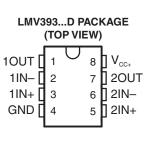
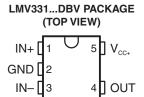


www.ti.com


SLOS468D-MAY 2005-REVISED AUGUST 2011


GENERAL-PURPOSE LOW-VOLTAGE COMPARATORS

Check for Samples: LMV331-Q1 SINGLE, LMV393-Q1 DUAL

FEATURES

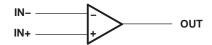
- Qualified for Automotive Applications
- 2.7-V and 5-V Performance
- Low Supply Current
 - LMV331...60 μA Typ
 - LMV393...100 μA Typ
- Input Common-Mode Voltage Range Includes Ground
- Low Output Saturation Voltage . . . 200 mV Typ
- Open-Collector Output for Maximum Flexibility

DESCRIPTION/ORDERING INFORMATION

The LMV393-Q1 device is a low-voltage (2.7 V to 5.5 V) version of the dual and quad comparators, LM393 and LM339, which operate from 5 V to 30 V. The LMV331-Q1 is the single-comparator version.

The LMV331-Q1 and LMV393-Q1 are the most cost-effective solutions for applications where low-voltage operation, low power, space saving, and price are the primary specifications in circuit design for portable consumer products. These devices offer specifications that meet or exceed the familiar LM339 and LM393 devices at a fraction of the supply current.

ORDERING INFORMATION⁽¹⁾

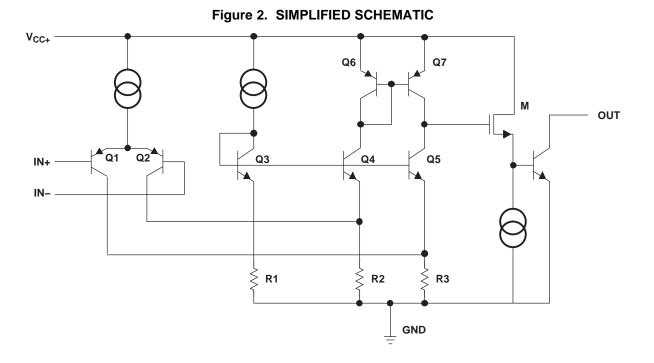

T _A		PACKAGE ⁽²⁾		ORDERABLE PART NUMBER	TOP-SIDE MARKING ⁽³⁾
40°C to 125°C	Single	SOT23-5 – DBV	Reel of 3000	LMV331QDBVRQ1	LADQ
–40°C to 125°C	Dual	SOIC – D	Reel of 2500	LMV393QDRQ1	V393Q1

(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com.

(2) Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.

(3) DBV: The actual top-side marking has one additional character that designates the wafer fab/assembly site.

Figure 1. SYMBOL (EACH COMPARATOR)



Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

www.ti.com

SLOS468D - MAY 2005 - REVISED AUGUST 2011

SLOS468D - MAY 2005 - REVISED AUGUST 2011

www.ti.com

Absolute Maximum Ratings⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V _{CC+}	Supply voltage ⁽²⁾			5.5	V
V _{ID}	Differential input voltage ⁽³⁾			±5.5	V
VI	Input voltage range (either input)		0	5.5	V
		D (8-pin) package		97	
θ_{JA}	Package thermal impedance ^{(4) (5)}	D (14-pin) package		86	°C/W
		DBV package		206	
TJ	Operating virtual junction temperature			150	°C
T _{stg}	Storage temperature range		-65	150	°C

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltage values (except differential voltages and V_{CC+} specified for the measurement of I_{OS}) are with respect to the network GND.

(3) Differential voltages are at IN+ with respect to IN-.

- (4) Maximum power dissipation is a function of T_J(max), θ_{JA}, and T_A. The maximum allowable power dissipation at any allowable ambient temperature is P_D = (T_J(max) T_A)/θ_{JA}. Selecting the maximum of 150°C can affect reliability.
- (5) The package thermal impedance is calculated in accordance with JESD 51-7.

