

Tough, reliable protection

3M[™] Scotchcast[™] OEM Resins Interactive Product Selection Guide

3M[™] Scotchcast[™] Resins for Original Equipment Manufacturers

3M[™] Scotchcast[™] Electrical Liquid Resins are 100-percent-solid, thermosetting, electrical-grade insulating resins. Classified chemically as either epoxies or polyurethanes, the product line includes two-part epoxy liquids and two-part polyurethane liquids. The unique electrical and physical properties make them ideal for insulating and protecting electrical and electronic parts and assemblies. Their physical features also make them suitable for nonelectrical, general-use applications, such as adhesives and sealants.

3M Scotchcast Powder Resins are a series of one-part, 100-percent-solid electrical-grade systems offering fast curing, excellent thermal and mechanical shock resistance, significant cut-through resistance, high adhesion, excellent chemical and moisture resistance, high-to-low flow characteristics and excellent electrostatic coating capability.

Table of Contents

3M Scotchcast Electrical Liquid Resins
Selection Process
Product Selection Guide
Typical Product Data
3M Scotchcast Powder Resins 13
Selection Process
Product Selection Guide
Typical Property Data

3M[™] Scotchcast[™] Electrical Liquid Resins

3M Scotchcast Electrical Liquid Resins are a two-part, 100-percent-solid system offering:

- Easy mixing ratios
- Moderate to long pot life
- Low exotherm
- High adhesion
- Good to excellent electrical properties
- Range of flexibility and viscosity

The basic Scotchcast electrical liquid resin systems include flexible, semiflexible and rigid room-temperature-curing and oven-curing resins, some of which are then modified to create filled and thixotropic versions.

Resins are available to meet temperature, class, color and special performance needs. All Scotchcast electrical liquid resins are formulated and produced for convenient and reliable use. Simple mixing ratios and preproportioned packaging allow for easy handling and mixing, and reduce errors on the production line. Scotchcast electrical liquid resins contain no nonylphenol.

Selection Process

The Scotchcast electrical liquid resin most likely to succeed in an application can be selected through a process of elimination. Simply answer four basic questions in conjunction with the flow chart on page 6. The application questions are:

- Room cure or oven cure?
- Filler?
- Degree of flexibility?
- Temperature class?

The following sections provide some additional information that may be used to determine the answers to the above four basic questions.

3M[™] Scotchcast[™] Electrical Liquid Resins

Selection Process

Room cure or oven cure?

In answering this question, consider:

• The availability of ovens.

If curing ovens are not available or if the addition of ovens cannot be justified in your production line, a room-temperature curing resin is typically recommended.

The application process (i.e., dipping, potting, casting, impregnation, bonding).

One of the advantages of a production process in which curing ovens are available is that oven cure resins can be produced. These are typically more versatile than room cure resins because they have long pot lives and short cure times plus their viscosities can be lowered by warming.

• The number of units to be processed.

Oven-cured resins are often used in high-volume applications because of increased productivity as a result of faster cure cycles.

• The mass of resin to be used per unit. Room-curing resins rely heavily on the heat generated from their reaction for completion of cure. In a small mass, this heat dissipates quickly through the resin to the surrounding atmosphere so the center does not become too hot. In larger masses, however, the resin might act as a heat insulator and cause the interior temperature to rise rapidly. If uncontrolled, this rise in temperature could exceed the maximum temperature which some components can tolerate. A high exotherm could also cause the resin to crack or char. If a large mass of a room-temperature curing resin must be used, the exotherm problem can be overcome by curing the mass in layers and allowing each layer to cool before casting the next.

Rate of cure.

To obtain the fastest cure, small masses of room temperature curing products can be oven cured.

Filler?

The handling and physical properties of the resin are important in answering this question. Consider the following:

- **Unfilled** systems are used in applications where very low viscosity is a prerequisite; for example, impregnating small or tightly wound coils and filling small voids.
- **Filled** systems are used in applications where increased viscosity, reduced shrinkage, lower exotherm, increased thermal shock resistance, increased thermal conductivity or flame retardancy are needed. Adding a filler always increases viscosity. If one or more of the properties cited are necessary but increased viscosity is not desirable, the viscosity increase can be nullified by warming the filled resin.
- A **thixotropic** resin system is like a gel at rest but takes on the properties of a fluid when agitated. These systems are used in applications where "nonflow" is required, such as wet winding or encapsulation by dipping.
- A **paste** is an extremely high viscosity resin normally applied by spatula, caulking, buttering or troweling.

2) [

Degree of flexibility?

To answer this question, consider:

Are stress factors important?

The flexible and semiflexible resin systems exert the least stress on components.

- Will the component be subjected to thermal or mechanical shock? If so, choose a flexible or semiflexible resin.
- To what type of atmosphere will the component be exposed? Rigid epoxies, followed by room-curing epoxies, are usually the most resistant to solvents, chemicals, fuels and radiation.
- What physical property requirements must the resin meet? Rigid systems possess the highest heat-distortion temperature and best physical properties.

Temperature Class?

A resin rated in a specific temperature class is deemed capable of operating continuously at that temperature. The Association of Industrial Electrical Engineers (AIEE Standard Number 1) denotes some of these temperature class ratings:

Class O = 90°C (194°F) Class A = 105°C (221°F) Class B = 130°C (266°F) **Class F** = 155°C (311°F) **Class H** = 180°C (356°F)

Selection process for electrical liquid resins continues on next page >>>

3M[™] Scotchcast[™] Electrical Liquid Resins Selection process (continued from previous page)

Application Considerations

In addition to the four basic questions on previous page, also consider the following factors:

Does the product meet the handling, electrical and physical property requirements of the application?

