ON Semiconductor

Is Now

Onsemí

To learn more about onsemi[™], please visit our website at <u>www.onsemi.com</u>

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product factures, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and asfety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or by customer's technical experts. onsemi products and actal performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiari

System Basis Chip with CAN FD, LDO Regulator and Wake-up Comparator

NCV7451

The system basis chip (SBC) NCV7451 integrates +5 V / 250 mA LDO regulator with a high-speed CAN FD transceiver and local wake-up comparator, directly controlled by dedicated pins.

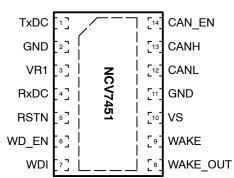
Features

- 5 V ±2% / 250 mA LDO
 - Current Limitation with Fold-back
 - ♦ Output Voltage Monitoring
- One High-Speed CAN FD Transceiver
 - Compliant to ISO11898-2:2016
 - CAN FD Timing Specified up to 5 Mbps
 - Current Limitation, Reverse Current Protected
 - TxDC Timeout
- Local Wake–up Comparator
 - Integrated Pull-up / Pull-down Current Source
- Very Low Current Quiescent Consumption
- Window Watchdog
- Direct Control
- Thermal Shutdown Protection
- AEC-Q100 Qualified and PPAP Capable
- Wettable Flank Package for Enhanced Optical Inspection
- This is a Pb–Free Device

Typical Applications

- Automotive
- Industrial Networks

ON Semiconductor®


www.onsemi.com

DFNW14 4.5x3, 0.65P CASE 507AC

ORDERING INFORMATION

Device	Package	Shipping [†]
NCV7451MW0R2G	DFNW14 (Pb-Free)	5000 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

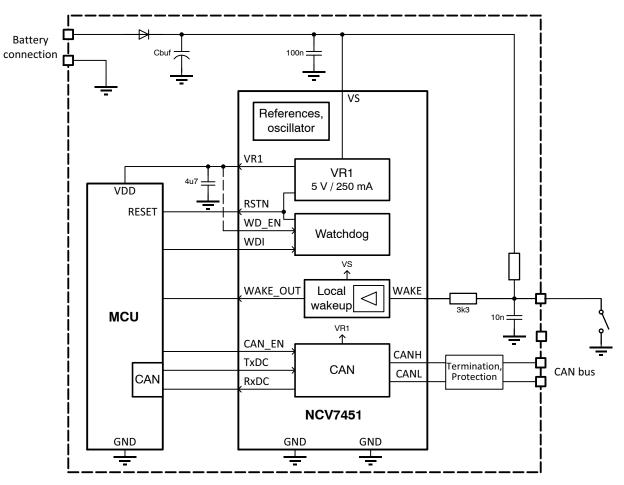


Figure 1. Simplified Application Diagram

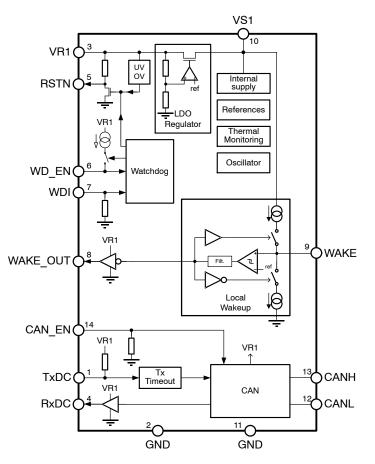


Figure 2. Block Diagram

PIN FUNCTION DESCRIPTION

Pin No.	Pin Name	Pin Type (LV = Low Voltage; HV = High Voltage)	Description
1	TxDC	LV digital input; internal pull-up	CAN transmitter data input
2	GND	Ground connection	Ground supply (all GND pins have to be connected externally)
3	VR1	LV supply output	Output of the 5 V / 250 mA low-drop regulator
4	RxDC	LV digital output; push-pull	CAN receiver data output
5	RSTN	LV digital output; open drain; internal pull-up	Reset signal to the MCU
6	WD_EN	LV digital input; internal pull-up current	Watchdog enable input
7	WDI	LV digital input; internal pull-down	Watchdog trigger input
8	WAKE_OUT	LV digital output	WAKE pin output (inverted WAKE level)
9	WAKE	HV input; pull-up/-down current	WAKE pin
10	VS	HV supply input	Main supply input
11	GND	Ground connection	Ground supply (all GND pins have to be connected externally)
12	CANL	CAN bus interface	CANL line of the CAN bus
13	CANH	CAN bus interface	CANH line of the CAN bus
14	CAN_EN	LV digital input; internal pull-down	CAN transceiver enable input
	EP	Exposed pad	Substrate (has to be connected to all GND pins externally)