Recommended Operating Conditions

		MIN	MAX	UNIT
V _{CC+}	Supply voltage (single-supply operation)	2.7	5.5	V
V _{OUT}	Output voltage		V _{CC+} + 0.3	V
T _A	Operating free-air temperature	-40	125	°C

SLOS468D - MAY 2005 - REVISED AUGUST 2011

www.ti.com

Electrical Characteristics

at specified free-air temperature, V_{CC+} = 2.7 V, GND = 0 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	T _A	MIN	TYP	MAX	UNIT	
V _{IO}	Input offset voltage		25°C		1.7	7	mV	
αV _{IO}	Average temperature coefficient of input offset voltage		–40°C to 125°C		5		µV/°C	
	land this summer t		25°C		10	250	0	
I _{IB}	Input bias current		–40°C to 125°C			400	nA	
	land the standard		25°C		5	50	0	
IIO	Input offset current		–40°C to 125°C				nA	
lo	Output current (sinking)	V _O ≤ 1.5 V	25°C	5	23		mA	
			25°C		0.003			
	Output leakage current		–40°C to 125°C			1	μA	
V _{ICR}	Common-mode input voltage range		25°C		–0.1 to 2		V	
V _{SAT}	Saturation voltage	I _O ≤1 mA	25°C		200		mV	
		LMV331			40	100		
I _{CC}	Supply current	LMV393 (both comparators)	25°C		70	140	μA	
		LMV339 (all four comparators)			140	200	00	

Switching Characteristics

 T_{A} = 25°C, V_{CC+} = 2.7 V, R_{L} = 5.1 kΩ, GND = 0 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	TYP	UNIT
t _{PHL}	Dropogotion dolou, high, to low lovel output output	Input overdrive = 10 mV	1000	
	Propagation delay, high- to low-level output switching	Input overdrive = 100 mV	350	ns
	Dressention deless laws to kink lawel estant exitation	Input overdrive = 10 mV	500	
t _{PLH}	Propagation delay, low- to high-level output switching	Input overdrive = 100 mV	400	ns

SLOS468D - MAY 2005 - REVISED AUGUST 2011

www.ti.com

Electrical Characteristics

at specified free-air temperature, V_{CC+} = 5 V, GND = 0 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	T _A	MIN	TYP	MAX	UNIT		
	land the standard		25°C		1.7	7			
V _{IO}	Input offset voltage		-40°C to 125°C			9	mV		
αV _{IO}	Average temperature coefficient of input offset voltage		25°C		5		µV/°C		
-	Innut bigg gurrant		25°C		25	250	nA		
I _{IB}	Input bias current		–40°C to 125°C			400			
-	Input offset current		25°C		2	50	~^		
I _{IO}	input onset current		–40°C to 125°C			150	nA		
I _O	Output current (sinking)	V _O ≤ 1.5 V	25°C	10	84		mA		
			25°C		0.003				
	Output leakage current		–40°C to 125°C			1	μA		
V _{ICR}	Common-mode input voltage range		25°C		-0.1 to 4.2		V		
A_{VD}	Large-signal differential voltage gain		25°C	20	50		V/mV		
V	Coturation weltand		25°C		200	400			
V _{SAT}	Saturation voltage	l _O ≤ 4 mA	–40°C to 125°C			700	mV		
		1.141/224	25°C		60	120			
		LMV331	–40°C to 125°C			150			
	Current automation		25°C		100	200	μA		
I _{CC}	Supply current	LMV393 (both comparators)	-40°C to 125°C			250			
			25°C		170	300			
		LMV339 (all four comparators)	-40°C to 125°C			350			

Switching Characteristics

 T_{A} = 25°C, V_{CC+} = 5 V, R_{L} = 5.1 k $\Omega,~GND$ = 0 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	TYP	UNIT
t _{PHL}	Drangation delay, high to low lovel output outphing	Input overdrive = 10 mV	600	
	Propagation delay, high- to low-level output switching	Input overdrive = 100 mV	200	ns
	Descention delay, law, to bigh level sutant suitables	Input overdrive = 10 mV	450	
t _{PLH} F	Propagation delay, low- to high-level output switching	Input overdrive = 100 mV	300	ns

10-Dec-2020

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
LMV331QDBVRQ1	ACTIVE	SOT-23	DBV	5	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LADQ	Samples
LMV393QDRQ1	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	V393Q1	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

www.ti.com

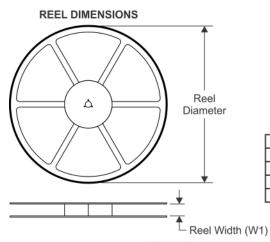
PACKAGE OPTION ADDENDUM

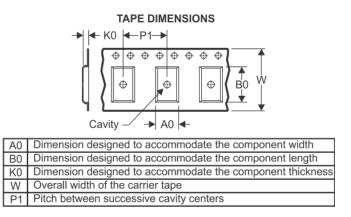
10-Dec-2020

OTHER QUALIFIED VERSIONS OF LMV331-Q1, LMV393-Q1 :

