

October 2004

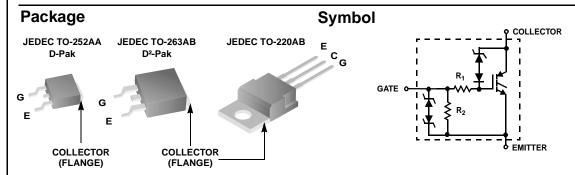
ISL9V3036D3S / ISL9V3036S3S / ISL9V3036P3

EcoSPARKTM 300mJ, 360V, N-Channel Ignition IGBT

General Description

The ISL9V3036D3S, ISL9V3036S3S, and ISL9V3036P3 are the next generation IGBTs that offer outstanding SCIS capability in the space saving D-Pak (TO-252), as well as the industry standard D²-Pak (TO-263) and TO-220 plastic packages. These devices are intended for use in automotive ignition circuits, specifically as a coil drivers. Internal diodes provide voltage clamping without the need for external components.

EcoSPARK™ devices can be custom made to specific clamp voltages. Contact your nearest Fairchild sales office for more information.


Formerly Developmental Type 49442

Applications

- Automotive Ignition Coil Driver Circuits
- · Coil- On Plug Applications

Features

- Industry Standard D2-Pak package
- SCIS Energy = 300mJ at T_J = 25°C
- Logic Level Gate Drive

Device Maximum Ratings T_J = 25°C unless otherwise noted

Symbol	Parameter	Ratings	Units
BV _{CER}	Collector to Emitter Breakdown Voltage (I _C = 1 mA)	360	V
BV _{ECS}	Emitter to Collector Voltage - Reverse Battery Condition (I _C = 10 mA)	24	V
E _{SCIS25}	$T_J = 25$ °C, $I_{SCIS} = 14.2$ A, L = 3.0 mHy	300	mJ
E _{SCIS150}	$T_J = 150$ °C, $I_{SCIS} = 10.6A$, $L = 3.0$ mHy	170	mJ
I _{C25}	Collector Current Continuous, At T _C = 25°C, See Fig 9	21	Α
I _{C110}	Collector Current Continuous, At T _C = 110°C, See Fig 9	17	Α
V_{GEM}	Gate to Emitter Voltage Continuous	±10	V
P_{D}	Power Dissipation Total T _C = 25°C	150	W
	Power Dissipation Derating T _C > 25°C	1.0	W/°C
T _J	Operating Junction Temperature Range	-40 to 175	°C
T _{STG}	Storage Junction Temperature Range	-40 to 175	°C
T _L	Max Lead Temp for Soldering (Leads at 1.6mm from Case for 10s)	300	°C
T _{pkg}	Max Lead Temp for Soldering (Package Body for 10s)	260	°C
ESD	Electrostatic Discharge Voltage at 100pF, 1500 Ω	4	kV