MAXIMUM RATINGS

Symbol	Rating			Мах	Unit
VS	DC Power Supply Voltage (Note 1)		-0.3	+40	V
VR1	LDO Supply pin output voltage		-0.3	6 or VS+0.3 (whichever is lower)	V
VdigIO	DC voltage on digital pins (CAN_EN, WD_EN, WDI, R WAKE_OUT)	STN, RxDC, TxDC,	- 0.3	VR1+0.3	V
WAKE	DC WAKE pin Input Voltage		- 40	+40	V
CANH, CANL	DC voltage on pin CANH and CANL		- 40	+40	V
Vdiff	Differential DC voltage between any two pins (incl. CA	NH and CANL)	- 40	+40	V
V_ESD _{HBM}	ESD capability, Device HBM, according to AEC-Q100-002 (EIA/JESD22-A114); (Note 2)	Pins VS, CANH, CANL, WAKE	-8	+8	kV
		Other pins	-4	+4	
V_ESD _{MM}	ESD capability; MM, according to AEC-Q100-003 (El/ all pins	-200	+200	V	
V_ESD _{CDM}	ESD capability; CDM, according to AEC-Q100-011 (E all pins	IA/JESD22-C101);	- 750	+750	V
V_ESD _{IEC}	ESD capability; System HBM, according to IEC61000- pins VS, CANH, CANL, WAKE; (Note 3)	4–2;	-6	+6	kV
V_SCHAF	Voltage transients, Test pulses According to	Test pulse 1	- 100	-	V
	ISO7637 – 2, Class D; pins VS, CANH, CANL, WAKE	Test pulse 2a	-	+75	V
		Test pulse 3a	- 150	-	V
		Test pulse 3b	-	+100	V
Tj	Junction Temperature Range		- 40	+150	°C
Tstg	Storage Temperature Range		- 55	+150	°C
Tsld	Peak Soldering Temperature (Note 4)		-	260	°C
MSL	Moisture Sensitivity Level			1	-

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. Refer to ELECTRICAL CHARACTERISTICS, RECOMMENDED OPERATING RANGES and/or APPLICATION INFORMATION for Safe

Operating parameters.

Equivalent to discharging a 100 pF capacitor through a 1.5 kΩ resistor
 Equivalent to discharging a 150 pF capacitor through a 330 Ω resistor; WAKE pin stressed through an external series resistor of 3.3 kΩ and with 10 nF capacitor on the module input, VS pin decoupled with 100 nF.

4. For information, please refer to our Soldering and Mounting Techniques Reference Manual, SOLDERRM/D

THERMAL CHARACTERISTICS

Symbol	Rating	Value	Unit
R _{θJA}	Thermal Characteristics, Thermal Resistance, Junction-to-Air (Note 5) Thermal Reference, Junction-to-Air (Note 6)	77 52	°C/W
R _{ψJC}	Thermal Characteristics, Thermal Resistance, Junction-to-Case	7	°C/W

5. Value based on test board according to JESD51-3 standard, signal layer with 10% trace coverage.

6. Value based on test board according to JESD51-7 standard, signal layers with 20% trace coverage, inner planes with 90% coverage.

RECOMMENDED OPERATING RANGES

Symbol	Rating	Min	Max	Unit
VS	Functional supply voltage	5.0	28	V
	Supply voltage for valid parameter specification	6.0	18	V
VR1	VR1 regulator output voltage	4.9	5.1	V
I(VR1)	VR1 regulator output current (including CAN transceiver consumption)	0	250	mA
VdigIO	Digital inputs/outputs voltage	0	VR1	V
WAKE	WAKE input voltage	0	VS	V
CANH, CANL	CAN bus pins voltage	-40	40	V
TJ	Junction Temperature	-40	150	°C
T _A	Ambient Temperature	-40	125	°C

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

ELECTRICAL CHARACTERISTICS

 $6 \text{ V} \le \text{VS} \le 18 \text{ V}; -40^{\circ}\text{C} \le \text{Tj} \le 150^{\circ}\text{C}; 4.75 \text{ V} \le \text{VR1} \le 5.25 \text{ V}; \text{R}_{\text{LT}} = 60 \Omega, \text{C}_{\text{LT}} = 100 \text{ pF}, \text{C}_{\text{ST}} \text{ not used, unless otherwise specified.}$

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
VS SUPPLY	·			•	•	
VS_PORH	VS POR threshold	VS rising	3.4	-	4.1	V
VS_PORL	VS POR threshold	VS falling	2.0	-	3.5	V
ls_off	VS consumption, low-power	$\label{eq:VS} \begin{array}{l} VS = 14 \ V, \ VR1 \ on \ (not \ loaded), \ WAKE \ floating, \ CAN \ bus \ recessive, \\ CAN_EN = Low, \ WD_EN = Low, \ Tj \leq 85^{\circ}C \end{array}$	-	28	35	μA
ls_act	VS consumption, active	VS = 14 V, VR1 on (loaded by 100 mA, not included in Is_act), WAKE floating, CAN bus recessive, CAN_EN = High, WD_EN = High, TxDC = High	_	3.7	5.0	mA

VR1 VOLTAGE REGULATOR

V_VR1	Regulator output voltage	0 mA \leq I(VR1) \leq 250 mA (including internal CAN consumption), 6 V \leq VS \leq 28 V	4.9	5.0	5.1	V
llim_VR1	Regulator current limitation	Maximum VR1 overload current, VR1 > RES_VR1	250	-	650	mA
Ishort_VR1	Regulator short current	Maximum VR1 short current, VR1 < RES_VR1	125	1/2 x Ilim_VR1	325	mA
Vdrop_VR1	Dropout Voltage	I(VR1) = 100 mA, VS = 5 V	-	0.2	0.4	V
		I(VR1) = 100 mA, VS = 4.5 V	-	0.2	0.5	
		I(VR1) = 50 mA, VS = 4.5 V	-	0.1	0.4	
Loadreg_VR1	Load Regulation	$1 \text{ mA} \leq I(\text{VR1}) \leq 100 \text{ mA}$	-50	-	50	mV
Linereg_VR1	Line Regulation	$I(VR1) \leq 100 \text{ mA}$	-40	-	40	mV
Cload_VR1	VR1 load capacity	ESR < 200 m Ω , ceramic capacitor recommended	1.0	4.7	-	μF
RES_VR1	VR1 Reset threshold	VR1 voltage decreasing	4.3	4.5	4.7	V
RES_hyst_VR1	VR1 Reset threshold hysteresis		0.05	0.1	0.2	V
tfilt_RES_VR1	VR1 undervoltage filter time		-	15	-	μs
OV_VR1	VR1 overvoltage threshold	VR1 voltage increasing / decreasing	5.5	-	6.0	V
OV_hyst_VR1	VR1 overvoltage threshold hysteresis		-	0.06	-	V
tfilt_OV_VR1	VR1 overvoltage filter time		-	15	-	μs
toff_VR1	VR1 off time after TSD		-	1.0	-	s