What specifications must the resin meet?

Does the selected product satisfy these requirements? Specifications are often of major importance, despite the fact that their consideration may not always indicate the best product for the application. Nevertheless, they must either be met or modified.

What problems have existed with other methods or products that have been used or evaluated?

Does the selected resin have the right clarity or color?

Clear, amber, cream and tan resin systems can be augmented with pigments. The user is responsible for determining if pigmentation affects the properties important to the application. These guidelines may be helpful in making that determination:

- Only predispersed, electrical grade pigmentation systems should be evaluated
- The amount of pigmentation system added should be kept at an absolute minimum (less than two percent)
- The pigmented product should be tested for conformance to all application requirements before actual full-scale use

Is the viscosity of the resin appropriate to the needs of the application?

Viscosity is a measure of the resistance of a liquid to shear forces. This property is important for handling purposes, and in cases where a specific range or type of viscosity may be necessary to meet the needs of the application, e.g., low viscosity to impregnate tightly wound or small diameter windings, or high viscosity for dipping applications. The most common means of viscosity measurement is Brookfield viscosity, reported in centipoise. The table beginning on page 7 shows the wide viscosity range of 3M Scotchcast Electrical Liquid Resins.

Selection Guide

Step 1: Select Type of Resin Cure Ne		Step 2: Select Degree of Flexibility Needed	Step 3: Select Temperature Class Required	Step 4: Select Appropriate 3M™ Resin
Room Cure Resins	Room Cure Unfilled ResinsLower Viscosity Better ImpregnationRoom Cure Filled Resins Medium Viscosity Higher Thermal Conductivity Better Dimensional StabilityRoom Cure Thixotropic Resins Highly Filled Troweling, Buttering Applications	Rigid Semiflexible Flexible Flexible Semiflexible Flexible Semiflexible	Class B Class B Class B Class O Class O Class O Class B Class O Class B Class B Class B	5N 8N, 208N 226 2123 9N 2131
Oven Cure Resins	Oven Cure Unfilled Resins Lower Viscosity Better Impregnation Oven Cure Filled Resins Medium Viscosity Higher Thermal Conductivity Better Dimensional Stability	Rigid Semiflexible Rigid Semiflexible	Class F Class B Class B Class B Class B Class F Class F Class F Class B	250 3 280 235 251 281, MR283 241, 255
-	Oven Cure Thixotropic Resins Highly Filled Dipping, Buttering Applications	Rigid	Class F Class F Class B	252 282 253

Room Cures

Polymer Cure/ Cured Form/ Filler/Color	Temperature Class ¹	3M [™] Electrical Liquid Resin Product Number	Description	Mixing Ratio A/B	Viscosity² at 23°C (73°F) (Centipoise)	Cure Schedules ³ (Temp/Time)	Gel Time ⁴
Polyurethane Room-Temperature Flexible Unfilled Black	В	226	This is a rubbery, castor-based, repairable polyurethane that has very low viscosity and excellent hydrolytic stability (meets MIL-I-16923G and naval avionics reversion requirements). Its low volatility at room temperature helps minimize potential toxicity. <u>Data Sheet</u> <u>Safety Data Sheet</u>	Wt 2:5 Vol (%) 23.6:75.4	A=190 B=750 Mixed=650	23°C (73°F) 72 hrs. 67°C (152°F) 6 hrs.	15 min. at 60°C (140°F)
Epoxy Room-Temperature Rigid Unfilled Clear Amber	В	5N	This is a general purpose, very low viscosity, chemical and moisture- resistant, transparent epoxy with a long pot life and low exotherm. No nonylphenol. <u>Data Sheet</u> <u>Safety Data Sheet</u>	Wt 2:1 Vol (%) 63.5:36.5	A = 12,500 B = 100 Mixed = 3,000	23°C (73°F) 24-48 hrs. 60°C (140°F) 1 hr. 95°C (203°F) 1/2 hr.	18 min. at 60°C (140°F)
Epoxy Room-Temperature Semiflexible Unfilled Clear Amber Reddish Brown	В	8N 208N	This is a clear, general purpose electrical resin. 3M resin 208 is red and supplied in kit form for use as a motor repair resin. Both semiflexible epoxies exhibit low stress, low exotherm, good fuel and oil resistance, long pot life, and permanent mechanical and thermal shock resistance. No nonylphenol. Data Sheet-8N Safety Data Sheet-8N Data Sheet-208N Safety Data Sheet-208N	Wt 1:1 Vol (%) 46:54	A = 12,500 B = 4,000 Mixed = 7,000	23°C (73°F) 24-48 hrs. 60°C (140°F) 2 hrs. 95°C (203°F) 1 hr.	30 min. at 60°C (140°F)
Epoxy Room-Temperature Semiflexible Filled Reddish Brown	В	9N	This medium viscosity, filled version of 3M resin 8N possesses all the good features of 3M resin 8N plus very low exotherm, less shrinkage (even lower stress), improved thermal shock resistance and higher thermal conductivity. Self extinguishing. Tested to MIL-I-16923G. No nonylphenol. Data Sheet Safety Data Sheet	Wt 1:1 Vol (%) 47:53	A = 90,000 B = 20,000 Mixed = 28,000	23°C (73°F) 24-48 hrs. 60°C (140°F) 2 hrs. 95°C (203°F) 1 hr.	28 min. at 60°C (140°F)
Epoxy Room-Temperature Semiflexible Filled (paste) Reddish Brown	В	10N 210N	Both of these products have a heavy paste (peanut butter) consistency. 3M resin 10N is for general use. 3M resin 210N is supplied in kit for use primarily as a motor repair resin. They are versions of 3M resin 9 and exhibit many of its good features. Self extinguishing. No nonylphenol. <u>Data Sheet-10N</u> <u>Safety Data Sheet-10N</u> <u>Data Sheet-210N</u> <u>Safety Data Sheet-210N</u>	Wt 1:1 Vol (%) 47:53	A = paste B = paste Mixed = paste	23°C (73°F) 24-48 hrs. 60°C (140°F) 2 hrs. 95°C (203°F) 1 hr.	30 min. at 60°C (140°F)

Test methods

¹ AIEE standard.