V3036D	kina	Device	Package	Reel Siz	e	Tane	Width	(Quantity	
v JUJUL						Tape Width		2500		
1/20265			330mm		16mm					
V3036S ISL9V3036S3ST TO-263AB		330mm		24mm			800			
V3036P ISL9V3036P3 TO-220AA		Tube		N/A			50			
V3036D		ISL9V3036D3S	TO-252AA	Tube		N/A			75	
V3036S ISL9V3036S3S TO-263AB		Tube		N/A			50			
lectrica	al Ch	naracteristic	S T _J = 25°C ur	lless otherwise n	oted					
Symbol	Parameter		Test Conditions		Min	Тур	Max	Unit		
ff State	Chara	acteristics								
BV _{CER} Collector to Emitter Breakdown Voltage		$I_C = 2\text{mA}, V_{GE} = 0,$ $R_G = 1\text{K}\Omega$, See Fig. 15		330	360	390	V			
				$T_J = -40 \text{ to } 150$						
BV _{CES}	Collector to Emitter Breakdown Voltage		$I_C = 10$ mA, $V_{GE} = 0$, $R_G = 0$, See Fig. 15 $T_{.1} = -40$ to 150°C		350	380	410	V		
BV _{ECS}	Emitter to Collector Breakdown Voltage		$I_C = -75 \text{mA}, V_{GE} = 0 \text{V},$ $T_C = 25 ^{\circ}\text{C}$		30	-	-	V		
BV _{GES}	Gate	to Emitter Breakdo	wn Voltage	$I_{GES} = \pm 2mA$		±12	±14	-	V	
I _{CER}		Collector to Emitter Leakage Current		$V_{CER} = 250V$,	$T_C = 25^{\circ}C$	-	-	25	μA	
02				$R_G = 1KΩ$, See Fig. 11	$T_C = 150$ °C	-	-	1	mA	
I _{ECS}	Emitt	Emitter to Collector Leakage Current		V _{EC} = 24V, See	T _C = 25°C	-	-	1	mA	
200				Fig. 11	$T_{C} = 150^{\circ}C$	-	-	40	mA	
R ₁	Series Gate Resistance					-	70	-	Ω	
R ₂	Gate to Emitter Resistance					10K	-	26K	Ω	
N State (acteristics ctor to Emitter Satu	ıration Voltage	I _C = 6A,	T _C = 25°C,	-	1.25	1.60	l v	
	Collector to Emitter Saturation Voltage						1.00	V		
V _{CE(SAT)}	Colle	ctor to Emitter Satu	ration Voltage	$V_{GE} = 4V$ $I_C = 10A$	See Fig. 3 $T_C = 150$ °C,	-	1.58	1.80	V	
V _{CE(SAT)}				$I_C = 10A,$ $V_{GE} = 4.5V$	T _C = 150°C, See Fig. 4			1.80	V	
V _{CE(SAT)}		ctor to Emitter Satu		$I_C = 10A$,	T _C = 150°C,	-	1.58			
V _{CE(SAT)}	Colle			$I_{C} = 10A,$ $V_{GE} = 4.5V$ $I_{C} = 15A,$	T _C = 150°C, See Fig. 4			1.80	V	
V _{CE(SAT)}	Colle Chara Gate	ctor to Emitter Satu acteristics Charge	uration Voltage	$I_{C} = 10A,$ $V_{GE} = 4.5V$ $I_{C} = 15A,$	$T_{C} = 150^{\circ}\text{C},$ See Fig. 4 $T_{C} = 150^{\circ}\text{C}$ = 12V,			1.80	V	
V _{CE(SAT)}	Colle Chara Gate	ctor to Emitter Satu	uration Voltage	$\begin{split} I_{C} &= 10\text{A}, \\ V_{GE} &= 4.5\text{V} \\ I_{C} &= 15\text{A}, \\ V_{GE} &= 4.5\text{V} \\ \end{split}$ $\begin{split} I_{C} &= 10\text{A}, V_{CE} &= 0.5\text{A}, \\ V_{GE} &= 5\text{V}, \text{See} \\ I_{C} &= 1.0\text{MA}, \end{split}$	$T_{C} = 150^{\circ}\text{C},$ See Fig. 4 $T_{C} = 150^{\circ}\text{C}$ = 12V, Fig. 14 $T_{C} = 25^{\circ}\text{C}$		1.90	1.80	V	