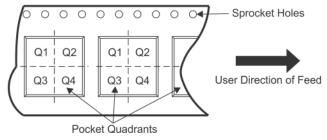
• Catalog: LMV331, LMV393

NOTE: Qualified Version Definitions:


Catalog - TI's standard catalog product


PACKAGE MATERIALS INFORMATION

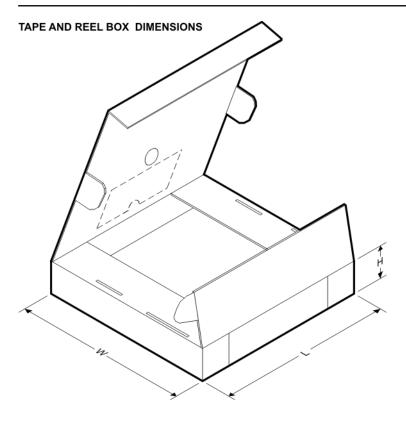
www.ti.com


Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*A	Il dimensions are nominal												
	Device	Package	Package	Pins	SPQ	Reel	Reel	A0	B0	K0	P1	w	Pin1
		Type	Drawing			Diameter	Width	(mm)	(mm)	(mm)	(mm)	(mm)	Quadrant


	Туре	Drawing			Diameter (mm)	Width W1 (mm)	(mm)	(mm)	(mm)	(mm)	(mm)	Quadrant
LMV331QDBVRQ1	SOT-23	DBV	5	3000	179.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3

TEXAS INSTRUMENTS

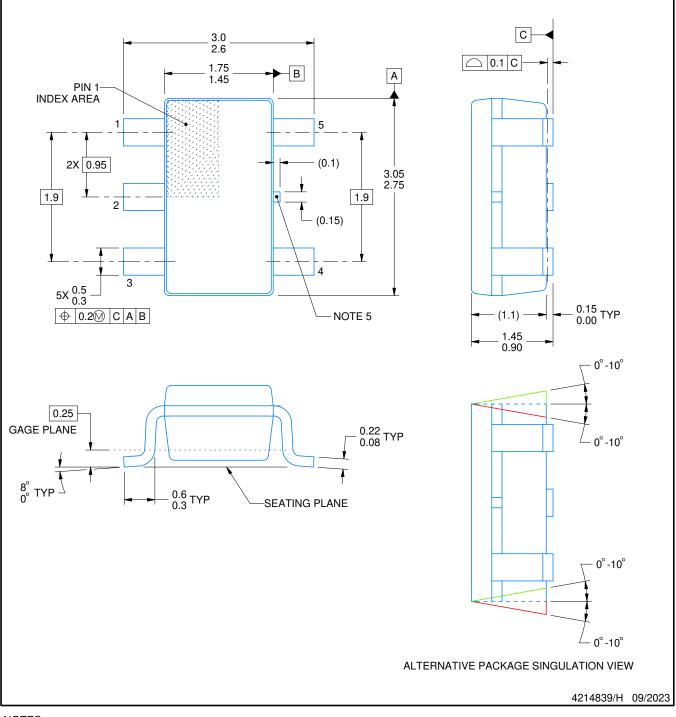
www.ti.com

PACKAGE MATERIALS INFORMATION

5-Jan-2021

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
LMV331QDBVRQ1	SOT-23	DBV	5	3000	200.0	183.0	25.0