² Brookfield Viscometer

³ The cure times do not take into consideration the time necessary for the part and resin to reach the cure temperature. The user must determine this time and edd it to the sure time at temperature.

determine this time and add it to the cure time at temperature. ⁴ 3M Test Method, using Sunshine Gel Timer Typical property data for room cures continues on next page >>>

Room Cures (continued from previous page)

3M [™] Electrical Liquid Resin Product Number	Hardness ⁵	Specific Gravity ⁶ / Density (Cured)	Thermal Shock Resistance ⁷ (Passes 10 Cycles at Specified Temperature Range and Insert Size)	Linear Thermal Expansion ⁸ (Length/Unit Length/°C)	Tensile Strength ⁹ (psi)	Thermal Conductivity ⁸ (W/Mk) ¹⁴	Moisture Absorption ^{10, 13} (% Wt Gain)	Dielectric Strength ¹¹ (Volts Per Mil. 1/8 Inch Sample)	Volume Resistivity ¹² (Ohm-Cm at 23°C)
226	75 Shore A	1.06/8.85 lb/gal	130°C to -55°C 1/4 in. (6.35mm) insert	23 × 10⁻⁵	68.9 Kg/cm²	0.20	120 days @ 71°C and 95% RH Weight gain = 0.45%	420 V/mil	10 ¹³
5N	15 Barcol	1.12/9.35 lb/gal		17.7 × 10 ⁻⁵	562 Kg/cm²	0.18	240 hours @ 96% RH Weight gain = 0.5%	325 V/mil	1014
8N 208N	68 Shore D	1.12/9.35 lb/gal	130°C to -55°C 1/8 in. (3.175 mm) insert	15 × 10 ^{-₅}	120 Kg/cm²	0.18	240 hours @ 96% RH Weight gain = 1.6%	325 V/mil	10 ¹³
9N	70 Shore D	1.42/11.85 lb/gal	130°C to -55°C 1/4 in. (6.35 mm) insert	13 × 10-⁵	155 Kg/cm²	0.31	240 hours @ 96% RH Weight gain = 0.8%	350 V/mil	10 ¹³
10N 210N	70 Shore D	1.55/12.94 lb/gal	130°C to -55°C 1/4 in. (6.35 mm) insert	8.6 × 10 ⁻⁵	105 Kg/cm²	0.34	240 hours @ 96% RH Weight gain = 0.44%	350 V/mil	10 ¹²

Test methods

- ⁵ Shore A = Immediate per ASTM D 2240 Shore D = Immediate per ASTM D2240 Barcol = Immediate per Barcol Hardness Tester
- 6 ASTM D792

7

- Olyphant Inserts = 3M Test Method (1/8 inch = 3,175 mm, 1/4 inch = 6,35 mm) 8 ASTM D696
- ⁹ ASTM D638
 ¹⁰ ASTM D570, 240 hours @ 96% R.H.
- 11 ASTM D149
- 12 ASTM D257
- ¹³ ASTM D570-81, 24 hour immersion @ 23°C

Typical property data for room cures continues on next page >>>

Room Cures (continued from previous page)

Polymer Cure/ Cured Form/ Filler/Color	Temperature Class ¹	3M [™] Electrical Liquid Resin Product Number	Description	Mixing Ratio A/B	Viscosity ² at 25°C (77°F) (Centipoise)	Cure Schedules ³ (Temp/Time)	Gel Time ⁴ (Minutes)
Polybutadiene Room-Temperature Soft, reenterable Unfilled Translucent Amber	0	2123	3M resin 2123 is a soft, two-part polybutadiene resin encapsulant designed specifically for re-enterable protection. It is formulated for virtually every electrical application requiring a soft, re-enterable resin with good handling and performance characteristics up to 1000 Volts. Data Sheet Safety Data Sheet	Wt 1:1 Vol (%) 48:52	A= 350-750* B= 700-1400*	21°C (70°F) 24 hrs.	62 min.
Polyurethane Room-Temperature Flexible Filled Black	0	2131	3M Scotchcast Flame-Retardant Compound 2131 is a two-part polyurethane resin designed to withstand rugged conditions for operating up to 1000 Volts. <u>Data Sheet</u> <u>Safety Data Sheet</u>	Wt 1:2 Vol (%) 37:63	A= 600-1100* B= 400-10000*	0°C (32°F) 24 hrs. 10°C (50°F) 24-30 hrs. 21°C (70°F) 16-24 hrs.	17 min.