V _{CE(SAT)} ynamic (Q _{G(ON)} V _{GE(TH)}	Colle Chara Gate Gate	acteristics Charge to Emitter Thresho	uration Voltage	$\begin{split} I_{C} &= 10\text{A}, \\ V_{GE} &= 4.5\text{V} \\ I_{C} &= 15\text{A}, \\ V_{GE} &= 4.5\text{V} \\ \end{split}$ $\begin{split} I_{C} &= 10\text{A}, V_{CE} &= 0.5\text{A}, \\ V_{CE} &= 5\text{V}, \text{See} \\ I_{C} &= 1.0\text{MA}, \\ V_{CE} &= V_{GE}, \\ \text{See Fig. 10} \end{split}$	$T_{C} = 150^{\circ}\text{C},$ See Fig. 4 $T_{C} = 150^{\circ}\text{C}$ = 12V, Fig. 14 $T_{C} = 25^{\circ}\text{C}$ $T_{C} = 150^{\circ}\text{C}$	- 1.3 0.75	1.90	2.20	V V	
V _{CE(SAT)} ynamic (Q _{G(ON)}	Colle Chara Gate Gate	ctor to Emitter Satu acteristics Charge	uration Voltage	$\begin{split} I_{C} &= 10\text{A}, \\ V_{GE} &= 4.5\text{V} \\ I_{C} &= 15\text{A}, \\ V_{GE} &= 4.5\text{V} \\ \end{split}$ $\begin{split} I_{C} &= 10\text{A}, V_{CE} &= 0.5\text{A}, \\ V_{GE} &= 5\text{V}, \text{See} \\ I_{C} &= 1.0\text{MA}, \\ V_{CE} &= V_{GE}, \end{split}$	$T_{C} = 150^{\circ}\text{C},$ See Fig. 4 $T_{C} = 150^{\circ}\text{C}$ = 12V, Fig. 14 $T_{C} = 25^{\circ}\text{C}$	- 1.3	1.90	2.20	V V	
$V_{CE(SAT)}$ ynamic $Q_{G(ON)}$ $V_{GE(TH)}$	Chara Gate Gate Gate	acteristics Charge to Emitter Thresho	uration Voltage	$\begin{split} I_{C} &= 10\text{A}, \\ V_{GE} &= 4.5\text{V} \\ I_{C} &= 15\text{A}, \\ V_{GE} &= 4.5\text{V} \\ \end{split}$ $\begin{split} I_{C} &= 10\text{A}, V_{CE} &= 0.5\text{A}, \\ V_{CE} &= 5\text{V}, \text{See} \\ I_{C} &= 1.0\text{MA}, \\ V_{CE} &= V_{GE}, \\ \text{See Fig. 10} \end{split}$	$T_{C} = 150^{\circ}\text{C},$ See Fig. 4 $T_{C} = 150^{\circ}\text{C}$ = 12V, Fig. 14 $T_{C} = 25^{\circ}\text{C}$ $T_{C} = 150^{\circ}\text{C}$	- 1.3 0.75	1.90	2.20	V V	
$V_{CE(SAT)}$ ynamic $Q_{G(ON)}$ $V_{GE(TH)}$	Chara Gate Gate Gate Chara	acteristics Charge to Emitter Thresho	old Voltage Voltage	$\begin{split} &I_{C} = 10\text{A}, \\ &V_{GE} = 4.5\text{V} \\ &I_{C} = 15\text{A}, \\ &V_{GE} = 4.5\text{V} \\ \end{split}$ $\begin{aligned} &I_{C} = 10\text{A}, V_{CE} = 20\text{A}, \\ &V_{CE} = 5\text{V}, \text{See} \\ &I_{C} = 1.0\text{MA}, \\ &V_{CE} = V_{GE}, \\ &See \text{ Fig. } 10 \\ &I_{C} = 10\text{A}, \end{aligned}$ $\begin{aligned} &V_{CE} = 14\text{V}, R_{L} = 14\text{V}, R_$	T_{C} = 150°C, See Fig. 4 T_{C} = 150°C = 12V, Fig. 14 T_{C} = 25°C T_{C} = 150°C V_{CE} = 12V	- 1.3 0.75	1.90	2.20	V V	