DBV0005A

PACKAGE OUTLINE

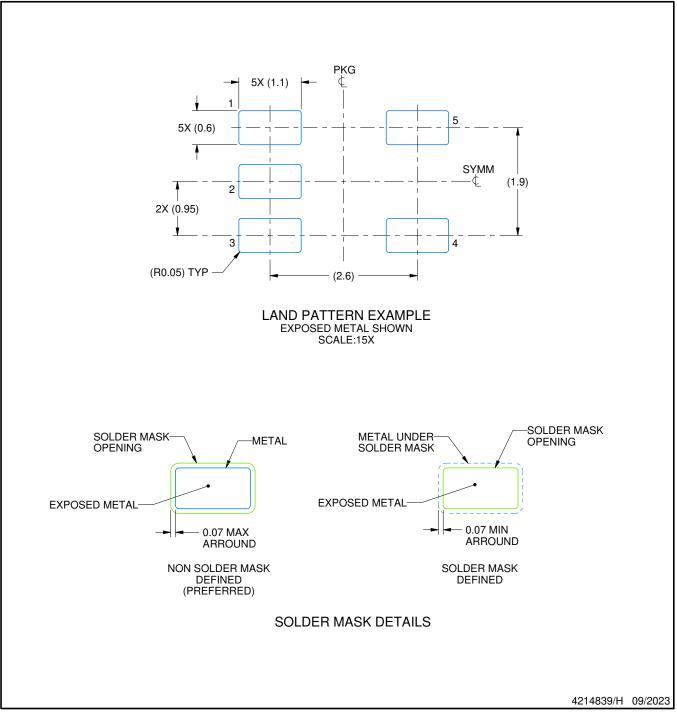
SOT-23 - 1.45 mm max height

SMALL OUTLINE TRANSISTOR

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.This drawing is subject to change without notice.Refernce JEDEC MO-178.

- 4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.25 mm per side.
- 5. Support pin may differ or may not be present.



DBV0005A

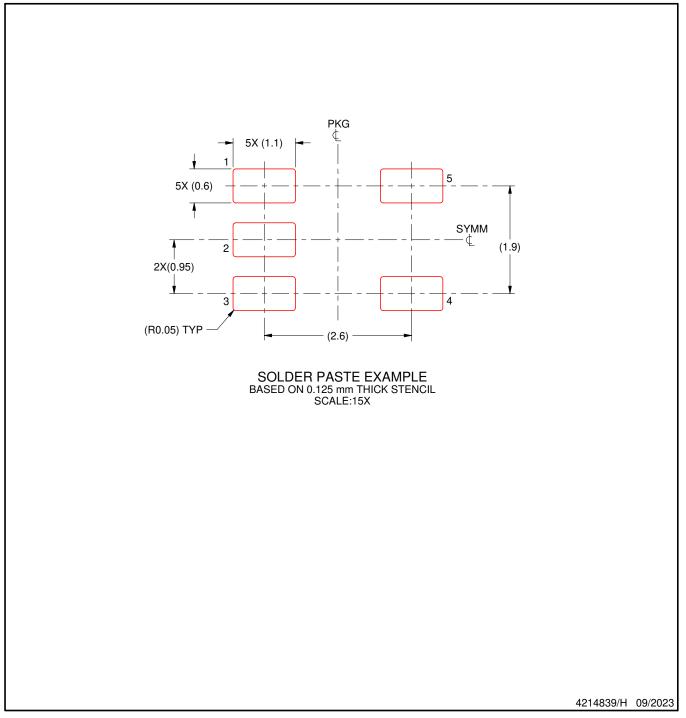
EXAMPLE BOARD LAYOUT

SOT-23 - 1.45 mm max height

SMALL OUTLINE TRANSISTOR

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



DBV0005A

EXAMPLE STENCIL DESIGN

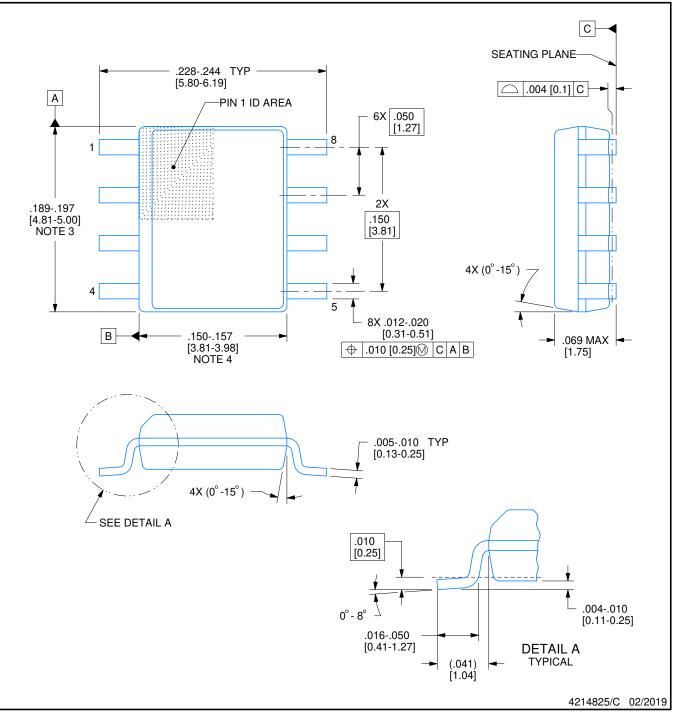
SOT-23 - 1.45 mm max height

SMALL OUTLINE TRANSISTOR

NOTES: (continued)

