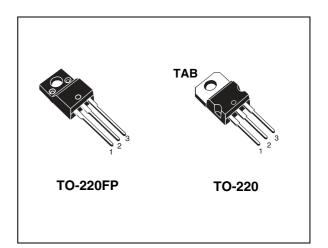


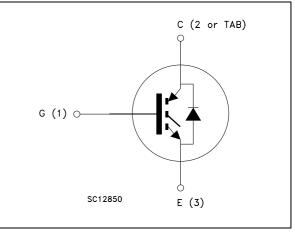
STGF10NB60SD STGP10NB60SD

16 A, 600 V, low drop IGBT with soft and fast recovery diode

Features


- Low on-voltage drop (V_{CE(sat)})
- High current capability
- Very soft ultra fast recovery antiparallel diode

Applications


- Light dimmer
- Static relays
- Motor drive

Description

This IGBT utilizes the advanced Power MESH[™] process featuring extremely low on-state voltage drop in low-frequency working conditions (up to 1 kHz).

Figure 1. Internal schematic diagram

Table 1.Device summary

Order codes	Order codes Marking		Packaging
STGF10NB60SD	GF10NB60SD	TO-220FP	Tube
STGP10NB60SD	GP10NB60SD	TO-220	Tube

September 2011

Doc ID 11860 Rev 3

Contents

1	Electrical ratings
2	Electrical characteristics4
	2.1 Electrical characteristics (curves)
3	Test circuits
4	Package mechanical data 10
5	Revision history14

1 Electrical ratings

Symbol	Parameter	Va	Unit		
Symbol	Falameter	STGF10NB60SD	STGP10NB60SD	Unit	
V _{CES}	Collector-emitter voltage (V _{GE} = 0)	600		V	
I _C ⁽¹⁾	Continuous collector current at $T_C = 25$ °C	23	29	А	
I _C ⁽¹⁾	Continuous collector current at $T_{C} = 100 \text{ °C}$	12 16		А	
I _{CL} ⁽²⁾	Turn-off latching current	20		А	
I _{CP} ⁽³⁾	Pulsed collector current	80		А	
V _{GE}	Gate-emitter voltage	±20		V	
١ _F	Diode RMS forward current at $T_C = 25 \ ^{\circ}C$	20		А	
I _{FSM}	Surge non repetitive forward current $t_p = 10 \text{ ms sinusoidal}$	55		А	
V _{ISO}	Isolation withstand voltage (RMS) from all three leads to external heatsink (t=1 s; $T_C = 25$ °C)	2500		v	
P _{TOT}	Total dissipation at $T_{C} = 25 \text{ °C}$	25	80	W	
Тj	Operating junction temperature	– 55 to 150		°C	

Table 2.Absolute maximum ratings

1. Calculated according to the iterative formula

$$I_{C}(T_{C}) = \frac{T_{j(max)} - T_{C}}{R_{thj-c} \times V_{CE(sat)(max)}(T_{j(max)}, I_{C}(T_{C}))}$$

2. Vclamp = 80% of V_{CES}, T_j =150 °C, R_G=1k $\Omega,$ V_GE=15 V

3. Pulse width limited by maximum junction temperature and turn-off within RBSOA

Symbol	Parameter	Val	Unit	
Symbol	Falametei	STGF10NB60SD	STGP10NB60SD	Onit
R _{thj-case}	Thermal resistance junction-case IGBT	5	1.56	°C/W
R _{thj-case}	Thermal resistance junction-case diode	5.6 2.2		°C/W
R _{thj-amb}	Thermal resistance junction-ambient	62.5		°C/W

2 Electrical characteristics

(T_j =25 °C unless otherwise specified)

Table 4.	Static
	Otatio

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)CES}	Collector-emitter breakdown voltage (V_{GE} = 0)	I _C = 250 μA	600			۷
V _{(BR)ECS}	Emitter-collector breakdown voltage (V _{GE} = 0)	I _C = 1 mA	20			۷
I _{GES}	Gate-emitter leakage current (V _{CE} = 0)	V _{GE} = ±20 V			±100	nA
I _{CES}	Collector cut-off current (V _{GE} = 0)	V _{CE} = 600 V V _{CE} = 600 V, T _j = 125 °C			10 100	μΑ μΑ
V _{GE(th)}	Gate threshold voltage	V_{CE} = V_{GE} , I_C = 250 μ A	2.5		5	V
V _{CE(sat)}	Collector-emitter saturation voltage	V_{GE} = 15 V, I _C = 5 A V_{GE} = 15 V, I _C = 10 A V_{GE} = 15 V, I _C = 10 A, T_{j} = 125 °C		1.15 1.35 1.25	1.75	V
9 _{fs} ⁽¹⁾	Forward transconductance	$V_{CE} = 15 V_{,I_{C}} = 10 A$	5			S