V _{CE(SAT)} ynamic (Q _{G(ON)} V _{GE(TH)} V _{GEP}	Chara Gate Gate Gate Curre Curre	acteristics Charge to Emitter Thresho to Emitter Plateau racteristics ent Turn-On Delay ent Rise Time-Resi	old Voltage Voltage Time-Resistive stive	$\begin{split} &I_{C} = 10\text{A}, \\ &V_{GE} = 4.5\text{V} \\ &I_{C} = 15\text{A}, \\ &V_{GE} = 4.5\text{V} \\ \end{split}$ $\begin{aligned} &I_{C} = 10\text{A}, V_{CE} = 20\text{A}, \\ &V_{GE} = 5\text{V}, \text{See} \\ &I_{C} = 1.0\text{MA}, \\ &V_{CE} = V_{GE}, \\ &See \text{ Fig. } 10 \\ &I_{C} = 10\text{A}, \end{aligned}$ $\begin{aligned} &V_{CE} = 14\text{V}, R_{CE} = 20\text{A}, \\ &V_{CE} = 20\text{A}, \\ &V_{CE} = 20\text{A}, \end{aligned}$	T_{C} = 150°C, See Fig. 4 T_{C} = 150°C = 12V, Fig. 14 T_{C} = 25°C T_{C} = 150°C V_{CE} = 12V = 1Ω = 1ΚΩ = Fig. 12	- 1.3 0.75	1.90	- 2.20 1.80 2.20 1.8 - 4 7	V V V V V	
$V_{CE(SAT)}$ ynamic $Q_{G(ON)}$ $V_{GE(TH)}$ V_{GEP} witching $t_{d(ON)R}$	Colle Chara Gate Gate Gate Curre Curre	acteristics Charge to Emitter Thresho to Emitter Plateau racteristics ent Turn-On Delay ent Rise Time-Resi	voltage Voltage Time-Resistive stive	$\begin{split} &I_{C} = 10\text{A}, \\ &V_{GE} = 4.5\text{V} \\ &I_{C} = 15\text{A}, \\ &V_{GE} = 4.5\text{V} \\ \end{split}$ $\begin{aligned} &I_{C} = 10\text{A}, V_{CE} = 20\text{A}, \\ &V_{CE} = 5\text{V}, \text{See} \\ &I_{C} = 1.0\text{MA}, \\ &V_{CE} = V_{GE}, \text{See Fig. 10} \\ &I_{C} = 10\text{A}, \end{aligned}$ $\begin{aligned} &V_{CE} = 14\text{V}, R_{CE} = 20\text{A}, \\ &V_{CE} = 25\text{C}, \text{See} = 20\text{C}, \text{See} \\ &V_{CE} = 300\text{V}, R_{CE} = 20\text{C}, \text{See} \end{aligned}$	T_{C} = 150°C, See Fig. 4 T_{C} = 150°C = 12V, Fig. 14 T_{C} = 25°C T_{C} = 150°C V_{CE} = 12V = 1Ω, 1 HΩ : 1KΩ : Fig. 12 = 500μH,	- 1.3 0.75	1.90 17 - - 3.0	1.80 2.20 - 2.2 1.8	V V V V V V	
$\begin{array}{c} \text{V}_{\text{CE(SAT)}} \\ \text{ynamic} \\ Q_{\text{G(ON)}} \\ \\ \text{V}_{\text{GE(TH)}} \\ \\ \text{V}_{\text{GEP}} \\ \\ \text{witching} \\ \\ \frac{t_{\text{d(ON)R}}}{t_{\text{rR}}} \end{array}$	Colle Chara Gate Gate Gate Curre Curre	acteristics Charge to Emitter Thresho to Emitter Plateau racteristics ent Turn-On Delay ent Rise Time-Resi	voltage Voltage