8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

9. Board assembly site may have different recommendations for stencil design.


D0008A

PACKAGE OUTLINE

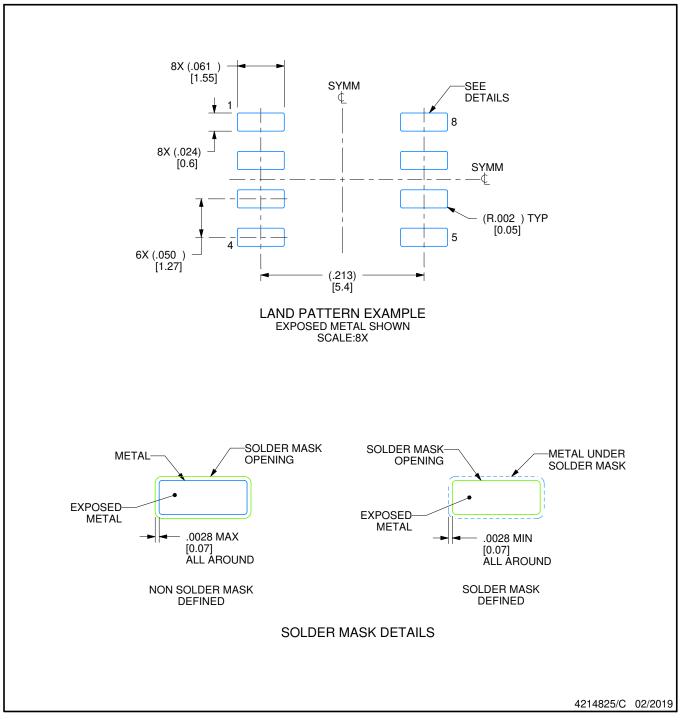
SOIC - 1.75 mm max height

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES:

1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M.

- 2. This drawing is subject to change without notice.
- 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side.
- This dimension does not include interlead flash.
 Reference JEDEC registration MS-012, variation AA.



D0008A

EXAMPLE BOARD LAYOUT

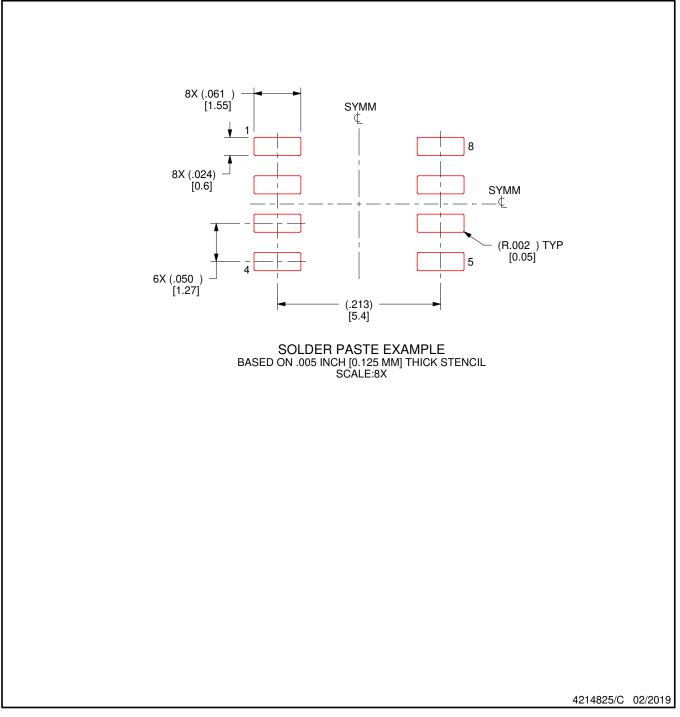
SOIC - 1.75 mm max height

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



D0008A

EXAMPLE STENCIL DESIGN

SOIC - 1.75 mm max height

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES: (continued)

8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023, Texas Instruments Incorporated