1. Pulsed: Pulse duration = 300 μ s, duty cycle 1.5%

Table 5.	Dynamic
	bynanno

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{ies} C _{oes} C _{res}	Input capacitance Output capacitance Reverse transfer capacitance	V _{CE} = 25 V, f = 1 MHz, V _{GE} = 0	-	610 65 12	-	pF pF pF
Qg	Total gate charge	$V_{CE} = 400 \text{ V}, I_C = 10 \text{ A},$ $V_{GE} = 15 \text{ V}$ (see Figure 19)	-	33	-	nC

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)} t _r (di/dt) _{on}	Turn-on delay time Current rise time Turn-on current slope	$V_{CC} = 480 \text{ V}, I_{C} = 10 \text{ A}$ $R_{G} = 1 \text{ k}\Omega, V_{GE} = 15 \text{ V}$ <i>(see Figure 18)</i>	-	0.7 0.46 8	-	μs μs A/μs
t _r (V _{off}) t _d (_{off}) t _f	Off voltage rise time Turn-off delay time Current fall time	$V_{CC} = 480 \text{ V}, I_{C} = 10 \text{ A}$ $R_{G} = 1 \text{ k}\Omega, V_{GE} = 15 \text{ V}$ (see Figure 18)	-	2.2 1.2 1.2	-	μs
t _r (V _{off}) t _{d(off}) t _f	Off voltage rise time Turn-off delay time Current fall time	$V_{CC} = 480 \text{ V}, I_C = 10 \text{ A}$ $R_G = 1 \text{ k}\Omega, V_{GE} = 15 \text{ V},$ $T_j = 125 \text{ °C}$ <i>(see Figure 18)</i>	-	3.8 1.2 1.9	-	μs

Table 6. Switching on/off (inductive load)

Table 7. Switching energy (inductive load)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Eon ⁽¹⁾ E _{off} ⁽²⁾ E _{ts}	Turn-on switching losses Turn-off switching losses Total switching losses	$V_{CC} = 480 \text{ V}, I_C = 10 \text{ A}$ $R_G = 1 \text{ k}\Omega, V_{GE} = 15 \text{ V}$ <i>(see Figure 18)</i>	-	0.6 5 5.6	-	mJ mJ mJ
E _{off} ⁽²⁾	Turn-off switching losses	$V_{CC} = 480 \text{ V}, I_C = 10 \text{ A}$ $R_G = 1 \text{ k}\Omega, V_{GE} = 15 \text{ V},$ $T_j = 125 \text{ °C}$ <i>(see Figure 18)</i>	-	8	-	mJ

 Eon is the turn-on losses when a typical diode is used in the test circuit. If the IGBT is offered in a package with a co-pack diode, the co-pack diode is used as external diode. IGBTs and diode are at the same temperature (25°C and 125°C)

2. Turn-off losses include also the tail of the collector current.

Table 8.Collector-emitter diode

Symbol	Parameter	Test conditions	Min	Тур.	Max	Unit
V _F	Forward on-voltage	I _F = 10 A I _F = 10 A, T _C = 125 °C		1.4	2.2	V V
t _{rr} Q _{rr} I _{rrm}	Reverse recovery time Reverse recovery charge Reverse recovery current	$I_F = 7 \text{ A}, V_R = 40 \text{ V},$ di/dt = 100 A/µs (see Figure 21)		37 40 2.1		ns nC A
t _{rr} Q _{rr} I _{rrm}	Reverse recovery time Reverse recovery charge Reverse recovery current	$I_F = 7 \text{ A}, V_R = 40 \text{ V},$ $T_j = 125 \text{ °C},$ $di/dt = 100 \text{ A/}\mu\text{s}$ (see Figure 21)		61 98 3.2		ns nC A