Oven Cures – Unfilled Resins

Typical property data for room cures continues on next page >>>

Polymer Cure/ Cured Form/ Filler/Color	Temperature Class ¹	3M Electrical Liquid Resin Product Number	Description	Mixing Ratio A/B	Viscosity ² @25°C (77°F) (Centipoise)	Cure Schedules ³ (Temp/Time)	Gel Time⁴ (Minutes)
Epoxy Oven-Temperature Rigid Unfilled Brown	F	250	The distinguishing features of this product are its high-temperature stability, good electrical and physical properties, and low viscosity. It is used where adhesion, mechanical strength and good electricals at high temperatures are needed. <u>Data Sheet</u> <u>Safety Data Sheet</u>	Wt 1:1 Vol (%) 50:50	A=13,000 B=130 Mixed=1,800	75°C (167°F) 15-20 hrs. 95°C (203°F) 6-8 hrs. 120°C (248°F) 2-3 hrs.	17 min.
Epoxy Oven-Temperature Rigid Unfilled Clear Amber	В	3	This product has very low viscosity that allows for complete impregnation of small voids. It is also characterized by good electricals, outstanding physical stability and superior moisture resistance. Data Sheet Safety Data Sheet	Wt 2:3 Vol (%) 37:63	A = 12,500 B = 400 Mixed = 1,600	77°C (167°F) 12-16 hrs. 95°C (203°F) 6-8 hrs. 120°C (248°F) 1-2 hrs.	21 min.
Epoxy Oven-Temperature Semiflexible Unfilled Clear Amber	F	280	This product is characterized by its high- temperature stability, superior electrical properties and thermal shock resistance. <u>Data Sheet</u> <u>Safety Data Sheet</u>	Wt 2:3 Vol (%) 37:63	A = 12,500 B = 2,500 Mixed = 4,000	75°C (167°F) 24 hrs. 95°C (203°F) 6-8 hrs. 120°C (248°F) 2-3 hrs.	20 min.
Epoxy Oven-Temperature Semiflexible Unfilled Reddish-Brown	В	235	Permanent semiflexibility, thermal shock and impact resistance, stable properties, good electricals and adhesion are features of 3M resin 235. Very low viscosity and good wetting ability allow for complete impregnation of small voids. <u>Data Sheet</u> <u>Safety Data Sheet</u>	Wt 1:2 Vol (%) 31:69	A = 13,000 B = 1,000 Mixed = 1,500	75°C (167°F) 15-20 hrs. 95°C (203°F) 6-8 hrs. 120°C (248°F) 2-3 hrs.	18 min.

Typical property data for oven cures (unfilled resins) continues on next page >>>

Room Cures (continued from previous page)

3M [™] Electrical Liquid Resin Product Number	Hardness ⁵	Specific Gravity ⁶ / Density (Cured)	Renterable and Flame Retardant	Max Exotherm (3M Test Method-67), 100 grams	Tensile Strength ⁹ (psi)	Thermal Conductivity ⁸ (W/Mk) ¹⁴	Moisture Absorption ^{10, 13} (% Wt Gain)	Dielectric Strength ¹¹ (Volts Per Mil. 1/8 in. Sample)	Insulation Resistance
2123	0 Shore A	0.53 oz./in.³		6°F (3°C) rise	0.75 Kg/cm²		24 hours @ 23°C, immersion Weight gain = 0.2%	240 V/mil	4×10 ¹¹ ohms (MS 17000, Section 1182)
2131	82 Shore A	0.69 oz./in.³		147°F (64°C) rise	73 Kg/cm²		168 hours @ 100°C, immersion Weight gain = 4.9%	343 V/mil	

Oven Cures - Unfilled Resins (continued from previous page)

3M Electrical Liquid Resin Product Number	Hardness ⁵	Specific Gravity ⁶ / Density (Cured)	Thermal Shock Resistance ⁷ (Passes 10 Cycles at Specified Temperature Range and Insert Size)	Linear Thermal Expansion ⁸ (Length/Unit Length/°C)	Tensile Strength [®] (psi)	Thermal Conductivity ⁸ (W/Mk) ¹⁴	Moisture Absorption ^{10, 13} (% Wt Gain)	Dielectric Strength ¹¹ (Volts Per Mil. 1/8 Inch Sample)	Volume Resistivity ¹² (Ohm-Cm at 23°C)
250	25 Barcol	1.06/8.85 lb/gal		6.5 × 10 ⁻⁶	548 Kg/cm²	0.15	240 hours @ 96% RH Weight gain = 0.30%	325 V/mil	10 ¹⁵
3	80 Shore D	1.12/9.35 Ib/gal		20 × 10 ⁻⁵	310 Kg/cm²	0.17	240 hours @ 96% RH Weight gain = 0.5%	300 V/mil	1015
280	65 Shore D	1.08/9.01 lb/gal	130°C to -65°C 1/8 in. insert Passes Mil-I-16923E	21 × 10⁻⁵	310 Kg/cm²	0.22	240 hours @ 96% RH Weight gain = 0.5%	375 V/mil	10 ¹⁵
235	55 Shore D	1.10/9.18 lb/gal	130°C to -55°C 1/8 in. insert	16 × 10 ⁻⁵	91 Kg/cm²	0.17	240 hours @ 96% RH Weight gain = 0.92%	325 V/mil	1015