 $\begin{array}{l} \textbf{ELECTRICAL CHARACTERISTICS} \text{ (continued)} \\ 6 \text{ V} \leq \text{ VS} \leq 18 \text{ V}; -40^{\circ}\text{C} \leq \text{Tj} \leq 150^{\circ}\text{C}; 4.75 \text{ V} \leq \text{ VR1} \leq 5.25 \text{ V}; \text{ R}_{LT} = 60 \ \Omega, \text{ C}_{LT} = 100 \text{ pF}, \text{ C}_{ST} \text{ not used, unless otherwise specified.} \end{array}$

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
VR1 VOLTAGE RI	EGULATOR					
ls_add_VR1	VS consumption adder of VR1	(Note 7)	-	0.01 x I(VR1)	_	A
CAN BUS LINES	(Pins CANH and CANL)					
I _{o(rec)}	Recessive output current at pins CANH and CANL	CAN enabled; -27 V < V _{CANH} , V _{CANL} < 32 V	-5.0	-	5.0	mA
ILI	Input leakage current	$\begin{array}{l} 0 \; \Omega \; \leq \; R(VR1 \; to \; GND) < 1 \; M\Omega; \\ V_{CANH} = V_{CANH} = 5 \; V \end{array}$	-5.0	0	5.0	μA
V _{o(rec)(CANH)}	Recessive output voltage at pin CANH	CAN enabled; TxDC = High; no load	2.0	2.5	3.0	V
V _{o(rec)(CANL)}	Recessive output voltage at pin CANL	CAN enabled; TxDC = High; no load	2.0	2.5	3.0	V
V _{o(off)(CANH)}	Recessive output voltage at pin CANH	CAN disabled; no load	-0.1	0	0.1	V
$V_{o(off)(CANL)}$	Recessive output voltage at pin CANL	CAN disabled; no load	-0.1	0	0.1	V
V _{o(off)(diff)}	Differential bus output volt- age in off mode (V _{CANH} – V _{CANL})	CAN disabled; no load	-0.2	0	0.2	V
V _{o(dom)(CANH)}	Dominant output voltage at pin CANH	$\begin{array}{l} \mbox{CAN enabled; 50 } \Omega \leq \mbox{R}_{LT} \leq \mbox{65 } \Omega; \\ \mbox{TxDC} = \mbox{Low; } t < \mbox{t}_{\mbox{dom}(\mbox{TxDC})} \end{array}$	2.75	3.5	4.5	V
V _{o(dom)} (CANL)	Dominant output voltage at pin CANL	$ \begin{array}{l} \mbox{CAN enabled; 50 } \Omega \leq \mbox{R}_{LT} \leq \mbox{65 } \Omega; \\ \mbox{TxDC} = \mbox{Low; } t < \mbox{t}_{\mbox{dom}(\mbox{TxDC})} \end{array} $	0.5	1.5	2.25	V
V _{o(sym)}	Driver output voltage symmetry (V _{CANH} + V _{CANL})	CAN enabled; C_{ST} = 4.7 nF; TxDC driven by square wave up to 1 MHz	0.9	-	1.1	VR1
V _{o(dom)(diff)}	Differential bus output voltage (V _{CANH} – V _{CANL})	CAN enabled; $45 \Omega \le R_{LT} \le 65 \Omega$; TxDC = Low; dominant	1.5	2.25	3.0	V
V _{o(dom)(diff)_arb}	Differential bus output voltage during arbitration (V _{CANH} - V _{CANL})	CAN enabled; $R_{LT} = 2240 \Omega$; TxDC = Low; dominant; (Note 7)	1.5	-	5.0	V
$V_{o(rec)(\text{diff})}$	Differential bus output voltage (V _{CANH} – V _{CANL})	CAN enabled; no load; V _{TxDC} = High; recessive	-50	0	50	mV
I _{o(sc)} (CANH)	Short circuit output current at pin CANH	CAN enabled; TxDC = Low; $V_{CANH} = -3 V$ $-3 V \le V_{CANH} \le 18 V$	-100 -100	-70	-40 2.0	mA
I _{o(sc)} (CANL)	Short circuit output current at pin CANL	CAN enabled; TxDC = Low; $V_{CANL} = 36 V$ $-3 V \le V_{CANL} \le 18 V$	40 -1.5	70	100 100	mA
V _{i(rec)(diff)_NM}	Differential input voltage range	CAN enabled; no load; -12 V \leq V _{CANH} , V _{CANL} \leq 12 V	3.0	-	0.5	V
V _{i(rec)(diff)_LP}	 recessive state 	CAN disabled; no load; -12 V \leq V _{CANH} , V _{CANL} \leq 12 V	-3.0	-	0.4	V
V _{i(dom)(diff)_NM}	Differential input voltage range	CAN enabled; no load; -12 V \leq V _{CANH} , V _{CANL} \leq 12 V	0.9	_	8.0	V
V _{i(dom)(diff)_} LP	dominant state	CAN disabled; no load; -12 V \leq V _{CANH} , V _{CANL} \leq 12 V	1.05	-	8.0	V
$V_{i(diff)(th)_NM}$	Differential receiver threshold voltage in normal mode	CAN enabled; -12 V \leq V _{CANH} , V _{CANL} \leq 12 V	0.5	-	0.9	V
$V_{i(\text{diff})(\text{th})_\text{LP}}$	Differential receiver threshold voltage in wake-up-detec- tion mode	CAN disabled; -12 V \leq V _{CANH} , V _{CANL} \leq 12 V	0.4	-	1.05	V