Electrical characteristics (curves) 2.1

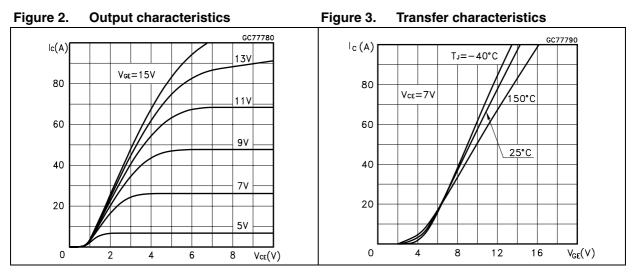
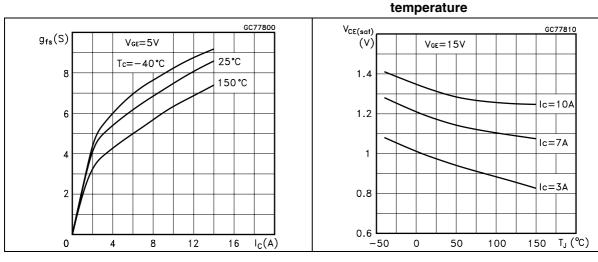


Figure 5.



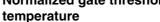
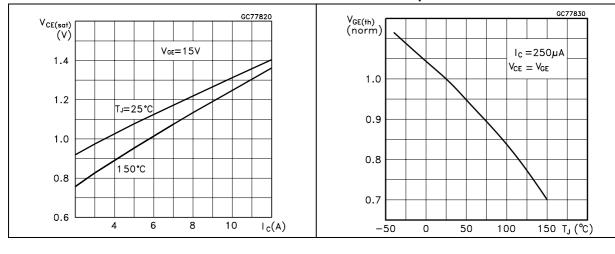
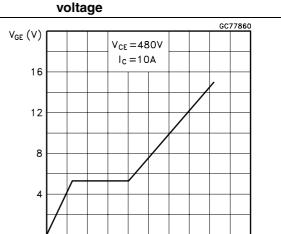



Figure 6. Collector-emitter on voltage vs. collector current


Collector-emitter on voltage vs.

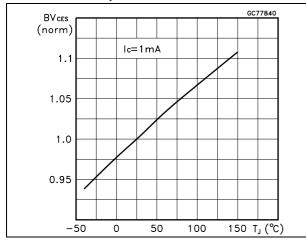
 $Q_g(nC)$

Figure 8. Normalized breakdown voltage vs. Figure 9. temperature

20

Switching losses vs. temperature

28


12

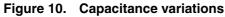
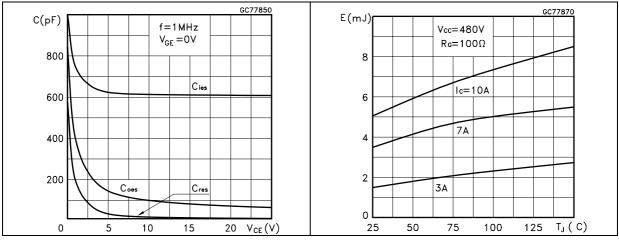
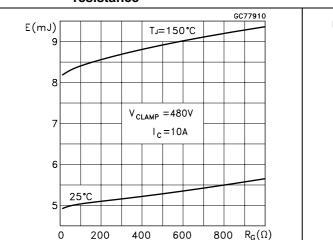
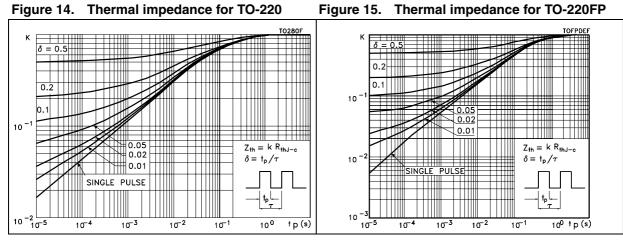

0

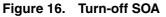
Figure 11.