Oven Cures – Filled Resins

Polymer Cure/ Cured Form/ Filler/Color	Temp. Class ¹	3M [™] Electrical Liquid Resin Product Number	Description	Mixing Ratio A/B	Viscosity² at 25°C (77°F) (Centipoise)	Cure Schedules ³ (Temp/Time)	Gel Time ⁴ (Minutes)
Epoxy Oven-Temperature Rigid Filled Brown	F	251	This medium-viscosity, filled version of 3M resin 250 offers many of the same advantages plus lower shrinkage, improved mechanical and thermal shock resistance and higher thermal conductivity. It meets the requirements of MIL-I-16923G. Self extinguishing. Data Sheet Safety Data Sheet	Wt 1:1 Vol (%) 50:50	A=175,000 B=10,000 Mixed=19,000	75°C (167°F) 15-20 hrs. 95°C (203°F) 6-8 hrs. 120°C (248°F) 2-3 hrs.	20 min.
Epoxy Oven-Temperature Semiflexible Filled Off-White Thixotropic	В	255	3M resin 255 meets flame retardancy requirements of Fed. Std. 406, Method 2023 and meets the requirements of MIL-I-16923G when postcured for 16 hours at 121°C. It also offers excellent thermal and mechanical shock resistance. Self extinguishing. Data Sheet Safety Data Sheet	Wt 2:3 Vol (%) 39:61	A = Thixotropic B = Thixotropic Mixed = Thixotropic	95°C (203°F) 12-16 hrs. 120°C (248°F) 2-3 hrs.	23 min.
Epoxy Oven-Temperature Semiflexible Filled Cream	F	281	This filled version of 3M resin 280 offers many of the key features of 3M resin 280 plus lower shrinkage, improved thermal and mechanical shock resistance, plus high thermal conductivity. Data Sheet Safety Data Sheet	Wt 2:3 Vol (%) 37:63	A = 320,000 B = 38,000 Mixed = 75,000	120°C (248°F) 2- hrs.	21 min.
Epoxy Oven-Temperature Semiflexible Filled Reddish-Brown	В	241	This filled version of 3M resin 235 offers many of the key features of 3M resin 235 plus lower shrinkage, improved thermal and mechanical shock resistance, and increased thermal conductivity. Self extinguishing. Data Sheet Safety Data Sheet	Wt 1:2 Vol (%) 31:69	A = 175,000 B = 9,000 Mixed = 15,000	75°C (167°F) 15-20 hrs. 95°C (203°F) 6-8 hrs. 120°C (248°F) 2-3 hrs.	22 min.
Epoxy Oven-Temperature Rigid Filled Thixotropic Reddish-Brown	F	252	3M resin 252 is a thixotropic version of 3M resin 251 and offers many of the same advantages. Its thixotropic nature renders it useful in dipping, brushing or troweling applications where resistance to running or sagging is a requirement. Data Sheet Safety Data Sheet	Wt 1:1 Vol (%) 30:70	A=Thixotropic B=Thixotropic Mixed= Thixotropic	95°C (203°F) 12-16 hrs.	23 min.
Epoxy Oven-Temperature Semiflexible Filled Thixotropic Cream	В	282	3M resin 282 is a thixotropic version of 3M resin 281 offering many of the same advantages. It is also used in dipping, brushing or troweling applications where resistance to running or sagging is a requirement. Self extinguishing. Data Sheet Safety Data Sheet	Wt 2:3 Vol (%) 37:63	A=Thixotropic B=Thixotropic Mixed= Thixotropic	75°C (167°F) 15-20 hrs. 95°C (203°F) 6-8 hrs. 120°C (248°F) 2-3 hrs.	23 min.
Epoxy Oven-Temperature Semiflexible Filled Thixotropic Reddish-Brown	F	253	This product offers many of the advantages of 3M resins 241 and 243. Its thixotropic nature renders it useful in dipping, brushing or troweling applications where resistance to running or sagging is a requirement. Data Sheet Safety Data Sheet	Wt 1:2 Vol (%) 30:70	A=Thixotropic B=Thixotropic Mixed= Thixotropic	95°C (203°F) 12-16 hrs. 120°C (248°F) 2-3 hrs.	23 min.
Primer	В	5136N	A one-part, solvent-based system specifically designed to help improve the adhesion of 3M's polyurethane resins to soft substrates such as neoprene, vinyl, polyurethanes, rubbers and semiflexible epoxies. <u>Data Sheet</u> <u>Safety Data Sheet</u>			rine) continues on ne	

Typical property data for oven cure (filled resins) continues on next page >>>

Oven Cures - Filled Resins (continued from previous page)

3M [™] Electrical Liquid Resin Product Number	Hardness⁵	Specific Gravity ⁶ / Density (Cured)	Thermal Shock Resistance ⁷ (Passes 10 Cycles At Specified Temperature Range And Insert Size)	Linear Thermal Expansion ⁸ (Length/Unit Length/°C)	Tensile Strength ⁹ (psi)	Thermal Conductivity ⁹ (W/Mk) ¹⁴	Moisture Absorption ^{10,13} (% Wt Gain)	Dielectric Strength ^{tt} (Volts Per Mil. 1/8 Inch Sample)	Volume Resistivity ¹² (Ohm-Cm at 23°C)
251	40 Barcol	1.50/12.52 lb/gal	Passes MIL-I-16923G (105°C to -55°C)	5 × 10 ⁻⁵	371 Kg/cm²	0.33	240 hours @ 96% RH Weight gain = 0.25	425 V/mil	10 ¹⁵
255	72 Shore D	1.56/13.02 lb/gal	130°C to -55°C 1/4 in. insert	15 × 10 ⁻⁵	105.5 Kg/cm²	0.19	240 hours @ 96% RH Weight gain = 0.45%	375 V/mil	10 ¹⁵
281	65 Shore D	1.43/11.93 lb/gal	130°C to -65°C 1/4 in. insert	15 × 10 ⁻⁵	147 Kg/cm²	0.50	240 hours @ 96% RH Weight gain = 0.32%	375 V/mil	10 ¹⁵
241	65 Shore D	1.42/11.85 lb/gal	130°C to -55°C 1/4 in. insert	13.6 × 10 ⁻⁵	91 Kg/cm²	0.33	240 hours @ 96% RH Weight gain = 0.60%	375 V/mil	10 ¹⁵
252	45 Barcol	1.51/12.60 lb/gal	Passes MIL-I-16923G (105°C to -55°C)	4 × 10 ⁻⁵	421 Kg/cm²	0.29	240 hours @ 96% Weight gain = 0.35%	325 V/mil	1014
282	65 Shore D	1.43/11.93 lb/gal	130°C to -65°C 1/4 in. insert	15 × 10⁵	147 Kg/cm²	0.50	240 hours @ 96% Weight gain = 0.32%	375 V/mil	10 ¹⁵
253	65 Shore D	1.50/12.52 lb/gal	130°C to -55°C 1/4 in. insert	12.6 × 10 ⁻⁵	91 Kg/cm²	0.33	240 hours @ 96% Weight gain = 0.60%	375 V/mil	10 ¹⁵
5136N									