 $\begin{array}{l} \textbf{ELECTRICAL CHARACTERISTICS} \text{ (continued)} \\ 6 \text{ V} \leq \text{ VS} \leq 18 \text{ V}; -40^{\circ}\text{C} \leq \text{Tj} \leq 150^{\circ}\text{C}; 4.75 \text{ V} \leq \text{ VR1} \leq 5.25 \text{ V}; \text{ R}_{\text{LT}} = 60 \ \Omega, \text{ C}_{\text{LT}} = 100 \text{ pF}, \text{ C}_{\text{ST}} \text{ not used, unless otherwise specified.} \end{array}$

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
CAN BUS LINES	(Pins CANH and CANL)		•			
R _{i(cm)(CANH)}	Common-mode input resis- tance at pin CANH	$-2 V \le V_{CANH}, V_{CANL} \le 7 V$	15	25	37	kΩ
R _{i(cm)(CANL)}	Common-mode input resis- tance at pin CANL	$-2 V \le V_{CANH}, V_{CANL} \le 7 V$	15	25	37	kΩ
R _{i(cm)(m)}	Matching between pin CANH and pin CANL common mode input resistance	V _{CANH} = V _{CANL} = 5 V	-1.0	0	1.0	%
R _{i(diff)}	Differential input resistance		25	50	75	kΩ
C _{i(CANH)}	Input capacitance at pin CANH	TxDC = High; (Note 7)	-	7.5	20	pF
C _{i(CANL)}	Input capacitance at pin CANL	TxDC = High; (Note 7)	-	7.5	20	pF
C _{i(diff)}	Differential input capacitance	TxDC = High; (Note 7)	-	3.75	10	pF
TIMING CHARAC	TERISTICS (see Figure 3, Figure	4 and Figure 5)				
t _{d(TxDC-BUSon)}	Propagation delay TxDC to bus active	CAN enabled	-	65	-	ns
$t_{d(TxDC-BUSoff)}$	Propagation delay TxDC to bus inactive	CAN enabled	-	90	-	ns
t _{d(BUSon-RxDC)}	Propagation delay bus active to RxDC	CAN enabled	-	60	-	ns
t _{d(BUSoff-RxDC)}	Propagation delay bus inac- tive to RxDC	CAN enabled	-	65	-	ns
t _{pd_dr}	Propagation delay TxDC to RxDC dominant to recessive transition	CAN enabled	50	100	170	ns
t _{pd_rd}	Propagation delay TxDC to RxDC recessive to dominant transition	CAN enabled	50	120	170	ns
t _{wake_filt}	Dominant time for wake-up via bus	CAN_EN = Low	0.15	-	1.8	μs
t _{dwakerd}	Delay to flag wake event (re- cessive to dominant transi- tions)	CAN_EN = Low; Valid bus wake-up event	0.5	-	6.0	μs
t _{dwakedr}	Delay to flag wake event (dominant to recessive tran- sitions)	CAN_EN = Low; Valid bus wake-up event	0.5	-	6.0	μs
t _{wake_to}	Bus time for wake-up time- out	CAN_EN = Low	1.0	-	10	ms
t _{dom(TxDC)}	TxDC dominant time for time- out	CAN_EN = High; TxDC = Low	1.0	-	10	ms
t _{Bit(RxDC)}	Bit time on RxDC pin	t _{Bit(TxDC)} = 500 ns	400	-	550	ns
		t _{Bit(TxDC)} = 200 ns	120	-	220	ns
$t_{Bit(Vi(diff))}$	Bit time on bus pins (CANH – CANL)	t _{Bit(TxDC)} = 500 ns	435	-	530	ns
		t _{Bit(TxDC)} = 200 ns	155	_	210	ns
Δt_{Rec}	Receiver timing symmetry $\Delta t_{Rec} = t_{Bit(RxDC)} - t_{Bit(Vi(diff))}$	t _{Bit(TxDC)} = 500 ns	-65	-	40	ns
	Hec - 'Bit(HXDC) - 'Bit(Vi(diff))	t _{Bit(TxDC)} = 200 ns	-45	-	15	ns

ELECTRICAL CHARACTERISTICS (continued)