Time-Resistive stive	$\begin{split} &I_{C} = 10\text{A}, \\ &V_{GE} = 4.5\text{V} \\ &I_{C} = 15\text{A}, \\ &V_{GE} = 4.5\text{V} \\ \end{split}$ $\begin{aligned} &I_{C} = 10\text{A}, V_{CE} = 20\text{A}, \\ &V_{CE} = 5\text{A}, V_{CE} = 20\text{A}, \\ &V_{CE} = 1.0\text{A}, \\ &V_{CE} = V_{GE}, \\ &See Fig. 10 \\ &I_{C} = 10\text{A}, \end{aligned}$ $\begin{aligned} &V_{CE} = 14\text{V}, R_{CE} = 20\text{A}, \\ &V_{CE} = 25\text{A}, R_{CE} = 25\text{A}, R$	T_{C} = 150°C, See Fig. 4 T_{C} = 150°C = 12V, Fig. 14 T_{C} = 25°C T_{C} = 150°C V_{CE} = 12V = 1Ω, = 1KΩ = Fig. 12 = 500μH, = 1KΩ = Fig. 12	- 1.3 0.75	1.90 17 - - 3.0 0.7 2.1	- 2.20 1.80 2.20 1.8 - 4 7	V V V V V V V V V V V V V V V V V V V	
$\begin{array}{c} \text{V}_{\text{CE(SAT)}} \\ \\ \text{ynamic} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Colle Chara Gate Gate Gate Curre Curre Curre	acteristics Charge to Emitter Thresho to Emitter Plateau racteristics ent Turn-On Delay ent Rise Time-Resi	voltage Voltage Time-Resistive stive Time-Inductive tive	$\begin{split} &I_{C} = 10\text{A}, \\ &V_{GE} = 4.5\text{V} \\ &I_{C} = 15\text{A}, \\ &V_{GE} = 4.5\text{V} \\ \end{split}$ $\begin{split} &I_{C} = 10\text{A}, V_{CE} = 20\text{A}, \\ &V_{CE} = 300\text{A}, \\ &V_{CE} = 300\text{A},$	T_{C} = 150°C, See Fig. 4 T_{C} = 150°C = 12V, Fig. 14 T_{C} = 25°C T_{C} = 150°C V_{CE} = 12V = 1Ω, Fig. 12 = 500μH, = 1KΩ Fig. 12 3.0 mH,	- 1.3 0.75	1.90 17 - - 3.0 0.7 2.1 4.8	- 2.2 1.8 - 2.2 1.8 4 7	V V V V V V V V V V V V V V V V V V V	
$V_{\text{CE(SAT)}}$ ynamic $Q_{\text{G(ON)}}$ $V_{\text{GE(TH)}}$ V_{GEP} witching $t_{\text{d(ON)R}}$ t_{rR} t_{fL} SCIS	Gate Gate Gate Curre Curre Curre Self (acteristics Charge to Emitter Thresho to Emitter Plateau racteristics ent Turn-On Delay ent Rise Time-Resi	voltage Voltage Time-Resistive stive Time-Inductive tive	$\begin{split} &I_{C} = 10\text{A}, \\ &V_{GE} = 4.5\text{V} \\ &I_{C} = 15\text{A}, \\ &V_{GE} = 4.5\text{V} \\ \end{split}$ $\begin{aligned} &I_{C} = 10\text{A}, V_{CE} = 20\text{A}, \\ &V_{CE} = 5\text{A}, V_{CE} = 20\text{A}, \\ &V_{CE} = 1.0\text{A}, \\ &V_{CE} = 1.0\text{A}, \\ &V_{CE} = 10\text{A}, \\ &V_{$	T_{C} = 150°C, See Fig. 4 T_{C} = 150°C = 12V, Fig. 14 T_{C} = 25°C T_{C} = 150°C V_{CE} = 12V = 1Ω, Fig. 12 = 500μH, = 1KΩ Fig. 12 3.0 mH,	- 1.3 0.75	1.90 17 - - 3.0 0.7 2.1 4.8 2.8	- 2.2 1.8 - 2.2 1.8 4 7 15	V V V V V V V V V V V V V V V V V V V	