3M[™] Scotchcast[™] Powder Resins

Powder resin selection depends primarily on the method of application available. The four most commonly used methods of applying powder resins are:

- Fluid bed dip
- Venturi spray
- Electrostatic spray
- Electrostatic fluid bed

sheets. These time/

necessary to heat

curing temperature.

The user must make

this determination

and start the time

cycle when the

temperature

is reached.

temperature relationships

do not include the time

or reheat the part to the

Selection Process

The best way to select the proper 3M Scotchcast Powder Resin is to consider the needs of the application and the proposed application method.

Application

Successful coating with powder resins is accomplished in four basic steps:

used to preheat parts,

Step 1	Step 2	Step 3	Step 4
Clean the part	Preheat the part	Coat the part	Cure the resin
One or more processes may be necessary to complete this step: Mechanical removal of rust, dirt, oxide and other contaminant. Common methods include media	Preheating may be omitted if parts are to be coated electrostatically at room temperature, in which case they must be thoroughly dried before coating to prevent outgassing. Forced air ovens, induction heating, radiant heating and resistance heating are four common methods	• Preheated parts When applied to preheated parts, powder particles melt, flow together, fuse and then cure. When dipping or spraying, the coating thickness depends on the temperature of the part, the duration of the dip/spray, and the melt rate and melt viscosity of the powder. If the powder is applied electrostatically to a preheated part, coating thickness depends on the temperature of the part, the duration of the powder	When large, preheated parts are coated, the mass of the part may hold the heat necessary to cure the resin fully without postcuring. However, smaller parts may lose so much heat during coating that they require a postcure to obtain full cure. The time/temperature relationships necessary to obtain full cure are given in the chart on page 16 and on individual product information

of the powder.

Unheated parts

application, the voltage applied

to the powder, the chargeability

of the powder and the melt rate

When unheated parts are coated

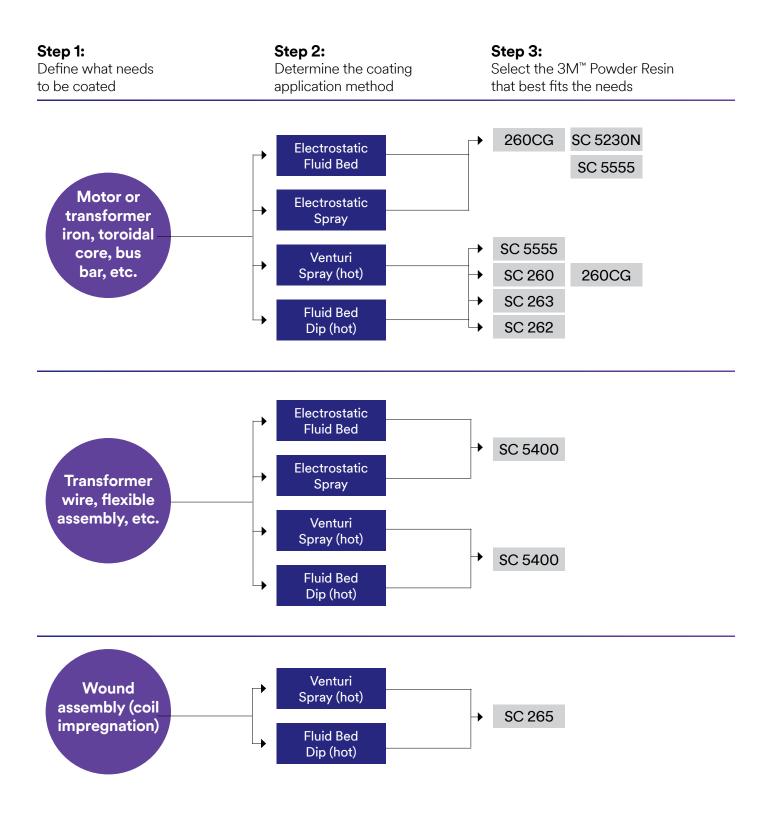
electrostatically, the charged

powder resin particles cling to

the grounded part. The coating

of the powder application, the

voltage applied to the powder and the powder's chargeability.


thickness depends on the duration

UL Insulation Systems

Insulation systems established per UL 1446 and IEC 85 requirements are available for various 3M Scotchcast Resins up to class H (180°C). The major system components include Scotchcast resin as integral ground insulation, magnet wire, interlayer insulation and molding material. "minor" components such as 3M Electrical Tapes, sheet insulation, tie cords, lead wires, varnish, etc. have been added, making the 3M Electrical Insulation Systems ideal for most applications. (If these powder resins do not meet your requirements, consider 3M Flexible Insulations products as an alternative.) The Systems are recognized in UL file E163090 (OBJS2). Contact Technical Service for more details. Many Scotchcast powder resins are also recognized by UL as component insulation per UL 746B. These are listed under UL files E35075 (QMFZ2) and E309208 (OBOR2).

