BUSSMANN SERIES

0603ESDA-MLP7

Automotive grade ESD suppressor

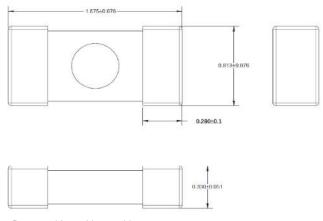
Product features

- · AEC-Q200 qualified
- Ultra-low capacitance (0.05 pF) ideal for high speed data applications
- Provides Electro Static Discharge (ESD) protection with fast response time (<1 ns) allowing equipment to pass IEC 61000-4-2 Level 4 test
- 0603 (1608 metric) compact design utilizes less board space
- · Single-line, bi-directional device
- · Moisture sensitivity level (MSL): 1

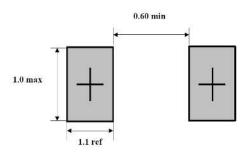
Applications

- Infotainment and telematics
 - In-vehicle infotainment (IVI) and navigation
 - Audio subsytems
 - USB and Ethernet hubs
 - Active noise cancellation (ANC)
- High speed data ports and interface
 - RF Antenna
 - Ethernet
 - USB
 - HDMI
- Automotive body electronics
 - Central body control unit
 - Vehicle access control system
- Advanced driver assistance systems
 - Rear and front view cameras
 - Automatic parking control
 - Adaptive cruise control (ACC)
- Satellite navigation systems

Environmental compliance



Product specifications


Part number ⁴	Rated voltage (V _{dc}) maximum	Clamping voltage ¹ (V) typical	Trigger voltage² (V) typical	Capacitance @ 1 MHz (pF) typical	Capacitance @ 1 MHz (pF) maximum	Attenuation change (0–6 GHz) (dB) typical	Leakage current @ 12 V _{dc} (nA) typical	ESD capability IEC61000-4- 2 Direct discharge (kV) typical	ESD capability IEC61000-4- 2 Air discharge (kV) typical	ESD pulse withstand³ typical
0603ESDA-MLP7	30	35	300	0.05	0.15	-0.2	<1.0	8	15	>1000

- 1. Clamping voltage: Per IEC61000-4-2, Level 4 waveform (8 kV direct 30 A) measured 30 ns after initial pulse.
- 2. Trigger voltage: Trigger measurement made using transmission line pulse (TLP) method.
- 3. Minor shifting in characteristics may be observed over multiple ESD pulses at very rapid rate.
- 4. Part number definition: 0603ESDA-MLP7 0603ESDA-MLP7 Product code and size

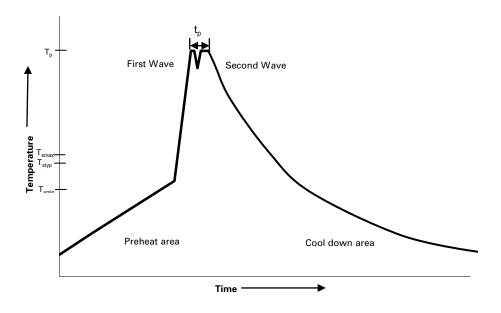
Dimensions-mm

Recommended pad layout

Part marking: No marking Termination finish: Tin over nickel

Design considerations

The location in the circuit for the 0603ESDA-MLP7 has to be carefully determined. For better performance, the device should be placed as close to the signal input as possible and ahead of any other component. Due to the high current associated with an ESD event, it is recommended to use a "0-stub" pad design (pad directly on the signal/data line and second pad directly on common ground).