Typical Performance Curves

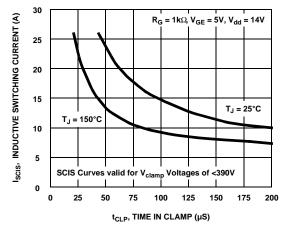


Figure 1. Self Clamped Inductive Switching Current vs Time in Clamp

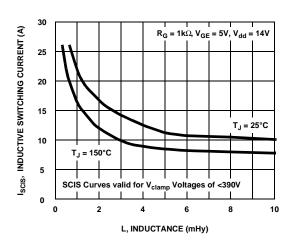


Figure 2. Self Clamped Inductive Switching Current vs Inductance

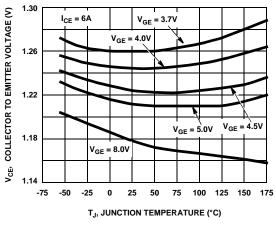


Figure 3. Collector to Emitter On-State Voltage vs Junction Temperature

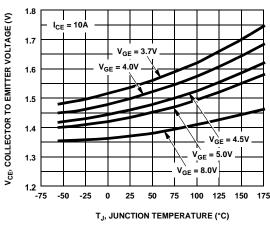


Figure 4. Collector to Emitter On-State Voltage vs Junction Temperature

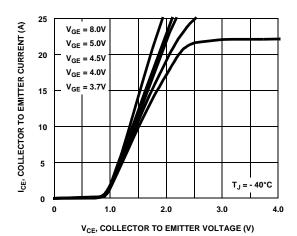


Figure 5. Collector to Emitter On-State Voltage vs Collector Current

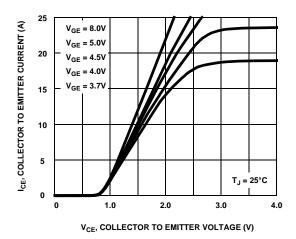


Figure 6. Collector to Emitter On-State Voltage vs Collector Current

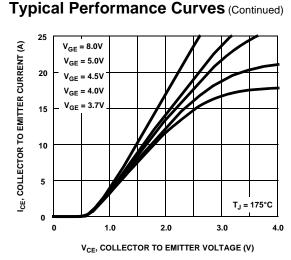


Figure 7. Collector to Emitter On-State Voltage vs Collector Current

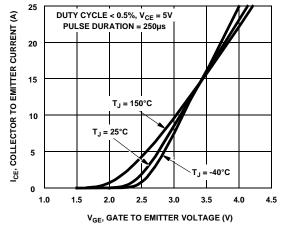


Figure 8. Transfer Characteristics

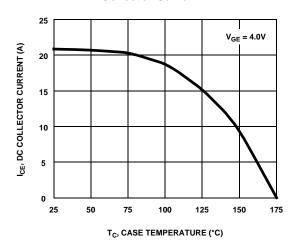


Figure 9. DC Collector Current vs Case Temperature

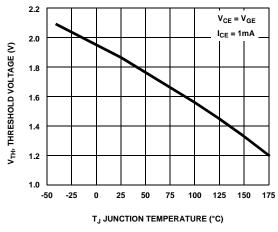


Figure 10. Threshold Voltage vs Junction Temperature

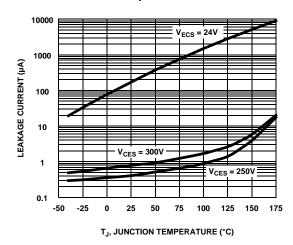


Figure 11. Leakage Current vs Junction Temperature

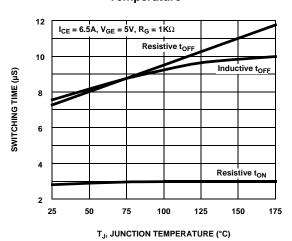


Figure 12. Switching Time vs Junction Temperature

Typical Performance Curves (Continued) FREQUENCY = 1 MHz Cles Coes C

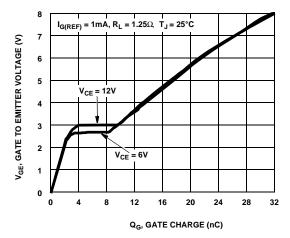


Figure 13. Capacitance vs Collector to Emitter Voltage

V_{CE}, COLLECTOR TO EMITTER VOLTAGE (V)

Figure 14. Gate Charge

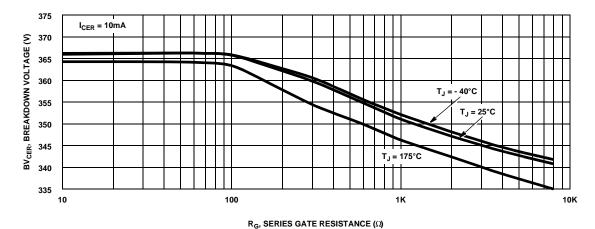


Figure 15. Breakdown Voltage vs Series Gate Resistance

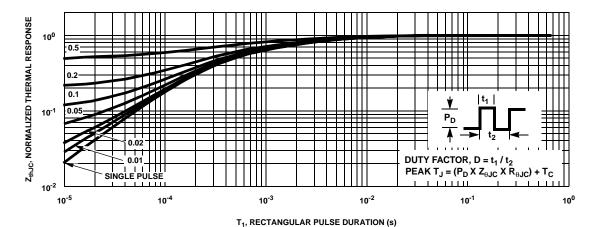
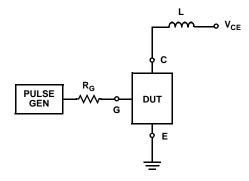