Selection Guide - What component needs to be insulated?

14

Selection Guide - What component needs to be insulated? (continued from previous page)

Step 1:
Define what needs
to be coated

Step 2: Determine the coating application method

What is it that needs electrically insulated?

- Motor stator or armature core?
- Transformer wire? Coiled assembly?

3M offers a number of epoxy powder coatings suitable for use on a variety of applications. application method

How large or small is the component?

Are there complex, hard-to-reach areas that need to be insulated?

Will intricate masking be needed?

Knowing the size and geometry of the component helps determine the feasibility of powder coating as well as determining which application method is the most efficient. The most common application methods are:

Fluid Bed Dip – Components are preheated and dipped into a powder fluid bed or powder hopper. The epoxy begins to gel immediately upon contact with the hot substrate.

Venturi Spray – Components are preheated and powder is applied using venturi nozzles or powder spray guns. The epoxy begins to gel immediately upon contact with the hot substrate.

Electrostatic Spray – Powder is sprayed using an electrostatic application gun. This is a common method used by powder coaters globally. Powder is positively charged either by a high-voltage corona or triboelectric friction. The charged particles adhere to grounded components. Parts can be coated at room temperature; however, thicker film builds are obtained when applying powder to preheated components.

Electrostatic Fluid Bed – This is similar in construction to a standard powder fluid bed; however, the air feeding the powder chamber is electrostatically charged, creating a cloud of powder. The charged particles from the cloud adhere to grounded components. Parts are typically at room-temperature when coated using this method. Step 3: Select the 3M[™] Powder Resin that best fits the needs

What temperature will the coating be subject to?

Is UL Recognition of importance? What dielectric strength is needed?

What heating methods are available to cure the powder coating?

These are only a few of the questions that should be addressed prior to selecting a coating. The chart which begins on page 16 will list a number of performance criteria that can help narrow down the product selection.

- The substrate to which the powder epoxy is being applied plays an important role in the adhesion performance of the coating.
- The 3M Scotchcast Powder Resins adhere well to carbon steel, aluminum and copper.
- Surface preparation, oxidation, existing insulation coatings and substrate alloy need to be taken into consideration.
- To obtain the best adhesion, substrate cleanliness is absolutely necessary.
- Alloy selection may have an impact on coating adhesion as well.

	3M [™] Powder Resin Product Number	Temp. Class ¹	Description	UL System 1446 Approved File Number E163090	UL 746B Comp.	Cure Schedules (Temp/Time)
	260 260CG	Н	This widely used, well-known product is used primarily in spray and fluid bed dip applications. 3M [™] Scotchcast [™] Resin 260CG is a course-ground version of Resin 260 for improved fluidized bed performance. UL Recognized. Data Sheet-260 Safety Data Sheet-260 Data Sheet-260CG Safety Data Sheet-260CG	~	E35075	149°C (300°F) 30 min. 177°C (350°F) 10 min. 204°C (400°F) 45 sec. 232°C (450°F) 20 sec.
Q	262	В	This resin has excellent flow characteristics that produce a uniform coating in applications, such as resistance heated bobbin-wound coils. It is used primarily in spray and fluid bed dip applications. <u>Data Sheet</u> <u>Safety Data Sheet</u>			149°C (300°F) 40 min. 177°C (350°F) 20 min. 204°C (400°F) 60 sec. 232°C (450°F) 30 sec.
	263	Н	Resin 263 is used primarily in spray and fluid bed dip applications and has been designed for use where high-temperature cut-through resistance is required. UL Recognized. <u>Data Sheet</u> <u>Safety Data Sheet</u>	\checkmark	E35075	149°C (300°F) 30 min. 177°C (350°F) 10 min. 204°C (400°F) 30 sec. 232°C (450°F) 20 sec.
	265	Н	Low melt viscosity and minimum build make this unfilled powder ideal for a variety of coating, bonding and impregnating applications, notably coating from a solvent. Data Sheet Safety Data Sheet	UL 1446 thermal classification of 200°C (392°F) helical coil and 180°C (356°F) twisted pair with MW 35 magnet wire. File number E309208	E309208	149°C (300°F) 60 min. 177°C (350°F) 20 min. 204°C (400°F) 5 min. 232°C (450°F) 2 min.
Surre and	5230N	Н	Resin 5230N was designed with excellent electrostatic charging capabilities It provides smooth, uniform film build with good slot penetration when applied using an electrostatic fluid bed. UL Recognized method. Data Sheet Safety Data Sheet	~	E35075	177°C (350°F) 15 min. 204°C (400°F) 6 min. 232°C (450°F) 3 min.
	5400	F	Resin 5400 was developed for continuous coating of wire products by electrostatic fluidized bed. Excellent flexibility and resistance to cracking due to heat shock or impact are just several of the very excellent characteristics. <u>Data Sheet</u> <u>Safety Data Sheet</u>			177°C (350°F) 5 min. 204°C (400°F) 150 sec. 232°C (450°F) 50 sec.
8	5555 10G	н	Resin 5555 can be applied via cold electrostatic spray or electrostatic fluid bed. It also can be applied to pre-heated components by fluid bed dipping or by spraying. Its versatility allows this powder to be used on a wide variety of motor stators, armatures and other metal components needing electrical insulation.	~	E35075	5555 10G: 177°C (350°F) 6 min. 204°C (400°F) 150 sec. 232°C (450°F) 90 sec.
	5555 22G		UL Recognized. Data Sheet-5555 10G Safety Data Sheet-5555 10G Data Sheet-5555 22G Safety Data Sheet-5555 22G			5555 22G: 177°C (350°F) 8 min. 204°C (400°F) 4 min. 232°C (450°F) 2 min.