 $6~V~\leq~VS~\leq~18~V;~-40^\circ C~\leq~Tj~\leq~150^\circ C;~4.75~V~\leq~VR1~\leq~5.25~V;~R_{LT}$ = 60 $\Omega,~C_{LT}$ = 100 pF, C_{ST} not used, unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit			
TIMING CHARACTERISTICS (see Figure 3, Figure 4 and Figure 5)									
t _{d(LP-NM)}	Mode change delay from wake-up detection to normal mode	$CAN_EN = Low \to High$	-	25	47	μs			
WATCHDOG TIMI	WATCHDOG TIMING								

twd_acc	Watchdog timing accuracy		-15	-	15	%
t_wd_TO	Timeout watchdog period	After WD_EN low \rightarrow high transition or RSTN pulse	56	65	74	ms
t_wd_CW	Window watchdog closed win- dow		5.1	6.0	6.9	ms
t_wd_OW	Window watchdog open window		85	100	115	ms
t_WDI	Minimum WDI pulse width ac- cepted as a watchdog service		6.0	_	-	μS

WAKE INPUT

Vth_WAKE	WAKE pin threshold		2.0	-	4.0	V
Vhys_WAKE	WAKE pin threshold hysteresis		0.1	-	0.7	V
tfilt_WAKE	WAKE wake-up filter time		10	-	50	μs
Ipu_WAKE	Pull-up current on WAKE pin	V(WAKE) = 4 V	-11	-	-3.0	μA
Ipd_WAKE	Pull-down current on WAKE pin	V(WAKE) = 2 V	3.0	-	11	μA

DIGITAL OUTPUTS, RxDC, WAKE_OUT

loutL_pinx	Low-level output driving current	pinx is logical Low, forced V(pinx) = 0.4 V	1.0	6.0	12	mA
loutH_pinx	High-level output driving cur- rent	pinx is logical High, forced V(pinx) = VR1 – 0.4 V	-8.0	-3.0	-1.0	mA

DIGITAL OUTPUT RSTN

loutL_RSTN	Low-level output driving current	RSTN is active (logical Low), forced V(RSTN) = 0.4 V	2.0	5.0	12	mA
VoutL_RSTN	Low-level output voltage,	VR1 > 4.7 V, I(RSTN) = 0.6 mA	-	0.2	0.4	V
	low VR1/VS	VR1 > 2 V, VS < VR1, I(RSTN) = 0.1 mA	-	0.2	0.4	
		VR1 = 0 V, VS > 2 V, I(RSTN) = 0.2 mA	-	0.2	0.4	
Rpu_RSTN	Internal pull-up resistor to VR1		5.0	10.0	19	kΩ
t_RSTN	Reset pulse length after VR1 undervoltage or watchdog failure		6.8	8.0	9.2	kΩ

DIGITAL INPUTS TxDC, CAN_EN, WD_EN, WDI

VinL_pinx	Low-level input voltage (logical "Low")		-	-	0.8	V
VinH_pinx	High-level input voltage (logical "High")		2.0	-	-	V
Vin_hys_pinx	Input voltage hysteresis		-	200	-	mV
Rpu_pinx	Internal pull-up resistor to VR1; pin TxDC		55	100	185	kΩ
Rpd_pinx	Internal pull-down resistor to ground; pins CAN_EN, WDI		55	100	185	kΩ
lpu_WD_EN	Internal pull-up current to VR1, pin WD_EN	V(WD_EN) = 0 V, pull-up current source active	50	100	200	μA
tper_pu_WDEN	WD_EN pull-up current source activation period	WD_EN = CAN_EN = Low	-	610	-	μs

ELECTRICAL CHARACTERISTICS (continued)

 $6~V \leq VS \leq 18~V; -40^{\circ}C \leq Tj \leq 150^{\circ}C; 4.75~V \leq VR1 \leq 5.25~V; R_{LT} = 60~\Omega, C_{LT} = 100~pF, C_{ST}~not~used, unless otherwise specified.$

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
DIGITAL INPUTS T	xDC, CAN_EN, WD_EN, WDI					
ton_pu_WDEN	WD_EN pull-up current source activation on-time	WD_EN = CAN_EN = Low	-	5.0	-	μs
THERMAL PROTEC	CTION					

Tsd	Thermal shutdown level	Temperature increasing	155	165	175	°C
Tsd_hys	Thermal shutdown level hys- teresis	Temperature decreasing	-	10	-	°C

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

7. Not tested in production, guaranteed by design.

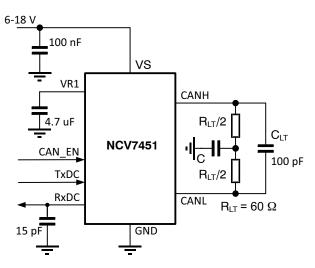


Figure 3. Test Circuit for CAN Timing Characteristics

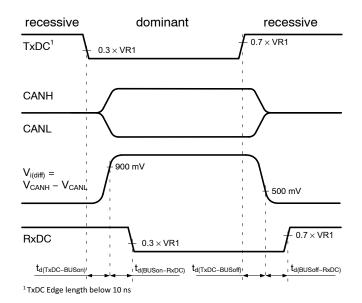


Figure 4. CAN Transceiver Timing Diagram – Propagation Delays

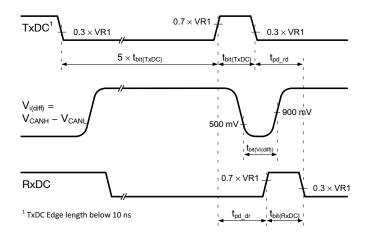


Figure 5. CAN Transceiver Timing Diagram – Loop Delay and Recessive Bit Time

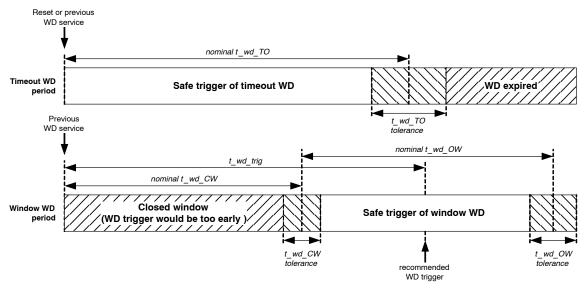


Figure 6. Watchdog Modes Timing

FUNCTIONAL DESCRIPTION

Supply Concept

The device has one battery supply pin VS, supplying the VR1 regulator and logic control. The supply line has to be properly decoupled by filtering capacitors close to the device pin.