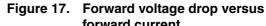
4

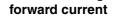
Gate charge vs. gate-emitter

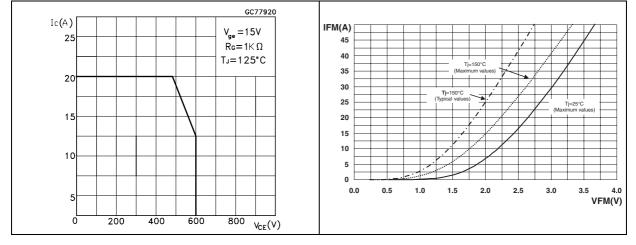




Figure 12. Switching losses vs. gate resistance






GC77890 E(mJ) Vcc=480V Rc=100Ω 8 T_=150℃ 6 4 2 0 L 2 4 6 8 10 $I_{c}(A)$



SC09910

3 Test circuits

Figure 18. Test circuit for inductive load

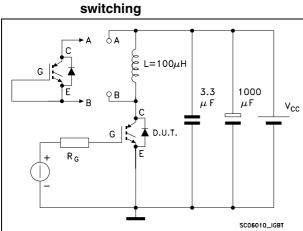


Figure 20. Switching waveforms

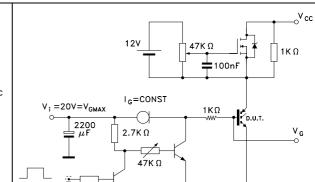
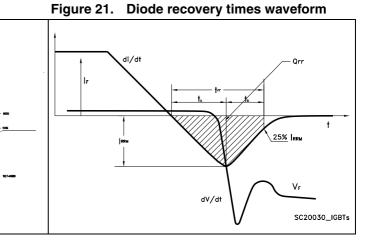
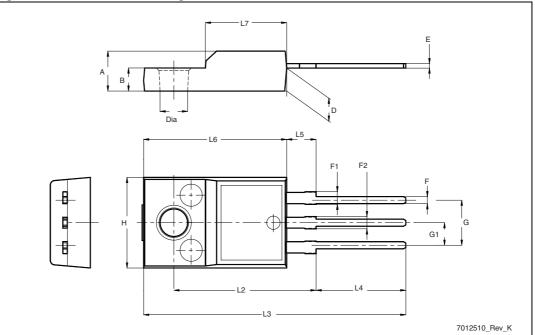



Figure 19. Gate charge test circuit

1K Ω

์ P_w

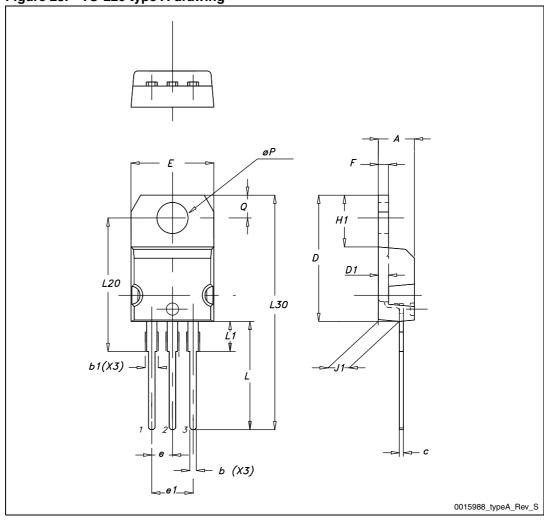
4 Package mechanical data


In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

Dim	mm.			
Dim.	Min.	Тур.	Max.	
A	4.4		4.6	
В	2.5		2.7	
D	2.5		2.75	
E	0.45		0.7	
F	0.75		1	
F1	1.15		1.70	
F2	1.15		1.70	
G	4.95		5.2	
G1	2.4		2.7	
н	10		10.4	
L2		16		
L3	28.6		30.6	
L4	9.8		10.6	
L5	2.9		3.6	
L6	15.9		16.4	
L7	9		9.3	
Dia	3		3.2	

Table 9.TO-220FP mechanical data

Figure 22. TO-220FP drawing



Dim	mm.			
Dim. —	Min.	Тур.	Max.	
А	4.40		4.60	
b	0.61		0.88	
b1	1.14		1.70	
С	0.48		0.70	
D	15.25		15.75	
D1		1.27		
E	10		10.40	
е	2.40		2.70	
e1	4.95		5.15	
F	1.23		1.32	
H1	6.20		6.60	
J1	2.40		2.72	
L	13		14	
L1	3.50		3.93	
L20		16.40		
L30		28.90		
ØР	3.75		3.85	
Q	2.65		2.95	

 Table 10.
 TO-220 type A mechanical data

5 Revision history

Table 11.	Document revision history
-----------	---------------------------

Date	Revision	Changes
18-Nov-2005	1	New release.
16-Dec-2010	2	Inserted device in TO-220FP. Updated <i>Table 2: Absolute maximum ratings</i> , <i>Table 8: Collector-</i> <i>emitter diode</i> and packages mechanical data <i>Section 4:</i> <i>Package mechanical data</i> .
22-Sep-2011	3	Modified: unit value <i>Table 7 on page 5</i> , <i>Figure 2</i> and <i>Figure 3 on page 6</i> .

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2011 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

Doc ID 11860 Rev 3