Test methods

¹ AIEE standard.

Typical property data for powder resins continues on next page >>>

Typical Property Data (continued from previous page)

	3M [™] Powder Resin Product Number	Specific Gravity	Cut- Through Resistance	Edge Coverage (%)	Impact Resistance (inch-lbs. Newton Meters)	Gel Time @ 193°C Hot Plate	Dielectric Strength (volts/mil)	Volume Resistivity (Ohm-Cm at 23°C)	Color
	260 260CG	1.43	215°C (410°F)	>35	100 inch-lbs (11.3 J)	12-16 sec. @ 380°F (193°C)	1,000 V/mil (39V/micron) 12-15 mil (305 µm to 381 µm) film thickness)	10 ¹⁵	Green
Q	262	1.34	130°C (266°F)	>38	100 inch-lbs (11.3 J)	12-16 sec. @ 380°F (193°C)	1,000 V/mil (39 V/micron) 12-15- mil (305 µm to 381 µm) film thickness)	10 ¹³	Red
	263	1.47	290°C (554°F)	>40	100 inch-lbs (11.3 J)	8-14 sec. @ 380°F (193 C)	1,000 V/mil (39 V/micron) 12-15 mil (305 µm to 381 µm) film thickness)	1015	Green
	265	1.16	N/A	N/A	160 inch-lbs (18.1J)	60 sec. @ 380°F (193°C)	1,300 V/mil (51 V/micron) 12-15 mil (305 μm to 183 μm) film thickness	1014	Clear
Survey of the second	5230N	1.60	320°C (608°F)	>35	160 inch-lbs (18.1J)	9-16 sec. @ 380°F (193°C)	1000 V/mil (39 V/micron) 12-15 mil (305 μm to 381 μm) film thickness	1015	Blue
	5400	1.22	292°C (557°F)	N/A	N/A	15-25 sec. @ 400°F (204°C)	1200 V/mil (47 V/micron) 5 mil (127 μm) film thickness	1014	Yellow Tan
8.	5555 10G	1.7	340°C (644°F)	5555 10G: > 35%	. 100 inch-lbs (11.3 J)	5555 10G: 9-11 sec. @ 392°F (200°C)	1300 V/mil (512 V/micron) 12-15 mil (305 μm to 381 μm) film thickness	1014	Green
	5555 22G	1.7		5555 22G: > 30%		5555 22G: 21-23 sec. @ 392°F (200°C)			

Other Insulating Solutions from 3M

3M offers a variety of insulating and protecting products that are performance engineered to meet rigorous applications at a range of temperatures.

Other Insulating Solutions from 3M (continued from previous page)

Flexible Insulation

3M Flexible Insulation includes state-of-the-art insulating papers and laminates that have been refined, tested and proven in a wide variety of applications, including use as high-temperature electrical insulation in transformers, motors and generators and as flame barriers in household appliance. These primarily inorganic materials typically retain a high percentage of dielectric strength, even after extended exposure to high operating temperatures.

Insulating Tapes

3M Insulating and Conductive Tapes are made from a broad range of backings and adhesives to meet the demanding requirements of different applications and environments. Extensive quality control and testing, combined with accurate process controls, are just part of the reason that 3M consistently provides high-quality insulating products.

Heat Shrink Tubing and Molded Shapes

3M Heat Shrink Products provide an effective means of applying skin-tight insulating and protective coverings for a wide variety of electrical, electronic and mechanical applications. These products from 3M offer the important advantages of simple installation, excellent performance and long-term reliability. 3M also makes cold-shrink tubing designed for insulation wire and cable and for strain relief and physical protection.

3M and Scotchcast are trademarks of 3M Company.

Important Notice

All statements, technical information, and recommendations related to 3M's products are based on information believed to be reliable, but the accuracy or completeness is not guaranteed. Before using this product, you must evaluate it and determine if it is suitable for your intended application. You assume all risks and liability associated with such use. Any statements related to the product which are not contained in 3M's current publications, or any contrary statements contained on your purchase order shall have no force or effect unless expressly agreed upon, in writing, by an authorized officer of 3M.

Warranty; Limited Remedy; Limited Liability.

Because conditions of product use are outside of our control and vary widely, the following is made in lieu of all express or implied warranties: this product will conform to 3M's published product specifications and be free from defects in material and manufacture on the date of your purchase. 3M MAKES NO OTHER WARRANTIES INCLUDING, BUT NOT LIMITED TO, ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. If this product is defective upon your receipt, your exclusive remedy shall be, at 3M's option, to replace the 3M product or refund the purchase price of the 3M product. Except where prohibited by law, 3M will not be liable for any indirect, special, incidental or consequential loss or damage arising from this 3M product, regardless of the legal theory asserted.

Electrical Markets Division

13011 McCallen Pass, Bldg. C Austin, TX 78753-5380 800-676-8381 Fax 800 828 9329 www.3M.com/OEM

Please recycle. Printed in USA. © 3M 2019. All rights reserved. 80-6016-0728-8B Rev. A