VR1 Low-drop Regulator

VR1 is a low-drop output regulator providing 5 V voltage derived from the VS main supply. It is able to deliver up to 250 mA and is primarily intended to supply the on-chip CAN transceiver, the application microcontroller unit (MCU) and related 5 V loads (e.g. its own MCU-related digital inputs/outputs). An external capacitor needs to be connected on VR1 pin in order to ensure the regulator's stability and to filter the disturbances caused by the connected loads.

VR1 voltage supplies all the digital low-voltage input/output pins.

The protection and monitoring of the VR1 regulator consist of the following features:

- VR1 Current Limitation the two-level current limitation controlled by VR1 reset comparator to reduce the power dissipation in case of shorts to ground by the current fold-back (see Figure 7)
- VR1 Reset Comparator the VR1 regulator output is compared with a reset level RES_VR1. If the VR1

level drops below this level for longer than *tfilt_RES_VR1*, a reset towards the MCU is generated through the RSTN pin and the CAN transceiver is disabled.

- VR1 Overvoltage Reset Comparator the VR1 regulator output is compared with an overvoltage level OV_VR1. If the VR1 level crosses this threshold for longer than *tfilt_OV_VR1*, a reset towards the MCU is generated through the RSTN pin and the CAN transceiver is disabled.
- Temperature (see Figure 14)

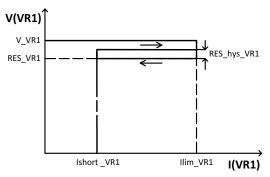


Figure 7. VR1 Current Fold-back

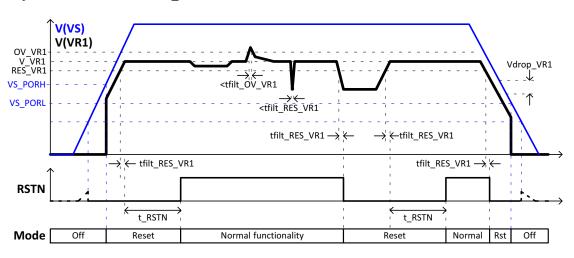


Figure 8. VS1 and VR1 Monitoring

CAN Transceiver

The SBC contains one high-speed CAN transceiver compliant with ISO11898–2:2016. The transceiver consists of the following sub-blocks: transmitter, receiver, and wake-up detector.

If enabled (CAN_EN = High), the CAN transceiver is ready to provide the full-speed interface between the bus and a CAN controller connected on pins RxDC (received data) and TxDC (data to transmit). In order to prevent a faulty node from blocking the bus traffic, the maximum length of the transmitted dominant symbol is limited by a time-out counter to $t_{dom(TxDC)}$. In case the TxDC Low signal exceeds the timeout value, the transmitter returns automatically to the recessive state. The transmission is again de-blocked when TxDC pin returns to high (recessive) state.

If the CAN block is disabled (CAN_EN = Low) or RSTN pin active (Low) due to failed watchdog service or VR1

undervoltage / overvoltage, the CAN transceiver is in its wake–up detection state. Logical level on TxDC is ignored and pin RxDC is kept high until a CAN bus wake–up is detected. The CAN bus wake–up corresponds to a pattern consisting of dominant – recessive – dominant symbols of at least t_{wake_filt} each. The RxDC starts following the CAN bus afterwards. The pattern must be received within t_{wake_to} to be recognized as a valid wake–up event, otherwise internal wake–up logic is reset.

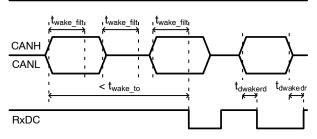


Figure 9. CAN Wake-up Pattern

WAKE Comparator

WAKE pin is a high-voltage input typically used to monitor an external contact or switch. The inverted logical level on pin WAKE can be polled via WAKE_OUT output push-pull pin.

A stable logical level of the WAKE signal is ensured even without an external connection:

• if the WAKE level is High for longer than *tfilt_WAKE*, an internal pull-up current source is connected to WAKE pin • if the WAKE level stays Low for longer than *tfilt_WAKE*, an internal pull-down current source is connected to WAKE pin

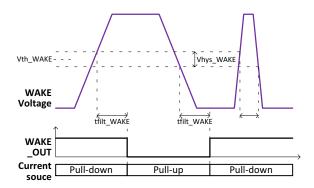


Figure 10. WAKE Pin Functionality

Watchdog

The on-chip watchdog requires that the MCU software "triggers" or "services" the watchdog in a specified time frame. A correct watchdog service consists of high-to-low transition on the WDI input. The watchdog timer re-starts immediately after a successful trigger is received.

