:

- TOP SMD LED is a humidity sensor, the LED packaging in the aluminum bag is to avoid the LED in the transport and storage of moisture absorption, in the bag with a desiccant to absorb the moisture inside the bag.
- If the LED absorbs water vapor, then in the LED over reflow, in the high temperature state, into which the rapid expansion of gas vaporization and produce a greater internal stress, so that the material crack, layered or damaged bonding wire, Resulting in product failure.
- TOP SMD LED with a moisture-proof anti-static aluminum foil bag packaging, handling should avoid the process of squeezing, piercing the case of bags, and do the necessary anti-static protective measures; promise products on the line before the leak or broken, Please stop the use of direct use of the product.
- If moisture-proof aluminum foil bags have been opened, damaged, perforated can be returned to the original re-dehumidification, must not be on-line use; The humidity level of this product is LEVEL 5a.

4.0 x 2.0 x 1.6mm RGB with IC Side View SMD LED

MOISTURE PROOF LEVELS

Majatura avast laval	Workshop life after packaging and unpacking				
Moisture proof level	time	condition			
LEVEL1	Unlimited	≤30°C/85 % RH			
LEVEL2	1 year	≦30℃/60 % RH			
LEVEL2a	4 weeks	≦30℃/60 % RH			
LEVEL3	168 hours	≦30°C/60 % RH			
LEVEL4	72 hours	≤30°C/60 % RH			
LEVEL5	48 hours	≦30℃/60 % RH			
LEVEL5a	24 hours	≦30°C/60 % RH			
LEVEL6	Take out and use	≦30°C/60 % RH			


ENVIRONMENTAL HUMIDITY

Environment humidity	Oven temperature	Baking time	Baking method
40%	70℃	24H	Remove from the electrostatic bag and bake and dehumidify with the reel
50%	70℃	48H	Remove from the electrostatic bag and bake and dehumidify with the reel
>60%	70℃	Ineffe	ective dehumidification baking
40%	130℃	6H Baking and dehumidification in gr	
50℃	130℃	12H	Baking and dehumidification in granular form.

4.0 x 2.0 x 1.6mm RGB with IC Side View SMD LED

REFLOW SOLDERING CHARACTERISTICS

Profile Feature	Lead-Based Solder	Lead-Free Solder
Average Ramp-Up Rate	3°C/sec max	3°C/sec max
Preheat Temp Min	100°C	150°C
Preheat Temp Max	150°C	200°C
Preheat Time	60-120 seconds	60-180 seconds
Time maintained above: temp.	183°C	217°C
Time maintained above: time	60-150 seconds	60-150 seconds
Peak/classification temperature	215°C	240°C
Time within 5°C of actual peak temp.	<10 seconds	<10 seconds
Ramp-down rate	6°C/second max	6°C/second max
Time 25°C to peak temp.	<6 minutes max	<6 minutes max

Note:

11

4.0 x 2.0 x 1.6mm RGB with IC Side View SMD LED

1. All temperatures refer to topside of the package, measured on the package body surface.

HEAT GENERATION

- Thermal design of the end product is of paramount importance.
- Please consider the heat generation of the LED when making the system design.
- The coefficient of temperature increase per input electric power is affected by the thermal resistance of the circuit board and density of LED. Placement on the board, as well as components.
- It is necessary to avoid intense heat generation and operate within the maximum rating given in this specification.
- The operating current should be decided after considering the ambient maximum temperature of LEDs.

ELECTROSTATIC DISCHARGE AND SURGE CURRENT

- Electrostatic discharge (ESD) or surge current (EOS) may damage LED.
- Precautions such as ESD wrist strap, ESD shoe strap or antistatic gloves must be worn whenever handling of LED. All devices, equipment and machinery must be properly grounded.
- It is recommended to perform electrical test to screen out ESD failures at final inspection.
- It is important to eliminate the possibility of surge current during circuitry design.

MOISTURE PROOF PACKAGE

- Cannot take any responsibility for any trouble that is caused by using the LEDs at conditions exceeding our specifications.
- The LED light output is strong enough to injure human eyes.
- Precautions must be taken to prevent looking directly at the LEDs with unaided eyes for more than a few seconds.
- The formal specification must be exchanged and signed by both parties before large volume purchase begins.
- The appearance and specifications of the product may be modified for improvement without notice.