Figure 16. IGBT Normalized Transient Thermal Impedance, Junction to Case

Test Circuit and Waveforms

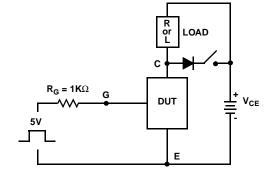


Figure 17. Inductive Switching Test Circuit

Figure 18. t_{ON} and t_{OFF} Switching Test Circuit

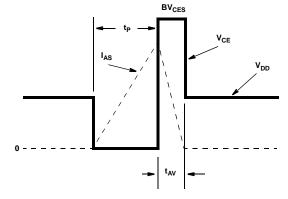


Figure 19. Unclamped Energy Test Circuit

Figure 20. Unclamped Energy Waveforms

SPICE Thermal Model JUNCTION **REV 24 April 2002** ISL9V3036D3S/ ISL9V3036S3S / ISL9V3036P3 CTHERM1 th 6 2.1e -3 CTHERM2 6 5 1.4e -1 RTHERM1 CTHERM1 CTHERM3 5 4 7.3e -3 CTHERM4 4 3 2.1e -1 CTHERM5 3 2 1.1e -1 CTHERM6 2 tl 6.2e +6 6 RTHERM1 th 6 1.2e -1 RTHERM2 6 5 1.9e -1 RTHERM2 CTHERM2 RTHERM3 5 4 2.2e -1 RTHERM4 4 3 6.0e -2 RTHERM5 3 2 5.8e -2 RTHERM6 2 tl 1.6e -3 5 SABER Thermal Model RTHERM3 CTHERM3 SABER thermal model ISL9V3036D3S / ISL9V3036S3S / ISL9V3036P3 template thermal_model th tl thermal c th, tl ctherm.ctherm1 th 6 = 2.1e - 3ctherm.ctherm2 6 5 = 1.4e - 1ctherm.ctherm354 = 7.3e - 3RTHERM4 CTHERM4 ctherm.ctherm4 4 3 = 2.2e -1 ctherm.ctherm5 3 2 =1.1e -1 ctherm.ctherm6 2 tl = 6.2e +63 rtherm.rtherm1 th 6 = 1.2e - 1rtherm.rtherm2 6 5 = 1.9e -1 rtherm.rtherm354 = 2.2e-1RTHERM5 CTHERM5 rtherm.rtherm4 4 3 = 6.0e - 2rtherm.rtherm5 3 2 = 5.8e - 2rtherm.rtherm6 2 tl = 1.6e -3 2 RTHERM6 CTHERM6 CASE

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

$ACEx^{TM}$	FAST®	ISOPLANAR™	Power247™	Stealth™
ActiveArray™	FASTr™	LittleFET™	PowerEdge™	SuperFET™
Bottomless™	FPS™	MICROCOUPLER™	PowerSaver™	SuperSOT™-3
CoolFET™	FRFET™	MicroFET™	PowerTrench®	SuperSOT™-6
CROSSVOLT™	GlobalOptoisolator™	MicroPak™	QFET®	SuperSOT™-8
DOME™	GTO™ .	MICROWIRE™	QS^{TM}	SyncFET™
EcoSPARK™	HiSeC™	MSX TM	QT Optoelectronics™	TinyLogic [®]
E ² CMOS TM	I ² C TM	MSXPro™	Quiet Series™	TINYOPTO™
EnSigna™	<i>i-</i> Lo [™]	OCX^{TM}	RapidConfigure™	TruTranslation™
FACT™	ImpliedDisconnect™	OCXPro™	RapidConnect™	UHC™
FACT Quiet Serie		OPTOLOGIC®	∞SerDes™	UltraFET®
Across the board. Around the world.™ The Power Franchise® Programmable Active Droop™		OPTOPLANAR™ PACMAN™ POP™	SILENT SWITCHER® SMART START™ SPM™	VCX™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

Rev. I13