After any Reset event (power–up, watchdog failure, VR1 under–/overvoltage, thermal shutdown) or watchdog enable (WD_EN = Low \rightarrow High), the watchdog always starts in a timeout mode. The MCU software must serve the watchdog any time before the time–out expiration. After the watchdog is triggered for the first time, it starts working in a window mode operation: the watchdog time is split to two distinct parts – a closed window, where the watchdog may not be triggered, is followed by an open window where the MCU must send a valid watchdog trigger (see Figure 12).

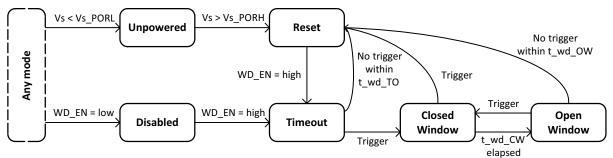


Figure 11. Watchdog Operating Modes

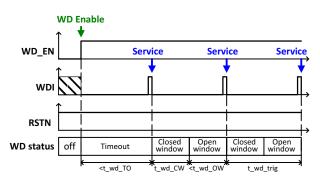


Figure 12. Correct Watchdog Services

In case the watchdog is not triggered before the timeout or open window elapses (Figure 13, Figure 14), or trigger is sent within the closed window (Figure 15), RSTN signal is generated and then watchdog restarted in the timeout mode again.

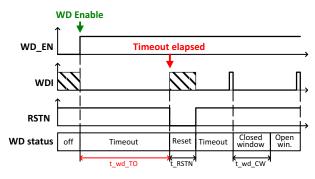


Figure 13. Missed Watchdog in Timeout Mode

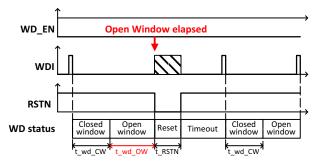


Figure 14. Missed Watchdog in Window Mode

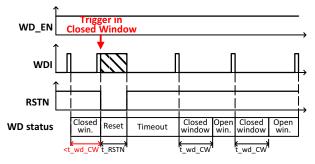


Figure 15. Watchdog Service during Closed Window

The WD_EN pin has an integrated pull-up source to enable the watchdog in case the pin is disconnected from the application. To reduce the power consumption in the low-power mode (watchdog and CAN disabled), the WD_EN pull-up current source is switched on for *ton_pu_WDEN* time with period of *tper_pu_WDEN*. The pin state is sampled in the end of the current source activation. Once High level is detected on the WD_EN pin, the current source is activated permanently.

To ensure the High level is correctly detected if the pin becomes floating, external WD_EN capacitance should stay below 50 pF.

After the rising edge on WD_EN pin, the MCU should wait *tper_pu_WDEN* before the first watchdog service.

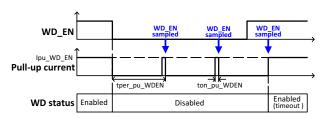


Figure 16. WD_EN Pull-up Current Source Activation

Thermal Protection

A thermal protection circuit protects the IC from damage by complete device de-activation if the junction temperature exceeds a value of *Tsd*.

The device recovers automatically after the junction temperature drops below Tsd level lowered by hysteresis Tsd_hys and $toff_VR1$ (typ. 1 second) expires.

Operating Modes

The device operating modes are directly controlled by CAN_EN input pin and failure events (see Figure 17).

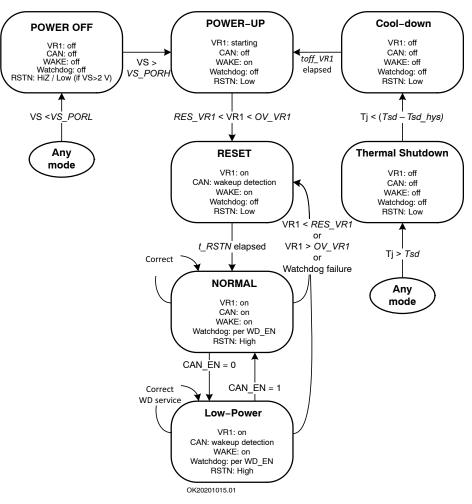
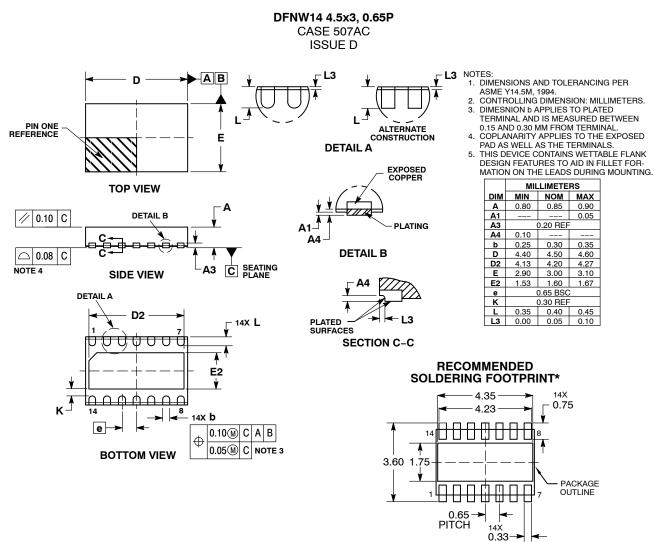