Packaging information

5,000 parts on a 7 inch tape and reel (EIA Standard 481 compliant)

General specifications

Operating temperature: - 55 °C to +125 °C
Storage temperature (component): - 55 °C to +125 °C
Mechanical shock: MIL-STD-202 Method 213 condition F
Vibration: MIL-STD-202 Method 204 condition D
Resistance to soldering heat: MIL-STD-202 Method 210 condition B
High temperature exposure: MIL-STD-202 Method 108
Temperature cycling: JESD22 Method JA-104
Moisture resistance: MIL-STD-202 Method 106
Biased Humidity: MIL-STD-202 Method 103
Operational Life: MIL-STD-202 Method 108
Solderability: J-STD-002

Wave solder profile

Reference EN 61760-1:2006

Profile feat	ture	Standard SnPb solder	Lead (Pb) free solder		
Preheat	• Temperature min. (T _{smin})	100 °C	100 °C		
	• Temperature typ. (T _{styp})	120 °C	120 °C		
	• Temperature max. (T _{smax})	130 °C	130 °C		
	Time (T _{smin} to T _{smax}) (t _s)	70 seconds	70 seconds		
Δ preheat to max Temperature		150 °C max.	150 °C max.		
Peak temperature (Tp)*		235 °C − 260 °C	250 °C − 260 °C		
Time at peak temperature (t _p)		10 seconds max 5 seconds max each wave	10 seconds max 5 seconds max each wave		
Ramp-down i	rate	~ 2 K/s min ~3.5 K/s typ ~5 K/s max	~ 2 K/s min ~3.5 K/s typ ~5 K/s max		
Time 25 °C to	o 25 °C	4 minutes	4 minutes		

Manual solder

+350 °C (4-5 seconds by soldering iron), generally manual/hand soldering is not recommended.

Solder reflow profile

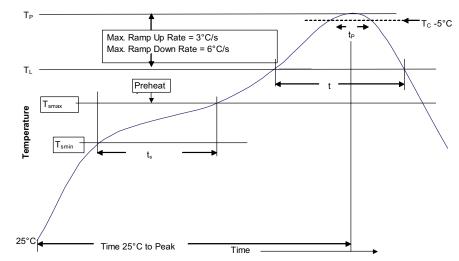


Table 1 - Standard SnPb solder (T_C)

Package thickness	Volume mm3 <350	Volume mm3 ≥350		
<2.5 mm)	235 °C	220 °C		
≥2.5 mm	220 °C	220 °C		

Table 2 - Lead (Pb) free solder (T_C)

Package thickness	Volume mm³ <350	Volume mm³ 350 - 2000	Volume mm³ >2000
<1.6 mm	260 °C	260 °C	260 °C
1.6 – 2.5 mm	260 °C	250 °C	245 °C
>2.5 mm	250 °C	245 °C	245 °C

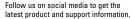
Reference J-STD-020

Profile feature	Standard SnPb solder	Lead (Pb) free solder		
Preheat and soak • Temperature min. (T _{smin})	100 °C	150 °C		
Temperature max. (T _{Smax})	150 °C	200 °C		
• Time (T _{Smin} to T _{Smax}) (t _S)	60-120 seconds	60-120 seconds		
Ramp up rate T_L to T_p	3 °C/ second max.	3 °C/ second max.		
Liquidous temperature (TL) Time (t _L) maintained above T _L	183 °C 60-150 seconds	217 °C 60-150 seconds		
Peak package body temperature (Tp)*	Table 1	Table 2		
Time $(t_p)^*$ within 5 °C of the specified classification temperature (T_c)	20 seconds*	30 seconds*		
Ramp-down rate (T _p to T _L)	6 °C/ second max.	6 °C/ second max.		
Time 25 °C to peak temperature	6 minutes max.	8 minutes max.		

^{*} Tolerance for peak profile temperature (T_p) is defined as a supplier minimum and a user maximum.

Life Support Policy: Eaton does not authorize the use of any of its products for use in life support devices or systems without the express written approval of an officer of the Company. Life support systems are devices which support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

Eaton reserves the right, without notice, to change design or construction of any products and to discontinue or limit distribution of any products. Eaton also reserves the right to change or update, without notice, any technical information contained in this bulletin.


Eaton Electronics Division 1000 Eaton Boulevard Cleveland, OH 44122

United States Eaton.com/electronics

© 2023 Eaton All Rights Reserved Printed in USA Publication No. 10515 January 2023

Eaton is a registered trademark.

All other trademarks are property of their respective owners.