Figure 17. Operating Modes Diagram


ISO11898-2:2016 PARAMETER CROSS-REFERENCE TABLE

ISO 11898–2:2016 Specification		NCV7451 Datashee
Parameter	Notation	Symbol
DOMINANT OUTPUT CHARACTERISTICS		
Single ended voltage on CAN_H	V _{CAN_H}	V _{o(dom)(CANH)}
Single ended voltage on CAN_L	V _{CAN_L}	V _{o(dom)(CANL)}
Differential voltage on normal bus load	V _{Diff}	V _{o(dom)(diff)}
Differential voltage on effective resistance during arbitration	V _{Diff}	V _{o(dom)(diff)_arb}
Differential voltage on extended bus load range (optional)	V _{Diff}	NA
DRIVER SYMMETRY		
Driver symmetry	V _{SYM}	V _{o(sym)}
DRIVER OUTPUT CURRENT		
Absolute current on CAN_H	I _{CAN_H}	I _{o(SC)(CANH)}
Absolute current on CAN_L	I _{CAN_L}	I _{o(SC)(CANL)}
RECEIVER OUTPUT CHARACTERISTICS, BUS BIASING ACTIVE		
Single ended output voltage on CAN_H	V _{CAN_H}	V _{o(rec)(CANH)}
Single ended output voltage on CAN_L	V _{CAN_L}	V _{o(rec)(CANL)}
Differential output voltage	V _{Diff}	V _{o(rec)(diff)}
RECEIVER OUTPUT CHARACTERISTICS, BUS BIASING INACTIVE	•	•
Single ended output voltage on CAN_H	V _{CAN_H}	V _{o(off)(CANH)}
Single ended output voltage on CAN_L	V _{CAN_L}	V _{o(off)(CANL)}
Differential output voltage	V _{Diff}	V _{o(off)(dif)}
TRANSMIT DOMINANT TIMEOUT	•	•
Transmit dominant timeout, long	t _{dom}	t _{dom(TxDC)}
Transmit dominant timeout, short	t _{dom}	NA
STATIC RECEIVER INPUT CHARACTERISTICS, BUS BIASING ACTIVE		
Recessive state differential input voltage range	V _{Diff}	V _{i(rec)(diff)_NM}
Dominant state differential input voltage range	V _{Diff}	V _{i(dom)(diff)_NM}
STATIC RECEIVER INPUT CHARACTERISTICS, BUS BIASING INACTIVE		
Recessive state differential input voltage range	V _{Diff}	V _{i(rec)(diff)_LP}
Dominant state differential input voltage range	V _{Diff}	V _{i(dom)(diff)_LP}
RECEIVER INPUT RESISTANCE		• – – – –
Differential internal resistance	R _{Diff}	R _{i(diff)}
Single ended internal resistance	R _{CAN_H} R _{CAN_L}	R _{i(cm)(CANH)} R _{i(cm)(CANL)}
RECEIVER INPUT RESISTANCE MATCHING		
Matching a of internal resistance	m _R	R _{i(cm)(m)}
IMPLEMENTATION LOOP DELAY REQUIREMENT	1	
Loop delay	t _{Loop}	t _{pd_rd} t _{pd_dr}
DATA SIGNAL TIMING REQUIREMENTS for use with bit rates above 1 Mbit/s and u	p to 2 Mbit/s	• • -
Transmitted recessive bit width @ 2 Mbit/s	t _{Bit(Bus)}	t _{Bit(Vi(diff))}
Received recessive bit width @ 2 Mbit/s	t _{Bit(RXD)}	t _{Bit(RxDC)}
Receiver timing symmetry @ 2 Mbit/s	Δt _{Rec}	Δt_{Rec}

ISO11898-2:2016 PARAMETER CROSS-REFERENCE TABLE (continued)

ISO 11898-2:2016 Specification	NCV7451 Datasheet	
Parameter	Notation	Symbol
DATA SIGNAL TIMING REQUIREMENTS for use with bit rates above 2 Mbit/s and u	p to 5 Mbit/s	
Transmitted recessive bit width @ 5 Mbit/s	t _{Bit(Bus)}	t _{Bit(Vi(diff))}
Transmitted recessive bit width @ 5 Mbit/s	t _{Bit(RXD)}	t _{Bit(RxDC)}
Received recessive bit width @ 5 Mbit/s	Δt_{Rec}	Δt_{Rec}
MAXIMUM RATINGS OF V _{CAN_H} , V _{CAN_L} AND V _{DIFF}		
Maximum rating V _{Diff}	V _{Diff}	Vdiff
General maximum rating V_{CAN_H} and V_{CAN_L}	V _{CAN_H} V _{CAN_L}	CANH CANL
Optional: Extended maximum rating $V_{\mbox{CAN}_\mbox{H}}$ and $V_{\mbox{CAN}_\mbox{L}}$	V _{CAN_H} V _{CAN_L}	NA
MAXIMUM LEAKAGE CURRENTS ON CAN_H AND CAN_L, UNPOWERED		
Leakage current on CAN_H, CAN_L	I _{CAN_H} , I _{CAN_L}	lLi
BUS BIASING CONTROL TIMINGS		
CAN activity filter time, long	t _{Filter}	NA
CAN activity filter time, short	t _{Filter}	t _{wake_filt}
Optional: Wake-up timeout, short	t _{Wake}	NA
Optional: Wake-up timeout, long	t _{Wake}	t _{wake_to}
Timeout for bus inactivity (Required for selective wake-up implementation only)	t _{Silence}	NA
Bus Bias reaction time (Required for selective wake-up implementation only)	t _{Bias}	NA

PACKAGE DIMENSIONS

DIMENSIONS: MILLIMETERS

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor hy such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, a

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

Email Requests to: orderlit@onsemi.com
ON Semiconductor Website: www.onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative